Skip to main content

In Vivo Functional Genomics of Pseudomonas: PCR-Based Signature-Tagged Mutagenesis

  • Chapter
Pseudomonas

5. Conclusion

Obviously, functional genomics of Pseudomonas and particularly P. aeruginosa has benefited immensely from the availability of the complete and annotated sequence of strain PAO1 and more recently of the completed sequence of PA14. Without this crucial information, it would be quite inconceivable to attempt functional genomics in vivo using STM, IVET or any other large-scale genomics method. Obviously, the field of Pseudomonas will benefit even more from the sequencing of additional species and strains of Pseudomonas. There is now clear evidence that P. aeruginosa strains can vary significantly in their genome content from a few hundred base pairs to several megabases. What is available today as the annotated sequence of PAO1 may actually represent some core genomic sequences, and metagenomics analysis will be pertinent to understanding virulence in an opportunistic pathogen such as P. aeruginosa. Hence, what have we learned from STM? One of the first significance of STM in P. aeruginosa is the clean correlation between virulence factors identified with those previously known virulence factors reported by many laboratories around the world. In terms of functional genomics and significance, STM has pinpointed and identified several hypothetical and unknown proteins whose function in vivo is crucial for maintenance of P. aeruginosa. An interesting future prospect will be to analyze STM mutants of the PAO1 strain and the PA14 strain in similar models of infection.

Finally, re-analysis of the data from STM using various Pseudomonads in different models of infection coupled to transcriptomics and proteomics and its integration using a biological systems approach should give a better understanding of how an opportunistic pathogen competes and survives in any environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aballay, A. and Ausubel, F.M., 2002, Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr. Opin. Microbiol., 5:97–101.

    Article  PubMed  CAS  Google Scholar 

  2. Alm, R.A. and Mattick, J.S., 1997, Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene, 192:89–98.

    Article  PubMed  CAS  Google Scholar 

  3. Apidianakis, Y., Mindrinos, M.N., Xiao, W., Lau, G.W., Baldini, R.L., Davis, R.W., and Rahme, L.G., 2005, Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc. Natl. Acad. Sci.U.S.A., 102:2573–2578.

    Article  PubMed  CAS  Google Scholar 

  4. Autret, N. and Charbit, A., 2005, Lessons from signature tagged-mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiol. Rev., 29:703–717.

    Article  PubMed  CAS  Google Scholar 

  5. Beatson, S.A., Whitchurch, C.B., Sargent, J.L., Levesque, R.C., and Mattick, J.S., 2002, Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J. Bacteriol., 184:3605–3613.

    Article  PubMed  CAS  Google Scholar 

  6. Benton, B.M., Zhang, J.P., Bond, S., Pope, C., Christian, T., Lee, L., Winterberg, K.M., Schmid, M.B., and Buysse, J.M., 2004, Large-scale identification of genes required for full virulence of Staphylococcus aureus. J. Bacteriol., 186:8478–8489.

    Article  PubMed  CAS  Google Scholar 

  7. Berk, R.S., Brown, D., Coutinho, I., and Meyers, D., 1987, In vivo studies with two phospho-lipase C fractions from Pseudomonas aeruginosa. Infect. Immun., 55:1728–1730.

    PubMed  CAS  Google Scholar 

  8. Beuzon, C.R. and Holden, D.W., 2001, Use of mixed infections with Salmonella strains to study virulence genes and their interactionsin vivo. Microbes Infect., 3:1345–1352.

    Article  PubMed  CAS  Google Scholar 

  9. Bever, R.A. and Iglewski, B.H., 1988, Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J. Bacteriol., 170:4309–4314.

    PubMed  CAS  Google Scholar 

  10. Bochner, B.R., Gadzinski, P., and Panomitros, E., 2001, Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome. Res., 11:1246–1255.

    Article  PubMed  CAS  Google Scholar 

  11. Botes, J., Williamson, G., Sinickas, V., and Gurtler, V., 2003, Genomic typing of Pseudomonas aeruginosa isolates by comparison of riboprinting and PFGE: correlation of experimental results with those predicted from the complete genome sequence of isolate PAO1. J. Microbiol. Methods., 55:231–240.

