Skip to main content

Lysosomal Proteome and Transcriptome

  • Chapter
Lysosomes

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 1860 Accesses

Abstract

As reflected in this monograph, a lot of knowledge about the lysosomal compartment has been acquired since the discovery of the organelle by de Duve and others in the 1950s. Nevertheless, a lot of questions are still open, and some of them can be addressed using screening techniques. Among them are questions about the structure of the lysosomal mem-brane, the function of its proteins, and the effect of lysosomal dysfunction on cell functions. Although the proteins of the lysosomal matrix are well known, little is realised about the proteins of the lysosomal membrane. In the first section of this chapter, we describe the most important proteome analysis related techniques used to purify and analyse lysosomal structures that can help to define the complete set of matrix proteins and to describe the pro-teins of the lysosomal membrane. In the second section, we delineate the gene expression pro-filing technique and briefly describe approaches which can be used to analyse the influence of lysosomal dysfunctions on the cell, as well as on the function of lysosomal proteins. Because transcriptome and proteome analyses of lysosomal structure and function are still only in the initial stage, we will focus on the description of the methods and the major aims.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilkins MR, Sanchez JC, Gooley AA et al. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996; 13:19–50.

    PubMed  CAS  Google Scholar 

  2. Wasinger VC, Cordwell SJ, Cerpa-Poljak A et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995; 16(7):1090–4.

    Article  PubMed  CAS  Google Scholar 

  3. Harry JL, Wilkins MR, Herbert BR et al. Proteomics: Capacity versus utility. Electrophoresis 2000; 21(6):1071–81.

    Article  PubMed  CAS  Google Scholar 

  4. Eskelinen EL, Tanaka Y, Saftig P. At the acidic edge: Emerging functions for lysosomal membrane proteins. Trends Cell Biol 2003; 13(3):137–45.

    Article  PubMed  CAS  Google Scholar 

  5. Town M, Jean G, Cherqui S et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 1998; 18(4):319–24.

    Article  PubMed  CAS  Google Scholar 

  6. Verheijen FW, Verbeek E, Aula N et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet 1999; 23(4):462–5.

    Article  PubMed  CAS  Google Scholar 

  7. Carstea ED, Morris JA, Coleman KG et al. Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis. Science 1997; 277(5323):228–31.

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka Y, Guhde G, Suter A et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 2000; 406(6798):902–6.

    Article  PubMed  CAS  Google Scholar 

  9. Gamp AC, Tanaka Y, Lullmann-Rauch R et al. LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Hum Mol Genet 2003; 12(6):631–46.

    Article  PubMed  CAS  Google Scholar 

  10. Journet A, Chapel A, Kieffer S et al. Towards a human repertoire of monocytic lysosomal proteins. Electrophoresis 2000; 21(16):3411–9.

    Article  PubMed  CAS  Google Scholar 

  11. Journet A, Chapel A, Kieffer S et al. Proteomic analysis of human lysosomes: Application to monocytic and breast cancer cells. Proteomics 2002; 2(8):1026–40.

    Article  PubMed  CAS  Google Scholar 

  12. Hasilik A, Neufeld EF. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem 1980; 255(10):4937–45.

    PubMed  CAS  Google Scholar 

  13. Hoflack B, Fujimoto K, Kornfeld S. The interaction of phosphorylated oligosaccharides and lysosomal enzymes with bovine liver cation-dependent mannose 6-phosphate receptor. J Biol Chem 1987; 262(1):123–9.

    PubMed  CAS  Google Scholar 

  14. Dittmer F, Hafner A, Ulbrich EJ et al. I-cell disease-like phenotype in mice deficient in mannose 6-phosphate receptors. Transgenic Res 1998; 7(6):473–83.

    Article  PubMed  CAS  Google Scholar 

  15. Stahn R, Maier KP, Hannig K. A new method for the preparation of rat liver lysosomes. Separation of cell organelles of rat liver by carrier-free continuous electrophoresis. J Cell Biol 1970; 46(3):576–91.

    Article  PubMed  CAS  Google Scholar 

  16. Harms E, Kern H, Schneider JA. Human lysosomes can be purified from diploid skin fibroblasts by free-flow electrophoresis. Proc Natl Acad Sci USA 1980; 77(10):6139–43.

