Skip to main content

Chemistry and Technology of Butter and Milk Fat Spreads

  • Chapter

Keywords

  • Droplet Size
  • Emulsion Stability
  • Casein Micelle
  • Sodium Caseinate
  • Phase Inversion Temperature

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/0-387-28813-9_9
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-28813-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Anderson, R.F. 1986. Continuous butter manufacture. Bulletin 204, International Dairy Federation, Brussels.

    Google Scholar 

  • Anonymous 1968. Stabilisation of various emulsions in food products. French patent 1, 533, 528 (Chemical Abstracts 71, 122598n).

    Google Scholar 

  • Anonymous 1978. NIZO Annual Report. NIZO, Ede, The Netherlands. p. 47. (abstract)

    Google Scholar 

  • Becher, P. 1977 (ed.). Emulsions: Theory and Practice, Reinhold Publishing Corporation, New York.

    Google Scholar 

  • Behrens, G. 1988. Development of butter blends (mixed blends). In: The U.S. Bulletin 224, International Dairy Federation, Brussels.

    Google Scholar 

  • Bell, R.J. 1991. Shortening and margarine products. In: Introduction to Fats and Oils Technology, (P.J. Wan, ed.), pp. 183–210, American Oil Chemists’ Society, Champaign, IL.

    Google Scholar 

  • Bergenståhl, B.A., Claesson, P.M. 1990. Surface forces in emulsions. In: Food Emulsions, (K. Larsson, S.E. Friberg, eds.), pp. 41–96, Marcel Dekker, New York.

    Google Scholar 

  • Bettelheim, F.A., Laurent, T.C., Pertoft, H. 1966. Interaction between serum albumin and acidic polysaccharides. Carbohyd. Res. 2, 391–402.

    CAS  CrossRef  Google Scholar 

  • Boyd, J., Parkinson, C., Sherman, P. 1972. Factors affecting emulsion stability and the HLB concept. J. Coll. Interf. Sci. 41, 359–370.

    CAS  CrossRef  Google Scholar 

  • Brooker, B.E. 1990. Low-temperature microscopy and X-ray analysis of food systems. Trends Food Sci. Technol. 1, 99–103.

    CrossRef  Google Scholar 

  • Brooker, B.E. 1993. The stabilization of air in foods containing fat-a review. Food Struct. 12, 115–122.

    Google Scholar 

  • Buchheim, W., Frede, E. 1994. Neuere technologische Entwicklungen auf dem Streichfettsektor. Deutsche Milchwirtschaft. 22, 1070–1075.

    Google Scholar 

  • Bullock, D.H. 1966. A preliminary study of a new low fat dairy spread. Can. Dairy Ice Cream J. 45, 26–29.

    Google Scholar 

  • Bullock, D.H., Kenney, A.R. 1969. Effect of emulsion characteristics of a low fat dairy spread on bacterial growth. J. Dairy Sci. 52, 625–628.

    CAS  CrossRef  Google Scholar 

  • Bylund, G. 1995. Butter and dairy spreads. In: Dairy Processing Handbook, 2nd edn, pp. 263–278, Tetra Pak Processing Systems AB, Lund, Sweden.

    Google Scholar 

  • Canton, M., Mulvihill, D.M. 1982. Functional properties of commercial and chemically modified caseins and caseinates. Irish J. Food Sci. Technol. 6, 107 (abstract).

    Google Scholar 

  • Chawla, P., de Man, J.M., Smith, A.K. 1990. Crystal morphology of shortenings and margarines. Food Struct. 9, 329–336.

    Google Scholar 

  • Chesworth, S.M., Dickinson, E., Searle, A., Stainsby, G. 1985. Properties of oil-in-water emulsions containing gelatin and caseinate. Lebensm.-Wissen. Technol. 18, 230–232.

    CAS  Google Scholar 

  • COMA (Committee on Medical Aspects of Food Policy). 1984. Report No. 28, UK Department of Health and Social Security, HMSO, London.

    Google Scholar 

  • Council Regulation (EC) No. 2991/94 1994. Standards for Spreadable Fats. Brussels, Belgium.

    Google Scholar 

  • Creamer, L.K. 1985. Water absorption by renneted casein micelles. Milchwissenschaft. 40, 589–591.