    Article  PubMed  CAS  Google Scholar 

  12. Boucher, J.C., Schurr, M.J., Yu, H., Rowen, D.W., and Deretic, V., 1997, Pseudomonas aeruginosa in cystic fibrosis: role of MucC in the regulation of alginate production and stress sensitivity. Microbiology, 143:3473–3480.

    PubMed  CAS  Google Scholar 

  13. Braun, P., Ockhuijsen, C., Eppens, E., Koster, M., Bitter, W., and Tommassen, J., 2001, Maturation of Pseudomonas aeruginosa elastase. Formation of the disulfide bonds. J. Biol. Chem., 276:26030–26035.

    Article  PubMed  CAS  Google Scholar 

  14. Britigan, B.E., Roeder, T.L., Rasmussen, G.T., Shasby, D.M., McCormick, M.L., and Cox, C.D., 1992, Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. J. Clin. Invest., 90:2187–2196.

    Article  PubMed  CAS  Google Scholar 

  15. Budzikiewicz, H., 2001, Siderophores of the human pathogenic fluorescent pseudomonads. Curr. Top. Med. Chem., 1:1–6.

    Article  PubMed  CAS  Google Scholar 

  16. Caballero, A.R., Moreau, J.M., Engel, L.S., Marquart, M.E., Hill, J.M., and O’Callaghan, R.J., 2001, Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases. Anal. Biochem., 290:330–337.

    Article  PubMed  CAS  Google Scholar 

  17. Caiazza, N.C. and O’Toole, G.A., 2004, SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa. J. Bacteriol., 186:4476–4485.

    Article  PubMed  CAS  Google Scholar 

  18. Cash, H.A., Woods, D.E., McCullough, B., Johanson, W.G., Jr., and Bass, J.A., 1979, A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am. Rev. Respir. Dis., 119:453–459.

    PubMed  CAS  Google Scholar 

  19. Chiang, S.L., Mekalanos, J.J., and Holden, D.W., 1999, In vivo genetic analysis of bacterial virulence. Annu. Rev. Microbiol., 53:129–154.

    Article  PubMed  CAS  Google Scholar 

  20. Choi, J.Y., Sifri, C.D., Goumnerov, B.C., Rahme, L.G., Ausubel, F.M., and Calderwood, S.B., 2002, Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J. Bacteriol., 184:952–961.

    Article  PubMed  CAS  Google Scholar 

  21. Cobb, J.P., Mindrinos, M.N., Miller-Graziano, C., Calvano, S.E., Baker, H.V., Xiao, W., Laudanski, K., Brownstein, B.H., Elson, C.M., Hayden, D.L., Herndon, D.N., Lowry, S.F., Maier, R.V., Schoenfeld, D.A., Moldawer, L.L., Davis, R.W., Tompkins, R.G., Bankey, P., Billiar, T., Camp, D., Chaudry, I., Freeman, B., Gamelli, R., Gibran, N., Harbrecht, B., Heagy, W., Heimbach, D., Horton, J., Hunt, J., Lederer, J., Mannick, J., McKinley, B., Minei, J., Moore, E., Moore, F., Munford, R., Nathens, A., O’Keefe, G., Purdue, G., Rahme, L., Remick, D., Sailors, M., Shapiro, M., Silver, G., Smith, R., Stephanopoulos, G., Stormo, G., Toner, M., Warren, S., West, M., Wolfe, S., and Young, V., 2005, Application of genome-wide expression analysis to human health and disease. Proc. Natl. Acad. Sci. U.S.A., 103:4801–4806.

    Article  CAS  Google Scholar 

  22. Cosson, P., Zulianello, L., Join-Lambert, O., Faurisson, F., Gebbie, L., Benghezal, M., van Delden, C., Curty, L.K., and Kohler, T., 2002, Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J. Bacteriol., 184:3027–3033.

    Article  PubMed  CAS  Google Scholar 

  23. de Lorenzo, V., Herrero, M., Jakubzik, U., and Timmis, K.N., 1990, Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol., 172:6568–6572.

    PubMed  Google Scholar 

  24. Dewar, K., Sabbagh, L., Cardinal, G., Veilleux, F., Sanschagrin, F., Birren, B., and Levesque, R.C., 1998, Pseudomonas aeruginosa PAO1 bacterial artificial chromosomes: strategies for mapping, screening, and sequencing 100 kb loci of the 5.9 Mb genome. Microb. Comp. Genomics., 3:105–117.