    Article  PubMed  CAS  Google Scholar 

  17. Zischka H, Weber G, Weber PJ et al. Improved proteome analysis of Saccharomyces cerevisiae mitochondria by free-flow electrophoresis. Proteomics 2003; 3(6):906–16.

    Article  PubMed  CAS  Google Scholar 

  18. Mohr H, Volkl A. Isolation of peroxisomal subpopulations from mouse liver by immune free-flow electrophoresis. Electrophoresis 2002; 23(13):2130–7.

    Article  PubMed  CAS  Google Scholar 

  19. Diettrich O, Mills K, Johnson AW et al. Application of magnetic chromatography to the isolation of lysosomes from fibroblasts of patients with lysosomal storage disorders. FEBS Lett 1998; 441(3):369–72.

    Article  PubMed  CAS  Google Scholar 

  20. Graham J. In: Biological Centrifugation. Oxford: Bios Scientific Publishers Ltd, 2002, (Chapters 1, 3 and 4 cover the principles of centrifugation, gradient media and gradients techniques, respectively).

    Google Scholar 

  21. Duve C. Exploring cells with a centrifuge. Science 1975; 189(4198):186–94.

    Article  PubMed  CAS  Google Scholar 

  22. Wattiaux R, Wattiaux-De Coninck S, Ronveaux-dupal MF et al. Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. J Cell Biol 1978; 78(2):349–68.

    Article  PubMed  CAS  Google Scholar 

  23. Graham J, Ford T, Rickwood D. The preparation of subcellular organelles from mouse liver in self-generated gradients of iodixanol. Anal Biochem 1994; 220(2):367–73.

    Article  PubMed  CAS  Google Scholar 

  24. Symons LJ, Jonas AJ. Isolation of highly purified rat liver lysosomal membranes using two percoll gradients. Anal Biochem 1987; 164(2):382–90.

    Article  PubMed  CAS  Google Scholar 

  25. de Duve C, Pressman BC, Gianetto R et al. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 1955; 60(4):604–17.

    Google Scholar 

  26. Rome LH, Garvin AJ, Allietta MM et al. Two species of lysosomal organelles in cultured human fibroblasts. Cell 1979; 17(1):143–53.

    Article  PubMed  CAS  Google Scholar 

  27. Leighton F, Poole B, Beaufay H et al. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol 1968; 37(2):482–513.

    Article  PubMed  CAS  Google Scholar 

  28. Yamamoto K, Ikehara Y, Kawamoto S et al. Characterization of enzymes and glycoproteins in rat liver lysosomal membranes. J Biochem (Tokyo) 1980; 87(1):237–48.

    PubMed  CAS  Google Scholar 

  29. Bagshaw RD, Pasternak SH, Mahuran DJ et al. Nicastrin is a resident lysosomal membrane protein. Biochem Biophys Res Commun 2003; 300(3):615–8.

    Article  PubMed  CAS  Google Scholar 

  30. Arai K, Kanaseki T, Ohkuma S. Isolation of highly purified lysosomes from rat liver: Identification of electron carrier components on lysosomal membranes. J Biochem (Tokyo) 1991; 110(4):541–7.

    PubMed  CAS  Google Scholar 

  31. Arborgh B, Ericsson JL, Glaumann H. Method for the isolation of iron-loaded lysosomes from rat liver. FEBS Lett 1973; 32(1):190–4.

    Article  PubMed  CAS  Google Scholar 

  32. Henning R, Plattner H. Isolation of rat liver lysosomes by loading with colloidal gold. Biochim Biophys Acta 1974; 354(1):114–20.

    PubMed  CAS  Google Scholar 

  33. Jadot M, Colmant C, Wattiaux-De Coninck S et al. Intralysosomal hydrolysis of glycyl-L-phenylalanine 2-naphthylamide. Biochem J 1984; 219(3):965–70.

    PubMed  CAS  Google Scholar 

  34. Berg TO, Stromhaug E, Lovdal T et al. Use of glycyl-L-phenylalanine 2-naphthylamide, A lysosome-disrupting cathepsin C substrate, to distinguish between lysosomes and prelysosomal endocytic vacuoles. Biochem J 1994; 300 (Pt 1):229–36.

    PubMed  CAS  Google Scholar 

  35. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975; 26(3):231–43.

