Skip to main content

WDM Switching Networks: Complexity and Constructions

  • Chapter
Combinatorial Optimization in Communication Networks

Part of the book series: Combinatorial Optimization ((COOP,volume 18))

  • 868 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassalygo, L. A., and Pinsker, M. S. The complexity of an optimal non-blocking commutation scheme without reorganization. Problemy Peredači Informacii 9,1 (1973), 84–87.

    MATH  MathSciNet  Google Scholar 

  2. Beneš, V. E.Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, New York, 1965. Mathematics in Science and Engineering, Vol. 17.

    MATH  Google Scholar 

  3. Brègman, L. M. Certain properties of nonnegative matrices and their permanents. Dokl. Akad. Nauk SSSR 211 (1973), 27–30.

    MATH  MathSciNet  Google Scholar 

  4. Cantor, D. G. On non-blocking switching networks. Networks 1 (1971/72), 367–377.

    MathSciNet  Google Scholar 

  5. Clos, C. A study of non-blocking switching networks. Bell System Tech. J. 32 (1953), 406–424.

    Google Scholar 

  6. Feldman, P., Friedman, J., and Pippenger, N. Wide-sense nonblocking networks. SIAM J. Discrete Math. 1,2 (1988), 158–173.

    Article  MATH  MathSciNet  Google Scholar 

  7. Friedman, J. A lower bound on strictly nonblocking networks. Combinatorica 8,2 (1988), 185–188.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hinton, H.An Introduction to Photonic Switching Fabrics. Plenum, New York, 1993.

    Google Scholar 

  9. Hwang, F. K.The Mathematical Theory of Nonblocking Switching Networks. World Scientific, River Edge, NJ, 1998.

    MATH  Google Scholar 

  10. Hwang, F. K., and Richards, G. W. A two-stage network with dual partial concentrators. Networks 23,1 (1993), 53–58.

    MATH  MathSciNet  Google Scholar 

  11. König, D. Über graphen und ihre anwendung auf determinantentheorie und mengenlehre. Math. Ann. 77 (1916), 453–465.

    Article  MATH  MathSciNet  Google Scholar 

  12. Lucent Technologies Press Release. Lucent Technologies unveils untra-high-capacity optical system; Time Warner Telecom first to announce it will deploy the system, 2001. http://www.lucent.com/press/0101/010117.nsa.html.

    Google Scholar 

  13. Lucent Technologies Press Release. Lucent Technologies engineer and scientists set new fiber optic transmission record, 2002. http://www.lucent.com/press/0302/020322.bla.html.

    Google Scholar 

  14. Lucent Technologies Website. What is dense wave division multiplexing (DWDM), 2002. http://www.bell-labs.com/technology/lightwave/dwdm.html.

    Google Scholar 

  15. Minc, H. Upper bounds for permanents of (0, 1)-matrices. Bull. Amer. Math. Soc. 69 (1963), 789–791.

    Article  MATH  MathSciNet  Google Scholar 

  16. Mukherjee, B.Optical Communication Networks. McGraw-Hill, New York, 1997.

    Google Scholar 

  17. Ngo, H. Q. Multiwavelength distribution networks. In Proceedings of the 2004 Workshop on High Performance Switching and Routing (HPSR 2004, Phoenix, Arizona) (2004), IEEE, pp. 186–190.

    Google Scholar 

  18. Ngo, H. Q. WDM switching networks, rearrangeable and nonblocking [w, f]-connectors. SIAM J. Comput., to appear.

    Google Scholar 

  19. Ngo, H. Q. and Du, D.-Z. Notes on the complexity of switching networks. In Advances in Switching Networks, D.-Z. Du and H. Q. Ngo, Eds. Kluwer Academic, Hingham, MA, 2001, pp. 307–367.

    Google Scholar 

  20. Ngo, H. Q., Pan, D., and Qiao, C. Nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion. In Proceedings of the 23rd Conference of the IEEE Communications Society (INFOCOM’2004, Hong Kong) (2004), IEEE.

    Google Scholar 

  21. Ngo, H. Q., Pan, D., and Yang, Y. Optical switching networks with minimum number of limited range wavelength converters. In Proceedings of the 24rd Conference of the IEEE Communications Society (INFOCOM’2005, Miami, U.S.A.) (2005), IEEE.