    PubMed  CAS  Google Scholar 

  25. Dos Santos, V.A., Heim, S., Moore, E.R., Stratz, M, and Timmis, K.N., 2004, Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ. Microbiol., 6:1264–1286.

    Article  PubMed  CAS  Google Scholar 

  26. Eberl, L. and Tummler, B., 2004, Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. Int. J. Med. Microbiol., 294:123–131.

    Article  PubMed  CAS  Google Scholar 

  27. Ernst, R.K., D’Argenio, D.A., Ichikawa, J.K., Bangera, M.G., Selgrade, S., Burns, J.L., Hiatt, P., McCoy, K., Brittnacher, M., Kas, A., Spencer, D.H., Olson, M.V., Ramsey, B.W., Lory, S., and Miller, S.I., 2003, Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ. Microbiol., 5:1341–1349.

    Article  PubMed  CAS  Google Scholar 

  28. Finnan, S., Morrissey, J.P., O’Gara, F., and Boyd, E.F., 2004, Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J. Clin. Microbiol., 42:5783–5792.

    Article  PubMed  CAS  Google Scholar 

  29. Firoved, A.M., Boucher, J.C., and Deretic, V., 2002, Global genomic analysis of AlgU (sigma (E))-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J. Bacteriol., 184:1057–1064.

    Article  PubMed  CAS  Google Scholar 

  30. Firoved, A.M. and Deretic, V., 2003, Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J. Bacteriol., 185:1071–1081.

    Article  PubMed  CAS  Google Scholar 

  31. Gibson, R.L., Burns, J.L., and Ramsey, B.W., 2003, Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med., 168:918–951.

    Article  PubMed  Google Scholar 

  32. Goryshin, I.Y. and Reznikoff, W.S., 1998, Tn5 in vitro transposition. J. Biol. Chem., 273:7367–7374.

    Article  PubMed  CAS  Google Scholar 

  33. Handfield, M., Lehoux, D.E., Sanschagrin, F., Mahan, M.J., Woods, D.E., and Levesque, R.C., 2000, In vivo-induced genes in Pseudomonas aeruginosa. Infect. Immun., 68:2359–2362.

    Article  PubMed  CAS  Google Scholar 

  34. Handfield, M. and Levesque, R.C., 1999, Strategies for isolation of in vivo expressed genes from bacteria. FEMS Microbiol Rev., 23:69–91.

    Article  PubMed  CAS  Google Scholar 

  35. Hava, D.L. and Camilli, A., 2002, Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol., 45:1389–1406.

    PubMed  CAS  Google Scholar 

  36. He, J., Baldini, R.L., Deziel, E., Saucier, M., Zhang, Q., Liberati, N.T., Lee, D., Urbach, J., Goodman, H.M., and Rahme, L.G., 2004, The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc. Natl. Acad. Sci. U.S.A., 101:2530–2535.

    Article  PubMed  CAS  Google Scholar 

  37. Hendrickson, E.L., Plotnikova, J., Mahajan-Miklos, S., Rahme, L.G., and Ausubel, F.M., 2001, Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J. Bacteriol., 183:7126–7134.

    Article  PubMed  CAS  Google Scholar 

  38. Hensel, M., Shea, J.E., Gleeson, C., Jones, M.D., Dalton, E., and Holden, D.W., 1995, Simultaneous identification of bacterial virulence genes by negative selection. Science, 269:400–403.

    PubMed  CAS  Google Scholar 

  39. Horvat, R.T. and Parmely, M.J., 1988, Pseudomonas aeruginosa alkaline protease degrades human gamma interferon and inhibits its bioactivity. Infect. Immun., 56:2925–2932.

    PubMed  CAS  Google Scholar 

  40. Hunt, T.A., Kooi, C., Sokol, P.A., and Valvano, M.A., 2004, Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect. Immun., 72:4010–4022.

    Article  PubMed  CAS  Google Scholar 

  41. Jacobs, M.A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C., Levy, R., Chun-Rong, L., Guenthner, D., Bovee, D., Olson, M.V., and Manoil, C., 2003, Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A., 100:14339–14344.

    Article  PubMed  CAS  Google Scholar 

  42. Jander, G., Rahme, L.G., and Ausubel, F.M., 2000, Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol., 182:3843–3845.