    PubMed  CAS  Google Scholar 

  36. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250(10):4007–21.

    PubMed  CAS  Google Scholar 

  37. Klose J. Genotypes and phenotypes. Electrophoresis 1999; 20(4–5):643–52.

    Article  PubMed  CAS  Google Scholar 

  38. Garrels JI, McLaughlin CS, Warner JR et al. Proteome studies of Saccharomyces cerevisiae: Identification and characterization of abundant proteins. Electrophoresis 1997; 18(8):1347–60.

    Article  PubMed  CAS  Google Scholar 

  39. Simpson RJ, Connolly LM, Eddes JS et al. Proteomic analysis of the human colon carcinoma cell line (LIM 1215): Development of a membrane protein database. Electrophoresis 2000; 21(9):1707–32.

    Article  PubMed  CAS  Google Scholar 

  40. Link AJ, Eng J, Schieltz DM et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 1999; 17(7):676–82.

    Article  PubMed  CAS  Google Scholar 

  41. Washburn MP, Wolters D, Yates 3rd JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19(3):242–7.

    Article  PubMed  CAS  Google Scholar 

  42. Yates JR III. Mass spectrometry and the age of the proteome. J Mass Spectrom 1998; 33(1):1–19.

    Article  PubMed  CAS  Google Scholar 

  43. Tanaka K, Ido Y, Akita S et al. Detection of high mass molecules by laser desorption time-of-flight mass spectrometry. In: Second Japan-China Joint Symposium on Mass Spectrometry 1987:185–188.

    Google Scholar 

  44. Tanaka K, Waki H, Ido Y et al. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 1988; 2(8):151–153.

    Article  CAS  Google Scholar 

  45. Karas M, Bachmann D, Bahr U et al. Int J Mass Spectrom Ion Proc 1987; 78:53.

    Article  CAS  Google Scholar 

  46. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988; 60(20):2299–301.

    Article  PubMed  CAS  Google Scholar 

  47. Nordhoff E, Egelhofer V, Giavalisco P et al. Large-gel two-dimensional electrophoresis-matrix assisted laser desorption/ionization-time of flight-mass spectrometry: An analytical challenge for studying complex protein mixtures. Electrophoresis 2001; 22(14):2844–55.

    Article  PubMed  CAS  Google Scholar 

  48. Fenn JB, Mann M, Meng CK et al. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989; 246(4926):64–71.

    Article  PubMed  CAS  Google Scholar 

  49. Crawford ME, Cusick ME, Garrels JI. Databases and knowledge resources for proteomics research. In: Proteomics: A Trends Guide. Elsevier Science Ltd 2000:17–21.

    Google Scholar 

  50. Beavis RC, Fenyö D. Database searching with mass spectrometric information. In: Proteomics: A Trends Guide. Elsevier Science Ltd 2000:22–27.

    Google Scholar 

  51. Nakai K, Horton P. PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 1999; 24(1):34–6.

    Article  PubMed  CAS  Google Scholar 

  52. Nielsen H, Engelbrecht J, Brunak S et al. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 1997; 10(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  53. Sonnhammer EL, von Heijne G, Krogh A. A hidden markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998; 6:175–82.

    PubMed  CAS  Google Scholar 

  54. Zabel C, Chamrad DC, Priller J et al. Alterations in the mouse and human proteome caused by Huntington’s disease. Mol Cell Proteomics 2002; 1(5):366–75.

    Article  PubMed  CAS  Google Scholar 

  55. Cho YM, Bae SH, Choi BK et al. Differential expression of the liver proteome in senescence accelerated mice. Proteomics 2003; 3(10):1883–94.

    Article  PubMed  CAS  Google Scholar 

  56. Kloc M, Zearfoss N, Etkin L. Mechanisms of subcellular mRNA localization. Cell 2002; 108(4):533–44.

    Article  PubMed  CAS  Google Scholar 

  57. Diehn M, Eisen M, Botstein D et al. Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 2000; 25:58–62.

    Article  PubMed  CAS  Google Scholar 

  58. Smith J, Marelli M, Christmas R et al. Transcriptome profiling to identify genes involved in peroxisome assembly and function. J Cell Biol 2002; 158:259–267.

