Skip to main content

Cholesterol Transport in Lysosomes

  • Chapter
Lysosomes

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

Cellular cholesterol trafficking includes numerous individual processes, as cholesterol cannot only be obtained endogenously or exogenously, but also has many possible fates within the cell, including incorporation into membranes, metabolic conversion to a number of different products, covalent modification of specific proteins, regulation of gene expression, and efflux from the cell. Distinct trafficking pathways are thought to exist for de novo synthesized cholesterol and cholesterol obtained via the receptor-mediated endocytosis of low density lipoproteins. Exogenously obtained cholesterol must pass through the endosomal/lysosomal compartment prior to its trafficking to other subcellular sites, such as the endoplasmic reticulum, the Golgi apparatus, and the plasma membrane. The inherited disorder Niemann-Pick type C, in which abnormal cholesterol trafficking from the endo-lysosomal compartment leads to substantial cholesterol and glycolipid accumulatioin in lysosomes, is caused by defects in either of two genes that encode for proteins designated as NPC1 and NPC2. NPC1 is a multiple membrane spanning domain protein containing a sterol sensing domain similar to those found in several proteins involved in cholesterol homeostasis. NPC2 is a small intralysosomal protein that has been characterized biochemically as a cholesterol binding and transport protein. While there is abundant evidence suggesting a role for the NPC proteins in late endosomal/lysosomal trafficking of cholesterol, their precise functions and mechanisms of action remain to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis PM, Dunn MP, McMahon JA. Cholesterol modification of sonic hedgehog is required for long range signaling activity and effective modulation of signaling by ptc 1. Cell 2001;105:599–612.

    Article  PubMed  CAS  Google Scholar 

  2. Nohturff A, Debor-Boyd RA, Scheek S et al. Sterols regulate the cycling of SREBP cleavage activating protein (SCAP) between ER and Golgi. Proc Natl Acad Sci 1999;96:11235–40.

    Article  Google Scholar 

  3. Nohturff A, Yab D, Goldstein JL et al. Regulated step in cholesterol feedback localized to budding of SACP from the endoplasmic reticulum membrane. Cell 2000;102:315–23.

    Article  Google Scholar 

  4. Goldstein JL, Brown MS. A receptor mediated pathway for cholesterol homeostasis. Science 1986;232:34–47.

    Article  PubMed  Google Scholar 

  5. Goldstein JL, Dara SF, Faust JR et al. Role of lysosomal acid lipase in the metabolism of plasma LDL: Observation in cultured fibroblasts from a patient with cholesteryl ester storage disease. J Biol Chem 1975;250:8487–95.

    PubMed  CAS  Google Scholar 

  6. Carstea ED, Morris JA, Coleman KG et al. Niemann-Pick disease gene: Homology to mediation of cholesterol homeostasis. Science 1997;277:228–31.

    Article  PubMed  CAS  Google Scholar 

  7. Naureckiene S, Sleat DE, Lackland H et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science 2000;290:2298–2301.

    Article  PubMed  CAS  Google Scholar 

  8. Liscum L. Compartmentation of cholesterol within the cell. Curr Opin Lipidol 1994;5:221–226.

    Article  PubMed  CAS  Google Scholar 

  9. Liscum L, Munn NJ. Intracellular cholesterol transport. Biochim Biophys Acta 1999;1438:19–30.

    PubMed  CAS  Google Scholar 

  10. DeGrella RF, Simoni RD. Intracellular transport of cholesterol to the plasma membrane. J Biol Chem 1982;257:14256–14262.

    PubMed  CAS  Google Scholar 

  11. Neufeld EB, Cooney AM, Pitha J et al. Intracellular trafficking of cholesterol monitored by cyclodextrin. J Biol Chem 271:21604–21613.

    Google Scholar 

  12. Kaplan MR, Simoni. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. J Cell Biol 1985;101:446–453.

    Article  PubMed  CAS  Google Scholar 

  13. Smart EJ, Ying YS, Donzell WC et al. A role of caveolin in transport of cholesterol from endoplasmic reticulum to the plasma membrane. J Biol Chem 1996;271:29427–29435.

    Article  PubMed  CAS  Google Scholar 

  14. Uittenboagard A, Smart E. Plamitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation and rapid transport of cholesterol to caveolae. J Biol Chem 2000;275:25595–25599.

    Article  Google Scholar 

  15. Heino S, Lusa S, Somarharju P et al. Dissecting the role of Golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface. Proc Natl Acad Sci USA 2000;97:8375–8380.