    Article  PubMed  CAS  Google Scholar 

  43. Kessler, E., Safrin, M., Gustin, J.K., and Ohman, D.E., 1998, Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides. J. Biol. Chem., 273:30225–30231.

    Article  PubMed  CAS  Google Scholar 

  44. Kohler, T., Curty, L.K., Barja, F., van Delden, C., and Pechere, J.C., 2000, Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol., 182:5990–5996.

    Article  PubMed  CAS  Google Scholar 

  45. Konig, B., Jaeger, K.E., Sage, A.E., Vasil, M.L., and Konig, W., 1996, Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes. Infect. Immun., 64:3252–3258.

    PubMed  CAS  Google Scholar 

  46. Lau, G.W., Britigan, B.E., and Hassett, D.J., 2005, Pseudomonas aeruginosa OxyR is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils. Infect. Immun., 73:2550–2553.

    Article  PubMed  CAS  Google Scholar 

  47. Lau, G.W., Goumnerov, B.C., Walendziewicz, C.L., Hewitson, J., Xiao, W., Mahajan-Miklos, S., Tompkins, R.G., Perkins, L.A., and Rahme, L.G., 2003, The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun., 71:4059–4066.

    Article  PubMed  CAS  Google Scholar 

  48. Lau, G.W., Hassett, D.J., Ran, H., and Kong, F., 2004, The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med., 10:599–606.

    Article  PubMed  CAS  Google Scholar 

  49. Lehoux, D.E. and Levesque, R.C., 2000, Detection of genes essential in specific niches by signature-tagged mutagenesis. Curr. Opin. Biotechnol., 11:434–439.

    Article  PubMed  CAS  Google Scholar 

  50. Lehoux, D.E., Sanschagrin, F., Kukavica-Ibrulj, I., Potvin, E., and Levesque, R.C., 2004, Identification of novel pathogenicity genes by PCR signature-tagged mutagenesis and related technologies. Methods Mol. Biol., 266:289–304.

    PubMed  CAS  Google Scholar 

  51. Lehoux, D.E., Sanschagrin, F., and Levesque, R.C., 1999, Defined oligonucleotide tag pools and PCR screening in signature-tagged mutagenesis of essential genes from bacteria. Biotechniques, 26:473–478, 480.

    PubMed  CAS  Google Scholar 

  52. Lehoux, D.E., Sanschagrin, F., and Levesque, R.C., 2002, Identification of in vivo essential genes from Pseudomonas aeruginosa by PCR-based signature-tagged mutagenesis. FEMS Microbiol. Lett., 210:73–80.

    Article  PubMed  CAS  Google Scholar 

  53. Lewenza, S., Gardy, J.L., Brinkman, F.S., and Hancock, R.E., 2005, Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome. Res., 15:321–329.

    Article  PubMed  CAS  Google Scholar 

  54. Lizewski, S.E., Schurr, J.R., Jackson, D.W., Frisk, A., Carterson, A.J., and Schurr, M.J., 2004, Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J. Bacteriol., 186:5672–5684.

    Article  PubMed  CAS  Google Scholar 

  55. Louis, D., Sorlier, P., and Wallach, J., 1998, Quantitation and enzymatic activity of the alkaline protease from Pseudomonas aeruginosa in culture supernatants from clinical strains. Clin. Chem. Lab. Med., 36:295–298.

    Article  PubMed  CAS  Google Scholar 

  56. Lyczak, J.B., Cannon, C.L., and Pier, G.B., 2002, Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev., 15:194–222.

    Article  PubMed  CAS  Google Scholar 

  57. Mahajan-Miklos, S., Rahme, L.G., and Ausubel, F.M., 2000, Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol. Microbiol., 37:981–988.

    Article  PubMed  CAS  Google Scholar 

  58. Malhotra, S., Silo-Suh, L.A., Mathee, K., and Ohman, D.E., 2000, Proteome analysis of the effect of mucoid conversion on global protein expression in Pseudomonas aeruginosa strain PAO1 shows induction of the disulfide bond isomerase, dsbA. J. Bacteriol., 182:6999–7006.

    Article  PubMed  CAS  Google Scholar 

  59. Manger, I.D. and Relman, D.A., 2000, How the host’ sees’ pathogens: global gene expression responses to infection. Curr. Opin. Immunol., 12:215–218.