    Article  PubMed  CAS  Google Scholar 

  59. Woloszynek J, Roberts M, Coleman T et al. Numerous transcriptional alterations in liver persist after short-term enzyme replacement therapy in a murine model of mucopolysaccharidosis type VII. Biochem J 2004; 379:461–469.

    Article  PubMed  CAS  Google Scholar 

  60. Alwine J, Kemp D, Stark G. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA 1977; 74(12):5350–5354.

    Article  PubMed  CAS  Google Scholar 

  61. Southern E, Maskos U, Elder J. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: Evaluation using experimental models. Genomics 1992; 13(4):1008–1017.

    Article  PubMed  CAS  Google Scholar 

  62. DeRisi J, Penland L, Brown P et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14(4):457–60.

    Article  PubMed  CAS  Google Scholar 

  63. Eisen M, Brown P. DNA arrays for analysis of gene expression. Methods Enzymol 1999; 303:179–205.

    Article  PubMed  CAS  Google Scholar 

  64. Wildsmith S, Archer G, Winkley A et al. Maximization of signal derived from cDNA microarrays. Biotechniques 2001; 30:202–208.

    PubMed  CAS  Google Scholar 

  65. Kerr M, Churchill G. Statistical design and the analysis of gene expression microarray data. Genetic Research 2001; 77:123–128.

    CAS  Google Scholar 

  66. Katzer M, Kummert F, Sagerer G. Methods for automatic microarray image segmentation. IEEE Transactions on Nano-Bioscience 2003; 2(4):111–111.

    Google Scholar 

  67. Speed T, ed. Statistical Analysis of Gene Expression Microarray Data. CRC: Boca Raton 2003.

    Google Scholar 

  68. Cui X, Kerr K, Churchill G. Data transformations for cDNA microarray data. Maine, USA: Technical report The Jackson Laboratory, 2002.

    Google Scholar 

  69. Yang Y, Dudoit S, Luu P et al. Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002; 30:e15.

    Article  PubMed  Google Scholar 

  70. Cui X, Churchill G. Statistical tests for differential expression in cDNA microarray experiments. Genome Biology 2003; 4:210.

    Article  PubMed  Google Scholar 

  71. Landgrebe J, Wurst W, Welzl G. Permutation validated principal components analysis of microarray data. Genome Biology 2002; 3:researchl9.1–19.11.

    Google Scholar 

  72. Tibshirani R, Hastie T, Narasimhan B et al. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 2002; 99(10):6567–6572.

    Article  PubMed  CAS  Google Scholar 

  73. Pepe M, Longton G, Anderson G et al. Selecting differentially expressed genes from microarray experiments. Biometrics 2003; 59:133–42.

    Article  PubMed  Google Scholar 

  74. Martinez-Cruz L, Rubio A, Martinez-Chantar M et al. Garban: Genomic analysis and rapid biological annotation of cDNA microarray and proteomic data. Bioinformatics 2003; 19(16):2158–2160.

    Article  PubMed  CAS  Google Scholar 

  75. Consortium TGO. Gene Ontology: Tool for the unification of biology. Nature Genet 2000; 25:25–29.

    Article  Google Scholar 

  76. Consortium TGO. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004; 32:D258–D261.

    Article  Google Scholar 

  77. Apweiler R, Bairoch A, Wu C et al. Uniprot: The universal protein knowledgebase. Nucleic Acids Res 2004; 32:D115–D119.

    Article  PubMed  CAS  Google Scholar 

  78. Rihn B, Vidal S, Nemurat C et al. From transcriptomics to bibliomics. Med Sci Monit 2003; 9(8):MT89–95.

    PubMed  CAS  Google Scholar 

  79. Zien A, Küffner R, Zimmer R et al. In: Proceedings of the 8th International conference on intelligent systems for molecular biology. 2000:407–417.

    Google Scholar 

  80. Hanisch D, Zien A, Zimmer R et al. Coclustering of biological networks and gene expression data. Bioinformatics 2002; 18:145S–154S.

    Google Scholar 

  81. Segal E, Shapira M, Regev A et al. Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003; 34(2):166–176.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Landgrebe, J., Lübke, T. (2005). Lysosomal Proteome and Transcriptome. In: Lysosomes. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28957-7_11

Download citation

Publish with us

Policies and ethics