    Google Scholar 

  • Dalgleish, D.G. 1989. Protein-stabilized emulsions and their properties. In: Water and Food Quality (T.M. Hardman, ed.), pp. 211–250, Elsevier Applied Science, London.

    Google Scholar 

  • Day, C.E., Voet, R.L., Levy, R.S. 1970. Elimination of low-density lipoprotein-polyanion interaction by amino modifications. FEBS Lett. 7, 41–43.

    CAS  CrossRef  Google Scholar 

  • de Feijter, J.A., Benjamins, J. 1978. Influence of monoglycerides on the stability of water-in-oil emulsions. Abst. 14th World Congr. Soc. Fat Res. No. 0310.

    Google Scholar 

  • Department of Health (Ireland). 1991 Nutrition Health Promotion. Framework for Action. Health Promotion Unit, Department of Health, Dublin, Ireland.

    Google Scholar 

  • Dickinson, E., Roberts, T., Robson, E.W., Stainsby, G. 1984. Effect of salt on stability of casein stabilised butter oil-in-water emulsions. Lebensm.-Wissen. Technol., 17, 107–110.

    CAS  Google Scholar 

  • Dickinson, E., Pogson, D.J., Robson, E.W., Stainsby, G. 1985. Time-dependent surface pressures of adsorbed films of caseinate + gelatin at the oil-water interface. Coll. Surf. 14, 135–141.

    CAS  CrossRef  Google Scholar 

  • Dickinson, E., Whyman, R.H., Dalgleish, D.G. 1987. Colloidal properties of model oil-in-water food emulsions stabilized separately by αs1-casein, β-casein and κ-casein. In: Food Emulsions and Foams (E. Dickinson, ed.), pp 40–51, Royal Society of Chemistry, London.

    Google Scholar 

  • Dolby, R.M. 1965. Changes in moisture distribution caused by partial reworking of butter shortly after churning. J. Dairy Res. 32, 263–267.

    Google Scholar 

  • Duchateau, G.S.M.J.E., Bauer-Plank, C.G., Louter, A.J.H., van der Ham, M., Boerma, J.A., van Rooijen., J.J.M., Zandbelt, P.A. 2002. Fast and accurate method for total 4-desmethyl sterol(s) content in spreads, fat-blends and raw materials. J. Am. Oil Chem. Soc. 79, 273–278.

    CAS  CrossRef  Google Scholar 

  • Elfak, A.M., Pass, G., Phillips, G.O. 1979. The effect of casein on the viscosity of solutions of hydrocolloids. J. Sci. Food Agric. 30, 994–998.

    CAS  CrossRef  Google Scholar 

  • Foley, J., Brady, J., Reynolds, P.J. 1971. The influence of processing on the emulsion stability of cream. J. Soc. Dairy Technol. 24, 54–58.

    Google Scholar 

  • Ford, R.E., Furmidge, C.G.L. 1966. Studies at phase interfaces. II. The stabilization of water-in-oil emulsions using oil-soluble emulsifiers. J. Coll. Interface Sci. 22, 331–341.

    CAS  CrossRef  Google Scholar 

  • Frede, E., Buchheim, W. 1994. Buttermaking and the churning of blended fat emulsions. J. Soc. Dairy Technol. 47, 7–27.

    Google Scholar 

  • Friberg, S.E., Goubran, R.F., Kayali, I.H. 1990. Emulsion stability. In: Food Emulsions, 2nd edn (K. Larsson, S.E. Friberg, eds.), pp. 1–40, Marcel Dekker, New York.

    Google Scholar 

  • Garti, N., Remon, G.F. 1984. Relationship between nature of vegetable oil, emulsifier and the stability of w/o emulsion. J. Food Technol. 19, 711–717.

    CAS  CrossRef  Google Scholar 

  • Goubran, R., Garti, N. 1988. Stability of water-in-oil emulsions using high molecular weight emulsifiers. J. Dispersion Sci. Technol. 9, 131–148.

    CAS  Google Scholar 

  • Graham, D.E., Phillips, M.C. 1979. Proteins at liquid interfaces. I. Kinetics of adsorption and surface deterioration. J. Coll. Interface Sci. 70, 403–414.