    Article  PubMed  CAS  Google Scholar 

  60. Maroncle, N., Balestrino, D., Rich, C., and Forestier, C., 2002, Identification of Klebsiella pneumoniae genes involved in intestinal colonization and adhesion using signature-tagged mutagenesis. Infect. Immun., 70:4729–4734.

    Article  PubMed  CAS  Google Scholar 

  61. Marty, N., Pasquier, C., Dournes, J.L., Chemin, K., Chavagnat, F., Guinand, M., Chabanon, G., Pipy, B., and Montrozier, H., 1998, Effects of characterised Pseudomonas aeruginosa exopolysaccharides on adherence to human tracheal cells. J. Med. Microbiol., 47:129–134.

    Article  PubMed  CAS  Google Scholar 

  62. Mattick, J.S., Whitchurch, C.B., and Alm, R.A., 1996, The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa-a review. Gene, 179:147–155.

    Article  PubMed  Google Scholar 

  63. Mavrodi, D.V., Bonsall, R.F., Delaney, S.M., Soule, M.J., Phillips, G., and Thomashow, L.S., 2001, Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol., 183:6454–6465.

    Article  PubMed  CAS  Google Scholar 

  64. Mecsas, J., 2002, Use of signature-tagged mutagenesis in pathogenesis studies. Curr. Opin. Microbiol., 5:33–37.

    Article  PubMed  CAS  Google Scholar 

  65. Merrell, D.S., Hava, D.L., and Camilli, A., 2002, Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol. Microbiol., 43:1471–1491.

    Article  PubMed  CAS  Google Scholar 

  66. Miller, V.L., 1999, Signature-tagged mutagenesis and the hunt for virulence factors: response. Trends Microbiol., 7:388.

    Article  PubMed  Google Scholar 

  67. Nouwens, A.S., Walsh, B.J., and Cordwell, S.J., 2003, Application of proteomics to Pseudomonas aeruginosa. Adv. Biochem. Eng. Biotechnol., 83:117–140.

    PubMed  CAS  Google Scholar 

  68. Pallen, M.J., Penn, C.W., and Chaudhuri, R.R., 2005, Bacterial flagellar diversity in the postgenomic era. Trends Microbiol., 13:143–149.

    Article  PubMed  CAS  Google Scholar 

  69. Palma, M., Worgall, S., and Quadri, L.E., 2003, Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch. Microbiol., 180:374–379.

    Article  PubMed  CAS  Google Scholar 

  70. Pedersen, S.S., Shand, G.H., Hansen, B.L., and Hansen, G.N., 1990, Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. Apmis, 98:203–211.

    Article  PubMed  CAS  Google Scholar 

  71. Pier, G.B., 2002, CFTR mutations and host susceptibility to Pseudomonas aeruginosa lung infection. Curr. Opin. Microbiol., 5:81–86.

    Article  PubMed  CAS  Google Scholar 

  72. Potvin, E., Lehoux, D.E., Kukavica-Ibrulj, I., Richard, K.L., Sanschagrin, F., Lau, G.W., and Levesque, R.C., 2003, In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ. Microbiol., 5:1294–1308.

    Article  PubMed  CAS  Google Scholar 

  73. Priebe, G.P., Brinig, M.M., Hatano, K., Grout, M., Coleman, F.T., Pier, G.B., and Goldberg, J.B., 2002, Construction and characterization of a live, attenuated aroA deletion mutant of Pseudomonas aeruginosa as a candidate intranasal vaccine. Infect. Immun., 70:1507–1517.

    Article  PubMed  CAS  Google Scholar 

  74. Rahme, L.G., Ausubel, F.M., Cao, H., Drenkard, E., Goumnerov, B.C., Lau, G.W., Mahajan-Miklos, S., Plotnikova, J., Tan, M.W., Tsongalis, J., Walendziewicz, C.L., and Tompkins, R.G., 2000, Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. U.S.A., 97:8815–8821.

    Article  PubMed  CAS  Google Scholar 

  75. Rahme, L.G., Tan, M.W., Le, L., Wong, S.M., Tompkins, R.G., Calderwood, S.B., and Ausubel, F.M., 1997, Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. U.S.A., 94:13245–13250.