    Article  PubMed  CAS  Google Scholar 

  16. Zha X, Pierini LM, Leopold PL et al. Sphingomyelinase treatment induces ATP-independent endocytosis. J Cell Biol 1998;140:39–47.

    Article  PubMed  CAS  Google Scholar 

  17. Sokol J, Blanchette-Mackie EJ, Kruth HS et al. Type C Niemann-Pick disease: Lysosomal accumulation and defective mobilization of LDL-cholesterol. J Biol Chem 1988;263:3411–3417.

    PubMed  CAS  Google Scholar 

  18. Urbani L, Simoni R. Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane. J Biol Chem 1990;265:1919–1923.

    PubMed  CAS  Google Scholar 

  19. Coxey RA, Pentchev PG, Campbell G et al. Differential accumulation of cholesterol in Golgi compartments of normal and Niemann Pick type C fibroblasts incubated with LDL: A cytochemical freeze fracture study. J Lipid Res 1993;34:1165–1126.

    PubMed  CAS  Google Scholar 

  20. Lange Y, Ye J, Chin J. The fate of cholesterol exiting lysosomes. J of Biol Chem 1997;272:17018–17022.

    Article  CAS  Google Scholar 

  21. Underwood KW, Jacobs NL, Howley A et al. Evidence for a cholesterol transport pathway from lysosomes to endoplasmic reticulum that is independent of the plasma membrane. J Biol Chem 1998;273:4266–4274.

    Article  PubMed  CAS  Google Scholar 

  22. Lupu F, Danaricu I, Simionescu N. Development of intracellular lipid deposits in the lipid laden cells of atherosclerotic lesions. A cytochemical and ultrastructural study. Atherosclerosis 1987;67:127–142.

    Article  PubMed  CAS  Google Scholar 

  23. Brasaelme DL, Attie AD. Rapid intracellular transport of LDL-derived cholesterol to the plasma membrane in cultured fibroblasts. J Lipid Res 1990;31:103–112.

    Google Scholar 

  24. Phillips MC, Johnson WJ, Rothblat GH. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta 1987;906:223–276.

    PubMed  CAS  Google Scholar 

  25. Pentchev PG, Blanchette-Mackie EJ, Dawidowicz EA. The NPC gene: A key to pathways of intracellular cholesterol transport. Trends in Cell Biol 1994;4:365–369.

    Article  CAS  Google Scholar 

  26. Pentchev PG, Brady RO, Blanchette-Mackie EJ et al. The Niemann Pick lesion and its relationship to the intracellular distribution and utilization of LDL cholesterol. Biochim Biophys Acta 1994;1225:235–243.

    PubMed  CAS  Google Scholar 

  27. Vanier MT, Rodriguez-Lafarasse C, Rousson R et al. Type C Niemann Pick disease: Spectrum of phenotypic variation in disruption of intracellular LDL derived cholesterol processing. Biochim Biophys Acta 1991;1096:328–337.

    PubMed  CAS  Google Scholar 

  28. Pentchev PG, Comly ME, Kruth HS et al. Type C Niemann Pick disease: A parallel loss of regulatory responses in both the uptake and esterification of low density lipoprotein derived cholesterol in cultures fibroblasts. J Biol Chem 1986;261:2772–2777.

    PubMed  CAS  Google Scholar 

  29. Liscum L, Faust JR. Low density lipoprotein (LDL) mediated suppression of cholesterol synthesis and LDL uptake is defective in Niemann Pick type C fibroblasts. J Biol Chem 1987;262:17002–17008.

    PubMed  CAS  Google Scholar 

  30. Vanier MT, Duthel S, Rodriguez-Lafrasse C et al. Genetic heterogeneity in Niemann Pick C disease: A study using somatic cell hybridization and linkage analysis. Am J Human Genetics 1996;58:118–125.

    CAS  Google Scholar 

  31. Carstea ED, Morris JA, Coleman KG et al. Niemann Pick C1 disease gene: Homology to mediators of cholesterol homeostasis. Science 1997;277:228–231.

    Article  PubMed  CAS  Google Scholar 

  32. Morris JA, Zhang D, Coleman KG et al. The genomic organization and polymorphism analysis of the human Niemann-Pick C1 gene. Biochem Biophys Res Commun 1999;261:493–498.

    Article  PubMed  CAS  Google Scholar 

  33. Yamamoto T, Nanba E, Ninomiya H et al. NPC1 gene mutations in Japanese patients with NPC disease type C. Human Genetics 1999;105:10–16.