    CAS  CrossRef  Google Scholar 

  • Griffin, W.C. 1949. Classification of surface-active agents by ‘HLB’. J. Soc. Cosm. Chem. 1, 311–326.

    Google Scholar 

  • Griffin, W.C. 1954. Calculation of HLB values of non-ionic surfactants. J. Soc. Cosm. Chem. 5, 249–256.

    Google Scholar 

  • Haighton, A.J. 1976. Blending, chilling and tempering of margarines and shortenings. J. Am. Oil Chem. Soc. 53, 397–399.

    CAS  Google Scholar 

  • Halling, P.J. 1981. Protein-stabilized foams and emulsions. CRC Crit. Rev. Food Sci. Nutr. 15,155–203.

    CAS  Google Scholar 

  • Hansen, P.M.T. 1968. Stabilization of αs-casein by carrageenan. J. Dairy Sci. 51, 192–195.

    CAS  CrossRef  Google Scholar 

  • Hassander, H., Johansson, B., Tornell, B. 1989. The mechanism of emulsion stabilization by small silica (Ludox) particles. Coll. Surf. 40, 93105.

    Google Scholar 

  • Hayes, J.F.. Muller, L.L. 1961. Factors affecting the viscosity of solutions of acid-precipitated caseins. Aust. J. Dairy Technol. 16, 265–269.

    CAS  Google Scholar 

  • Heertje, I., Leunis, M., van Zeyl, W.J.M., Berends, E. 1987. Product morphology of fatty products. Food Microstruct. 6, 1–8.

    Google Scholar 

  • Heertje, I., van Eendenburg, J., Cornelissen, J.M., Juriaanse, A.C. 1988. The effect of processing on some microstructural characteristics of fat spreads. Food Microstruct. 7, 189193.

    Google Scholar 

  • Hermansson, A-M. 1975. Functional properties of proteins for foods-flow properties. J. Text. Stud. 8, 425–439.

    CrossRef  Google Scholar 

  • Hoerr, C.W. 1960. Morphology of fats, oils and shortenings. J. Am. Oil Chem. Soc. 37, 539–546.

    CAS  Google Scholar 

  • Hoffmann, G. 1989. Products of high fat content. In: The Chemistry and Technology of Edible Oils and Fats and their High Fat Products (S.L. Taylor, ed.), pp. 279–338 Academic Press, London.

    Google Scholar 

  • Hojerová, J., Schmidt, S, Krempasky, J. 1992. Structure of margarines made with low erucic acid rapeseed oil. Food Struct. 11, 147–154.

    Google Scholar 

  • Jaynes, E.N. 1983. Applications in the food industry II. In: Encyclopedia of Emulsion Technology, Vol. 2 (P. Becher, ed.), pp. 367–384, Marcel Dekker, New York.

    Google Scholar 

  • Jones, M.G., Wilson, K. 1976. Milk protein-amylose interaction in solution. Starch 28, 338–341.

    CAS  CrossRef  Google Scholar 

  • Joyner, N.T. 1953. The plasticizing of edible fats. J. Am. Oil Chem. Soc. 30, 526–535.

    Google Scholar 

  • Juriaanse, A.C., Heertje, I. (1988). Microstructure of shortenings, margarines, and butter — a review. Food Microstruct. 7, 181–188.

    Google Scholar 

  • Kaylegian, K.E., Lindsay, R.C. 1992. Performance of selected milk fat fractions in coldspreadable butter. J. Dairy Sci. 75, 3307–3317.

    CAS  CrossRef  Google Scholar 

  • Keogh, M.K. 1993. The Stability to Inversion of a Concentrated Water-in-oil Emulsion, Ph.D. Thesis. National University of Ireland, Cork.

    Google Scholar 

  • Keogh, M.K., Quigley, T., Connolly, J.F., Phelan, J.A. 1988. Anhydrous milk fat. 4. Low-fat spreads. Irish J. Food Sci. Technol. 12, 53–75.

    Google Scholar 

  • Klemaszewski, J.L., Haque, Z., Kinsella, J.E. 1989. An electronic imaging system for determining droplet size and dynamic breakdown of protein-stabilized emulsions. J. Food Sci. 54, 440–445.

    CAS  CrossRef  Google Scholar 

  • Knoop, E. 1972. Measurement of the Consistency of Butter. Document F-Doc 14, International Dairy Federation, Brussels.

    Google Scholar 

  • Korolczuk, J. 1982. Viscosity and hydration of neutral and acidic milk protein concentrates and caseins. NZ J. Dairy Sci. Technol. 17, 135–140.

    CAS  Google Scholar 

  • Krog, N. 1971. Amylose complexing effect of food grade emulsifiers. Starch 23, 206–210.

    CAS  CrossRef  Google Scholar 

  • Lane, R. 1992. Butter and mixed fat spreads. In: The Technology of Dairy Products (R. Early, ed.), pp. 86–116, Blackie and Son, Glasgow.

    Google Scholar 

  • Lelièvre, J, Husbands, J. 1989. Effects of sodium caseinate on the rheological properties of starch pastes. Starch 41, 236–238.

    CrossRef  Google Scholar 

  • Leman, J., Kinsella, J.E. 1989. Surface activity, film formation, and emulsifying properties of milk proteins. CRC Crit. Rev. Food Sci. Nutr. 28, 115–138.

    CAS  CrossRef  Google Scholar 

  • Lin, C.F., Hansen, P.M.T. 1970. Stabilization of casein micelles by carrageenan. Macromolecules 3, 269–274.

    CAS  CrossRef  Google Scholar 

  • Louter, A.J.H., Bauer-Plank, C.G., Duchateau, S.M.J.E. 2002. Analysis of plant sterol esters as functional food ingredients. Lipid Technol. 14, 87–90.

    CAS  Google Scholar 

  • Matsumoto, S., Sherman, P. 1970. A DTA technique for identifying the phase inversion temperature of o/w emulsions. J. Coll. Interface Sci. 33, 294–298.

    CAS  CrossRef  Google Scholar 

  • Mattson, F.H., Healthy, M., Volpenheim, R.A. 1971. Low calorie fat-containing food compositions. US Patent No. 3, 600, 186.

    Google Scholar 

  • McCarthy, M., Headon, D.R. 1979. Lipid and protein composition of a membrane-rich fraction of butter oil. J. Dairy Res. 46, 511–521.

    CAS  Google Scholar 

  • Melsen, J.P., Walstra, P. 1989. Stability of recombined milk fat globules. Neth. Milk Dairy J. 43, 63–78.

    CAS  Google Scholar 

  • Mostafa, A., Smith, A.K., de Mann, J.M. 1985. Crystal structure of hydrogenated canola oil. J. Am. Oil Chem. Soc. 62, 760–762.

    CrossRef  Google Scholar 

  • Mulder, H., Walstra, P. 1974. The Milk Fat Globule, pp. 101–130, Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Muller, L.L. 1952. A method for determining the moisture distribution in butter and a review of its applications. Aust. J. Dairy Technol. 7, 44–51.

    CAS  Google Scholar 

  • Munro, D.S., Cant, P.A.E., MacGibbon, A.K.H., Illingworth, D., Kennett, A., Main, A.J. 1992. Concentrated milkfat products. In: The Technology of Dairy Products (R. Early, ed.), pp. 117–145, Blackie and Son, Glasgow.

    Google Scholar 

  • Murphy, J.M., Fox, P.F. 1991. Fractionation of sodium caseinate by ultrafiltration. Food Chem. 39, 27–38.

    CAS  CrossRef  Google Scholar 

  • Musselwhite, P.R. 1966. The surface properties of an oil-water emulsion stabilized by mixtures of casein and gelatin. J. Coll. Interface Sci. 21, 99–102.

    CrossRef  Google Scholar 

  • Norgaard Pedersen, E., Dueholm, K. 1990. A process for the production of low fat butter and an assembly to be used when carrying out said process. European Patent Application No. 0 499 614.

    Google Scholar 

  • Pearce, K.N., Kinsella, J.E. 1978. Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem. 26, 716–723.

    CAS  CrossRef  Google Scholar 

  • Petrowski, G.E. 1974. Determination of emulsion stability by microwave irradiation. J. Am. Oil Chem. Soc. 51, 110–111.