    Article  PubMed  CAS  Google Scholar 

  76. Ramos, H.C., Rumbo, M., and Sirard, J.C., 2004, Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol., 12:509–517.

    Article  PubMed  CAS  Google Scholar 

  77. Reznikoff, W.S., Goryshin, I.Y., and Jendrisak, J.J., 2004, Tn5 as a molecular genetics tool: in vitro transposition and the coupling of in vitro technologies with in vivo transposition. Methods Mol. Biol., 260:83–96.

    PubMed  CAS  Google Scholar 

  78. Schuster, M., Lostroh, C.P., Ogi, T., and Greenberg, E.P., 2003, Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol., 185:2066–2079.

    Article  PubMed  CAS  Google Scholar 

  79. Schweizer, H.P., 1991, Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene, 97:109–121.

    Article  PubMed  CAS  Google Scholar 

  80. Schweizer, H.P., Klassen, T., and Hoang, T., 1996, In K.F. Teruko Nakazawa, Dieter Haas, Simon Silvert (ed.), Molecular Biology of Pseudomonads. pp. 229–237, ASMPress, Washington, DC.

    Google Scholar 

  81. Shea, J.E., Santangelo, J.D., and Feldman, R.G., 2000, Signature-tagged mutagenesis in the identification of virulence genes in pathogens. Curr. Opin. Microbiol., 3:451–458.

    Article  PubMed  CAS  Google Scholar 

  82. Simon, R., Priefer, U., and Pühler, A., 1983, A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. BioTechnology, 1:784–791.

    Article  CAS  Google Scholar 

  83. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S., and Olson, M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.

    Article  PubMed  CAS  Google Scholar 

  84. Tummler, B., 1987, Unusual mechanism of pathogenicity of Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Infection, 15:311–312.

    Article  PubMed  CAS  Google Scholar 

  85. Vasil, M.L. and Ochsner, U.A., 1999, The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol. Microbiol., 34:399–413.

    Article  PubMed  CAS  Google Scholar 

  86. Visca, P., Leoni, L., Wilson, M.J., and Lamont, I.L., 2002, Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol., 45:1177–1190.

    Article  PubMed  CAS  Google Scholar 

  87. Wagner, V.E., Bushnell, D., Passador, L., Brooks, A.I., and Iglewski, B.H., 2003, Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol., 185:2080–2095.

    Article  PubMed  CAS  Google Scholar 

  88. Wagner, V.E., Gillis, R.J., and Iglewski, B.H., 2004, Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. Vaccine, 22(Suppl 1):S15–S20.

    Article  PubMed  CAS  Google Scholar 

  89. Walker, T.S., Bais, H.P., Deziel, E., Schweizer, H.P., Rahme, L.G., Fall, R., and Vivanco, J.M., 2004, Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol., 134:320–331.

    Article  PubMed  CAS  Google Scholar 

  90. Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., and Greenberg, E.P., 2001, Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413:860–864.

    Article  PubMed  CAS  Google Scholar 

  91. Wiehlmann, L., Salunkhe, P., Larbig, K., Ritzka, R., and Tummler, B., 2002, Signature-tagged mutagenesis of Pseudomonas aeruginosa. Genome Lett., 3:131–139.

    Article  CAS  Google Scholar 

  92. Wolfgang, M.C., Lee, V.T., Gilmore, M.E., and Lory, S., 2003, Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev. Cell., 4:253–263.

    Article  PubMed  CAS  Google Scholar 

  93. Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K.C., Birrer, P., Bellon, G., Berger, J., Weiss, T., Botzenhart, K., Yankaskas, J.R., Randell, S., Boucher, R.C., and Doring, G., 2002, Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest., 109:317–325.

    Article  PubMed  CAS  Google Scholar 

  94. Wu, W., Badrane, H., Arora, S., Baker, H.V., and Jin, S., 2004, MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa. J. Bacteriol., 186:7575–7585.

    Article  PubMed  CAS  Google Scholar 

  95. Yu, H. and Head, N.E., 2002, Persistent infections and immunity in cystic fibrosis. Front. Biosci., 7:D442–D457.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Levesque, R.C. (2006). In Vivo Functional Genomics of Pseudomonas: PCR-Based Signature-Tagged Mutagenesis. In: Ramos, JL., Levesque, R.C. (eds) Pseudomonas. Springer, Boston, MA . https://doi.org/10.1007/0-387-28881-3_4

Download citation

Publish with us

Policies and ethics