    Article  PubMed  CAS  Google Scholar 

  34. Greer WL, Dobson MJ, Girouard GS et al. Mutations in NPC1 highlight a conserved NPC1-specific cysteine rich domain. Am J Human Genet 1999;65:1252–1260.

    Article  CAS  Google Scholar 

  35. Millat G, Marcais C, Rafi M et al. Niemann Pick C1 disease: The I1061T substitution is a frequent mutant allele in patients of Western European descent and correlates with a classic juvenile phenotype. Am J Human Genet 1999;65:1321–1329.

    Article  CAS  Google Scholar 

  36. Neufeld EB, Wastney M, Patel S et al. The Niemann Pick C1 resides in a vesicular compartment linked to Retrograde transport of multiple Lysosomal Cargo. J Biol Chem 1999;274:9627–9635.

    Article  PubMed  CAS  Google Scholar 

  37. Higgins ME, Davies JP, Chen FW et al. Niemann Pick C1 is a late endosome resident protein that transiently associates with lysosomes and the Trans-Golgi Network. Mol Genet & Metab 1999;68:1–13.

    Article  CAS  Google Scholar 

  38. Kobayashi T, Beuchat M, Linsay M et al. Late endosomal membrane rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol 1999;1:113–118.

    Article  PubMed  CAS  Google Scholar 

  39. Watari H, Blanchette-Mackie EJ, Dwyer NK et al. Mutations in the leucine zipper motif and sterol sensing domain inactivate the NPC1 glycoprotein. J Biol Chem 1999;274:21861–21866.

    Article  PubMed  CAS  Google Scholar 

  40. Watari H, Blanchette-Mackie EJ, Dwyer NK et al. Niemann Pick C1: Obligatory roles of N-terminal domains and lysosomal targeting in cholesterol mobilization. Proc Natl Acad Sci 1999;96:905–810.

    Article  Google Scholar 

  41. Davies JP, Ioannou YA. Topological analysis of NPC1 reveals that the membrane orientation of the putative sterol sensing domain is identical to those of HMG co A reductase and SCAP. J Biol Chem 2000;275:24367–24374.

    Article  PubMed  CAS  Google Scholar 

  42. Watari H, Blanchette-Mackie EJ, Dwyer NK et al. Determinants of NPC1 expression and action: Key promoter regions, posttranscriptional control, and the importance of a cysteine rich loop. Exp Cell Research 2000;259:247–256.

    Article  CAS  Google Scholar 

  43. Davies JP, Chen FW, Ioannou YA. Transmembrane molecular pump activity of Niemann Pick Type C1 protein. Science 2000;290:2295–2298.

    Article  PubMed  CAS  Google Scholar 

  44. Altmann SW, Davis HR, Zhu L et al. Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 2004;303:1201–1204.

    Article  PubMed  CAS  Google Scholar 

  45. Davis HR, Zhu L, Hoos L et al. Niemann-pick C1 like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 2004;279:33586–33592.

    Article  PubMed  CAS  Google Scholar 

  46. Okamura N, Kiuchi S, Tamba M et al. A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim Biophys Acta 1999;1438:377–87.

    PubMed  CAS  Google Scholar 

  47. Friedland N, Liou HL, Lobel P et al. Structure of a cholesterol binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci 2003;100:25122–17.

    Article  CAS  Google Scholar 

  48. Ko DC, Binkley J, Sidow A et al. The integrity of a cholesterol binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci 2003;100:2518–2525.

    Article  PubMed  CAS  Google Scholar 

  49. Storch J, Thumser AE. The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta 2000;1486:28–44.

    PubMed  CAS  Google Scholar 

  50. Strauss JF, Liu P, Christenson L et al. Sterols and intracellular vesicular trafficking: Lessons from the study of NPC1. Steroids 2002;67:947–951.

    Article  PubMed  CAS  Google Scholar 

  51. Kishida T, Kostetskii I, Zhang Z et al. Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism. J Biol Chem 2004;279:19276–19285.

    Article  PubMed  CAS  Google Scholar 

  52. Frovlov A, Zielinski SE, Crowley JR et al. NPC1 and NPC2 regulate cellular cholesterol homeostasis through generation of low density lipoprotein cholesterol derived oxysterols. J Biol Chem 2003;28:25517–25525.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Storch, J., Cheruku, S.R. (2005). Cholesterol Transport in Lysosomes. In: Lysosomes. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28957-7_9

Download citation

Publish with us

Policies and ethics