    Google Scholar 

  22. Pippenger, N. On rearrangeable and nonblocking switching networks. J. Comput. System Sci. 17,2 (1978), 145–162.

    Article  MATH  MathSciNet  Google Scholar 

  23. Pippenger, N. A new lower bound for the number of switches in rearrangeable networks. SIAM J. Algebraic Discrete Methods 1,2 (1980), 164–167.

    MATH  MathSciNet  Google Scholar 

  24. Pippenger, N. Communication networks. In Handbook of Theoretical Computer Science, Vol. A. Elsevier, Amsterdam, 1990, pp. 805–833.

    Google Scholar 

  25. Pippenger, N. and Yao, A. C. C. Rearrangeable networks with limited depth. SIAM J. Algebraic Discrete Methods 3,4 (1982), 411–417.

    MATH  MathSciNet  Google Scholar 

  26. Qin, X. and Yang, Y. A cost-effective construction for WDM multicast switching networks. In Proceedings of the 2002 IEEE International Conference on Communications (ICC 2002) (New York, 1979), vol. 5, IEEE, pp. 2902–2906.

    Google Scholar 

  27. Ramamirtham, J. and Turner, J. S. Design of wavelength converting switches for optical burst switching. In Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM) (2002), vol. 2, IEEE, pp. 1162–1171.

    Google Scholar 

  28. Ramaswami, R. and Sivarajan, K.Optical Networks: A Practical Perspective (Second Edition). Morgan Kaufmann, San Francisco, 2001.

    Google Scholar 

  29. Rasala, A. and Wilfong, G. Strictly non-blocking WDM cross-connects. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’2000, San Francisco, CA) (New York, 2000), ACM, pp. 606–615.

    Google Scholar 

  30. Rasala, A. and Wilfong, G. Strictly non-blocking WDM cross-connects for heterogeneous networks. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing (STOC’2000, Portland, OR) (New York, 2000), ACM, pp. 513–524.

    Google Scholar 

  31. Robbins, H. A remark on Stirling’s formula. Amer. Math. Monthly 62 (1955), 26–29.

    Article  MATH  MathSciNet  Google Scholar 

  32. Shannon, C. E. Memory requirements in a telephone exchange. Bell System Tech. J. 29 (1950), 343–349.

    MathSciNet  Google Scholar 

  33. Singhal, A. and Jain, R. Terabit switching: A survey of techniques and current products. Computer communications 25,8 (2002), 547–556.

    Article  Google Scholar 

  34. Stern, T. E. and Bala, K.Multiwavelength Optical Networks: A Layered Approach. Prentice Hall, Upper Saddle River, NJ, 1999.

    Google Scholar 

  35. Wang, Y. and Yang, Y. Multicasting in a class of multicast-capable WDM networks. J. Lightwave Technol. 13,2 (Feb 2002), 128–141.

    Google Scholar 

  36. West, D. B.Introduction to graph theory. Prentice Hall, Upper Saddle River, NJ, 1996.

    MATH  Google Scholar 

  37. Wilfong, G., Mikkelsen, B., Doerr, C., and Zirngibl, M. WDM cross-connect architectures with reduced complexity. J. of Lightwave Technology, 17,10 (Oct 1999), 1732–1741.

    Article  Google Scholar 

  38. Yang, Y. and Wang, J. Designing WDM optical interconnects with full connectivity by using limited wavelength conversion. In Proceedings of the 18th IEEE International Parallel and Distributed Processing Symposium (IPDPS’04) (2004), IEEE.

    Google Scholar 

  39. Yang, Y. and Wang, J. WDM optical switching networks using sparse crossbars. In Proceedings of the 23th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’2004, Hong Kong) (2004), IEEE.

    Google Scholar 

  40. Yang, Y., Wang, J., and Qiao, C. Nonblocking WDM multicast switching networks. IEEE Trans. Para. and Dist. Sys. 11,12 (Dec 2000), 1274–1287.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ngo, H.Q. (2006). WDM Switching Networks: Complexity and Constructions. In: Cheng, M.X., Li, Y., Du, DZ. (eds) Combinatorial Optimization in Communication Networks. Combinatorial Optimization, vol 18. Springer, Boston, MA. https://doi.org/10.1007/0-387-29026-5_15

Download citation

  • DOI: https://doi.org/10.1007/0-387-29026-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29025-6

  • Online ISBN: 978-0-387-29026-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics