Skip to main content

History and Morphology of the Lysosome

  • Chapter
Lysosomes

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

The lysosome is the cell’s main digestive compartment to which all sorts of macromolecules are delivered for degradation. The structure of the lysosome is variable and depends on the cell type and the actual conditions. In terms of function and cytochemistry, the lysosome is identified by the following criteria: acid pH, hydrolases with acid pH optimum, specific highly glycosylated membrane-associated proteins, and the absence of the mannose-6-phosphate receptor. The purposes of the present chapter are (a) to give a short overview on the morphology of the lysosome/endosome system for readers who are nonexperts in this field; and (b) to briefly trail the tracks and approaches which, during the first decades after the discovery of the lysosome, led to the present concept, with particular reference to morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeDuve C, Pressman BC, Gianetto R et al. Tissue fraction studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem J 1955; 60:604–617.

    CAS  Google Scholar 

  2. Novikoff AB, Beaufay H, DeDuve C. Electron microscopy of lysosome-rich fractions from rat liver. J Biophys Biochem Cytol 1956; 2(Suppl):179–184.

    PubMed  CAS  Google Scholar 

  3. Essner E, Novikoff AB. Acid phosphatase activity in hepatic lysosomes: Electron microscopic demonstration of its reaction product. J Histochem Cytochem 1960; 8:318.

    Google Scholar 

  4. Holtzman E. Lysosomes. New York: Plenum Press, 1989.

    Google Scholar 

  5. Gomez Dumm CL, Souto M, Estivariz FE et al. Prolactin secretion in normal male mice during a circadian period: An ultrastructural and biochemical study. Acta Anat 1983; 115:212–219.

    Article  PubMed  CAS  Google Scholar 

  6. Steinman RM, Brodie SE, Cohn ZA. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol 1976; 68:665–687.

    Article  PubMed  CAS  Google Scholar 

  7. Swanson J, Yirinec B, Burke E et al. Effects of alteration in the size of the vacuolar compartment on pinocytosis in J774.2 macrophages. J Cell Sci 1986; 128:195–201.

    CAS  Google Scholar 

  8. Lüllmann-Rauch R. Lysosomal glycogen storage mimicking the cytological picture of Pompe’s disease as induced in rats by injection of an α-glucosidase inhibitor Virchows Arch B (Cell Path) 1981; 39:187–202.

    Article  Google Scholar 

  9. Hartley WJ. Some observations on the pathology of Swainsona SPP poisoning in farm livestock in Eastern Australia. Acta Neuropath (Berl) 1971; 18:342–355.

    Article  PubMed  CAS  Google Scholar 

  10. Huxtable CR, Dorling PR. Mannoside storage and axonal dystrophy in sensory neurons of swainsonine-treated rats: Morphogenesis of lesions. Acta Neuropath (Berl) 1985; 68:65–73.

    Article  PubMed  CAS  Google Scholar 

  11. Lüllmann H, Lüllmann-Rauch R, Wassermann O. Lipidosis induced by amphiphilic cationic drugs. Biochem Pharmacol 1978; 27:1103–1108.

    Article  PubMed  Google Scholar 

  12. Fischer J, Lüllmann H, Lüllmann-Rauch R. Drug-induced lysosomal storage of sulphated glycosaminoglycans. Gen Pharmacol 1996; 27:1317–1324.

    PubMed  CAS  Google Scholar 

  13. Laurent G, Kishore BK, Tulkens PM. Aminoglycoside-induced renal phospholipidosis and nephrotoxicity. Biochem Pharmacol 1990; 40:2383–2392.

    Article  PubMed  CAS  Google Scholar 

  14. In: Hers HG, Van Hoof F, eds. Lysosomes and storage diseases. New York: Acad Press, 1973.

    Google Scholar 

  15. Neufeld EF. Lysosomal storage diseases. Annu Rev Biochem 1991; 60:257–280.

    Article  PubMed  CAS  Google Scholar 

  16. In: Scriver CR, Beaudet A, Sly WS et al, eds. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill, 2001:2(16).

    Google Scholar 

  17. Bosch E, Horitz J, Bok D. Phagocytosis of outer segments by retinal pigment epithelium: Phagosome-lysosome interaction. J Histochem Cytochem 1993; 41:253–263.

    PubMed  CAS  Google Scholar 

  18. Essner E, Novikoff AB. Human hepatocellular pigments and lysosomes. J Ultastruct Res 1960; 3:374–391.

    Article  CAS  Google Scholar 

  19. Brunk UT, Terman A. Lipofuscin: Mechanism of age-related accumulation and influence on cell function. Free Radic Biol Med 2002; 33:611–619.

    Article  PubMed  CAS  Google Scholar 

  20. Porta EA. Pigments in aging: An overview. Ann NY Acad Sci 2002; 959:57–65.

    Article  PubMed  CAS  Google Scholar 

  21. Novikoff PM, Novikoff AB, Quintana N et al. Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia studied in thick section and thin section cytochemistry. J Cell Biol 1971; 50:859–886.

    Article  PubMed  CAS  Google Scholar 

  22. Griffiths G, Simons K. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 1986; 234:438–443.

    Article  PubMed  CAS  Google Scholar 

  23. Traub LM, Kornfeld S. The trans-Golgi network: A late secretory sorting station. Curr Op Cell Biol 1997; 9:527–533.

    Article  PubMed  CAS  Google Scholar 

  24. Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol 1989; 5:483–525.

    Article  PubMed  CAS  Google Scholar 

  25. von Figura K, Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem 1986; 55:167–193.

    Article  Google Scholar 

  26. Kornfeld S. Structure and function of the mannose-6-phosphate/insulinelike factor II receptor. Annu Rev Biochem 1992; 61:307–330.

    Article  PubMed  CAS  Google Scholar 

  27. Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 1996; 12:575–625.

    Article  PubMed  CAS  Google Scholar 

  28. Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol Rev 1997; 77:759–803.

    PubMed  CAS  Google Scholar 

  29. Sachse M, Ramm G, Strous G et al. Endosomes: Multipurpose designs for integrating housekeeping and special tasks. Histochem Cell Biol 2002; 117:91–104.

    Article  PubMed  CAS  Google Scholar 

  30. Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 1986; 55:663–700.

    Article  PubMed  CAS  Google Scholar 

  31. Gruenberg J, Howell KE. Membrane traffic in endocytosis: Insights from cell-free assays. Annu Rev Cell Biol 1989; 5:453–481.

    Article  PubMed  CAS  Google Scholar 

  32. Maxfield FR, Mukherjee S. The endosomal-lysosomal system. In: Platt FM, Walkley SU, eds. Lysosomal disorders of the brain. Oxford: Oxford University Press, 2004:3–31.

    Google Scholar 

  33. Lemmon SK, Traub LM. Sorting in the endosomal system in yeast and animal cells. Curr Op Cell Biol 2000; 12:457–466.

    Article  PubMed  CAS  Google Scholar 

  34. Bright NA, Reaves BJ, Mullock BM et al. Dense core lysosomes can fuse with late endosomes and are reformed from the resultant hybrid organelles. J Cell Sci 1997; 110:2027–2040.

    PubMed  CAS  Google Scholar 

  35. Luzio JP, Rous BA, Bright N et al. Lysosome-endosome fusion and lysosome biogenesis. J Cell Sci 2000; 113:1515–1524.

    PubMed  CAS  Google Scholar 

  36. Piper RC, Luzio JP. Late endosomes: Sorting and partitioning in multivesicular bodies. Traffic 2001; 2:612–621.

    Article  PubMed  CAS  Google Scholar 

  37. Duclos S, Corsini R, Desjardins M. Remodeling of endosomes during lysosome biogenesis involves “kiss and run” fusion events regulated by rab5. J Cell Sci 2003; 116:907–918.

    Article  PubMed  CAS  Google Scholar 

  38. Lin SX, Mallet WG, Huang AY et al. Endocytosed cation-independent mannose 6-phosphate receptor traffics via the endocytic recycling compartment en route to the trans-Golgi network and a subpopulation of late endosomes. Mol Biol Cell 2004; 15:721–733.

    Article  PubMed  CAS  Google Scholar 

  39. Pontow SE, Kery V, Stahl PD. Mannose receptor. Int Rev Cytol 1992; 137B:221–244.

    PubMed  CAS  Google Scholar 

  40. Du H, Schiavi S, Levine M et al. Enzyme therapy for lysosomal acid lipase deficiency in the mouse. Hum Mol Genet 2002; 10:1639–1648.

    Article  Google Scholar 

  41. Dittmer F, Ulbrich EJ, Hafner A et al. Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific. J Cell Sci 1999; 112:1591–1597.

    PubMed  CAS  Google Scholar 

  42. Hickman S, Neufeld EF. A hypothesis for I-cell disease: Defective hydrolases that do not enter lysosomes. Biochem Biophys Res Comm 1972; 49:992–999.

    Article  PubMed  CAS  Google Scholar 

  43. Hasilik A, Lemansky P. Defects in lysosomal enzyme trafficking. In: Platt FM, Walkley SU, eds. Lysosomal disorders of the brain. Oxford: Oxford University Press, 2004:141–169.

    Google Scholar 

  44. DeDuve C, DeBarsy T, Poole B et al. Lysosomotropic agents. Biochem Pharmacol 1974; 23:2495–2531.

    Article  CAS  Google Scholar 

  45. Ohkuma S, Poole B. Fluorescent probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 1978; 75:3327–3331.

    Article  PubMed  CAS  Google Scholar 

  46. Gonzalez-Noriega A, Grubb JH, Talkad V et al. Chloroquine inhibits lysosomal emzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J Cell Biol 1980; 85:839–852.

    Article  PubMed  CAS  Google Scholar 

  47. Brown WJ, Goodhouse J, Farquhar MG. Mannose-6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and the endosomes. J Cell Biol 1986; 103:1235–1247.

    Article  PubMed  CAS  Google Scholar 

  48. Lüllmann-Rauch R, Pods R, von Witzendorff B. Tilorone-induced lysosomal storage of sulphated glycosaminoglycans can be dissociated from tilorone-induced enhancement of lysosomal enzyme secretion. Biochem Pharmacol 1995; 49:1223–1233.

    Article  PubMed  Google Scholar 

  49. Lüllmann-Rauch R, Pods R, von Witzendorff B. The antimalarials quinacrine and chloroquine induce weak lysosomal storage of sulphated glycosaminoglycans in cell culture and in vivo. Toxicology 1996; 110:27–37.

    Article  PubMed  Google Scholar 

  50. Lüllmann-Rauch R. Drug-induced lysosomal storage disorders. In: Dinlge JT, Jacques PJ, Swah IH, eds. Lysosomes in applied biology and therapeutics. Amsterdam: North Holland Publ. 1979; 6:49–130.

    Google Scholar 

  51. DeDuve C. The lysosomes in retrospect. In: Dingle JT, Dell HB, eds. Lysosomes in Biology and Pathology. Amsterdam: North Holland Publ. 1969; 1:3–40.

    Google Scholar 

  52. Hogeboom GH, Scheider WC, Striebich MJ. J Biol Chem 1952; 196:111. Quoted from ref. 51

    PubMed  CAS  Google Scholar 

  53. Straus W. Concentration of acid phosphatase, ribonuclease, desoxyribonuclease, β-glucuronidase and cathepsin in “droplets” isolated from the kidney cells of normal rats. J Biophys Biochem Cytol 1956; 2:513–521.

    PubMed  CAS  Google Scholar 

  54. Novikoff AB. The proximal tubule cell in experimental hydronephrosis. J Biophys Biochem Cytol 1959; 6:136–138.

    Article  PubMed  CAS  Google Scholar 

  55. Straus W. Cytochemical observations on the relationship between lysosomes and phagosomes in kidney and liver by combined staining for acid phosphatase and intravenously injected horseradish peroxidase. J Cell Biol 1964; 20:497–507.

    Article  PubMed  CAS  Google Scholar 

  56. Miller F, Palade GE. Lytic activities in renal protein absorption droplets. J Cell Biol 1964; 23:519–552.

    Article  PubMed  CAS  Google Scholar 

  57. Maunsbach AB. Functions of lysosomes in kidney cells. In: Dingle JT, Dell HB, eds. Lysosomes in biology and pathology. Amsterdam: North Holland Publ. 1969; 1:116–154.

    Google Scholar 

  58. Daems WT, Wisse E, Brederoo P. Electron microscopy of the vacuolar apparatus. In: Dingle JT, Dell HB, eds. Lysosomes in biology and pathology. Amsterdam: North Holland Publ. 1969; 1:64–112.

    Google Scholar 

  59. Ashford PT, Porter KR. Cytoplasmic components in hepatic lysosomes. J Cell Biol 1962; 12:198–202.

    Article  PubMed  CAS  Google Scholar 

  60. Deter RL, Bauduin P, DeDuve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 1967; 35:C11–C16.

    Article  PubMed  CAS  Google Scholar 

  61. Hers HG. α-Glucosidase deficiency in generalized glycogen-storage disease (Pompe’s disease). Biochem J 1963; 86:11–16.

    PubMed  CAS  Google Scholar 

  62. Lejeune N, Thinès-Sempoux D, Hers GH. Tissue fractionation studies. 16. Intracellular distribution and properties of α-glucosidases in rat liver. Biochem J 1963; 86:16–21.

    PubMed  CAS  Google Scholar 

  63. Baudhuin P, Hers HG, Loeb H. An electron microscopic and biochemical study of type II glycogenosis. Lab Invest 1964; 13:1139–1152.

    PubMed  CAS  Google Scholar 

  64. Hug G, Schubert WK. Lysosomes in type II glycogenosis. J Cell Biol 1967; 35:C1–C6.

    Article  PubMed  CAS  Google Scholar 

  65. Neufeld EF, Lim TW, Shapiro LJ. Inherited disorders of lysosomal metabolism. Annu Rev Biochem 1975; 44:357–376.

    Article  PubMed  CAS  Google Scholar 

  66. Fratantoni JC, Hall CW, Neufeld EF. The defect in Hurler and Hunter syndromes. II. Deficiency of specific factors involved in mucopolysaccharide degradation. Proc Natl Acad Sci USA 1969; 64:360–366.

    Article  PubMed  CAS  Google Scholar 

  67. Bach G, Friedman R, Weissman B et al. The defect in the Hurler and Scheie syndromes: Deficiency of α-L-iduronidase. Proc Natl Acad Sci USA 1972; 69:2048–2051.

    Article  PubMed  CAS  Google Scholar 

  68. Hickman S, Shapiro LJ, Neufeld EF. A recognition marker required for uptake of a lysosomal enzyme by cultured fibroblasts. Biochem Biophys Res Comm 1974; 57:55–61.

    Article  PubMed  CAS  Google Scholar 

  69. Glaser JH, Roozen KJ, Brot FE et al. Multiple isoelectric and recognition forms of human β-glucuronidase activity. Arch Biochem Biophys 1975; 166:536–542.

    Article  PubMed  CAS  Google Scholar 

  70. Kaplan A, Achord DT, Sly WS. Phosphohexosyl components of lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc Natl Acad Sci USA 1977; 74:2026–2030.

    Article  PubMed  CAS  Google Scholar 

  71. Rome LH, Weissman B, Neufeld EF. Direct demonstration of binding of a lysosomal enzyme, α-L-iduronidase, to receptors on cultured fibroblasts. Proc Natl Acad Sci USA 1979; 76:2331–2334.

    Article  PubMed  CAS  Google Scholar 

  72. von Figura K, Weber E. An alternative hypothesis of cellular transport of lysosomal enzymes in fibroblasts. Biochem J 1978; 176:943–950.

    Google Scholar 

  73. Fischer HD, Gonzalez-Noriega A, Sly WS. β-glucuronidase binding to human fibroblast membrane receptors. J Biol Chem 1980; 255:5069–5074.

    PubMed  CAS  Google Scholar 

  74. Fischer HD, Gonzalez-Noriega A, Sly WS et al. Phosphomannosyl-enzyme receptors in rat liver. J Biol Chem 1980; 255:9608–9615.

    PubMed  CAS  Google Scholar 

  75. Creek KE, Sly WS. The role of the phosphomannosyl receptor in the transport of acid hydrolases to lysosomes. In: Dingle JT, Dean RT, Sly W, eds. Lysosomes in biology and pathology, Amsterdam: Elsevier; 1984; 7:63–82.

    Google Scholar 

  76. Sahagian GC, Distler J, Jourdian GW. Characterization of a membrane-associated receptor from bovine liver that binds phosphomannosyl residues of bovine testicular α-galactosidase. Proc Natl Acad Sci USA 1981; 78:4289–4293.

    Article  PubMed  CAS  Google Scholar 

  77. Hoflack B, Kornfeld S. Purification and characterization of a cation-dependent mannose-6-phosphate receptor from murine P388DI macrophages and bovine liver. J Biol Chem 1985; 260:12008–12014.

    PubMed  CAS  Google Scholar 

  78. Goldstein JL, Anderson RGW, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 1979; 279:679–685.

    Article  PubMed  CAS  Google Scholar 

  79. Willingham MC, Pastan I. The receptosome: An intermediate organelle of receptor-mediated endocytosis in cultured fibroblasts. Cell 1980; 21:67–77.

    Article  PubMed  CAS  Google Scholar 

  80. Brown MS, Anderson RGW, Goldstein JL. Recycling receptors: The round-trip itinary of migrant membrane proteins. Cell 1983; 32:663–667.

    Article  PubMed  CAS  Google Scholar 

  81. Goldstein JL, Brown MS, Anderson RGW. Receptor-mediated endocytosis: Concepts emerging from the LDL-receptor system. Annu Rev Cell Biol 1985; 1:1–39.

    Article  PubMed  CAS  Google Scholar 

  82. Geuze HJ, Slot JW, Strous GJAM et al. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: Double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell 1983; 32:277–287.

    Article  PubMed  CAS  Google Scholar 

  83. Wall DA, Hubbard AL. Receptor-mediated endocytosis of asialoglycoproteins by rat liver hepatocytes: Biochemical characterization of the endosomal compartments. J Cell Biol 1985; 101:2104–2112.

    Article  PubMed  CAS  Google Scholar 

  84. Griffiths G, Hoflack B, Simons K et al. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell 1988; 52:329–341.

    Article  PubMed  CAS  Google Scholar 

  85. Harrison RE, Bucci C, Vieira OV et al. Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: Role of Rab7 and RILP. Mol Cell Biol 2003; 23:6494–6506.

    Article  PubMed  CAS  Google Scholar 

  86. Barka T, Anderson PJ. Histochemical methods for acid phosphatase using hexazonium pararosanilin as coupler. J Histochem Cytochem 1962; 10:741–753.

    CAS  Google Scholar 

  87. Lüllmann-Rauch R, Matzner U, Franken S et al. Lysosomal sulfoglycolipid storage in the kidneys of mice deficient for arylsulfatase A (ASA) and of double-knockout mice deficient for ASA and galactosylceramide synthase. Histochem Cell Biol 2001; 116:161–169.

    PubMed  Google Scholar 

  88. Stinchi S, Lüllmann-Rauch R, Hartmann D et al. Targeted disruption of the lysosomal α-mannosidase gene results in mice resembling a mild form of human α-mannosidosis. Hum Mol Genet 1999; 8:1365–1372.

    Article  PubMed  CAS  Google Scholar 

  89. Frisch W, Liillmann-Rauch R. Differential effects of chloroquine and several other amphiphilic cationic drugs upon rat choroid plexus. Acta Neuropath (Berl) 1979; 46:203–208.

    Article  PubMed  CAS  Google Scholar 

  90. Lüllmann-Rauch R. Keratopathy in rats after treament with tilorone. Graefe’s Arch Clin Exp Ophthalmol 1986; 224:377–383.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Lüllmann-Rauch, R. (2005). History and Morphology of the Lysosome. In: Lysosomes. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28957-7_1

Download citation

Publish with us

Policies and ethics