    CAS  CrossRef  Google Scholar 

  • Petrowski, G.E. 1976. Emulsion stability and its relation to food. Adv. Food Res. 22, 310–359.

    Google Scholar 

  • Platt, B.L. 1988. Low fat spread. European Patent. Publication No. 0 256 712.

    Google Scholar 

  • Precht, D., Buchheim, W. 1980. [Electron microscopic studies on the physical structure of spreadable fats. 3. The aqueous phase of butter.] Milchwissenschaft. 35, 684–690.

    Google Scholar 

  • Prentice, J.H. 1953. Some observations on the electrical properties and consumer quality of butter, Proc. 13th Int. Dairy Congr. (The Hague) 2, 727–728.

    CAS  Google Scholar 

  • Prentice, J.H. 1954. An instrument for estimating the spreadability of butter. Lab. Pract. 3, 186–189.

    Google Scholar 

  • Ršhl, E.L. 1972. Stability tests for emulsions. Soap, Perfume, Cosmetics 45, 343–350.

    Google Scholar 

  • Rooyakkers, M., Gruhn, E., Vianen, G. 1994. Innovative fat spreads based on inulin. Deutsche Milchwirtschaft 45, 1079–1080.

    Google Scholar 

  • Seas, S.W., Spurgeon, K.R. 1968. New spread-type product. Bulletin 543, 3–23. University of South Dakota Agricultural Experimental Station, USA.

    Google Scholar 

  • Sherman, P. 1950. Studies in water-in-oil emulsions. I. The influence of disperse phase on emulsion viscosity. J. Soc. Chem. Ind., Suppl. Issue No. 2, S70–S74.

    Google Scholar 

  • Sherman, P. 1955a. Studies in water-in-oil emulsions. Part 5. The influence of internal phase viscosity on the viscosity of concentrated water-in-oil emulsions. Kolloid Z., 141, 6–11.

    CAS  CrossRef  Google Scholar 

  • Sherman, P. 1955b. Rheological aspects of water-in-oil emulsions. Manufacturing Chemist. July, 306–310.

    Google Scholar 

  • Sherman, P. 1955c. Studies in oil-in-water emulsions. IV. The influence of the emulsifying agent on the viscosity of water-in-oil emulsions of high water content. J. Colloid Sci. 10, 63–70.

    CAS  CrossRef  Google Scholar 

  • Sherman, P. 1967a. Changes in the rheological properties of emulsions on aging. II. Viscosity changes in w/o emulsions at rates of shear from 0.133 sec−1 to 10.77 sec−1. J. Coll. Interface Sci. 24, 97–106.

    CAS  CrossRef  Google Scholar 

  • Sherman, P. 1967b. Rheological changes in emulsions on aging. III. At very low rates of shear. J. Coll. Interface Sci. 24, 107–114.

    CAS  CrossRef  Google Scholar 

  • Sherman, P. 1973. Rheology of interfaces and emulsion stability. J. Coll. Interface Sci. 45, 427–429.

    CrossRef  Google Scholar 

  • Sherman, P. 1983. Rheological properties of emulsions. In: Encyclopedia of Emulsion Technology, Vol. 2 (P. Sherman, ed.), pp. 405–438, Marcel Dekker, New York

    Google Scholar 

  • Shinoda, K., Saito, H. 1969. The stability of o/w type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method. J. Coll. Interface Sci. 30, 258–263.

    CAS  Google Scholar 

  • Snoeren, T.H.M., Both, P., Schmidt, D.G. 1976. An electron-microscopic study of carrageenan and its interaction with κ-casein. Neth. Milk Dairy J. 30, 132–141.

    CAS  Google Scholar 

  • Stanton, C. 2003. Spreading probiotics around. Moorepark News, Issue 11, December, p. 3 (1 page). Teagasc, Moorepark, Fermoy, Cork, Ireland.

    Google Scholar 

  • USDA/USDHHS. 1988. Surgeon General’s Report on Nutrition and Health. Government Printing Office, Washington, DC, U.S.

    Google Scholar 

  • Swift, C.E., Lockett, C., Fryan, A.J. 1961. Comminuted meat emulsions. The capacity of meat for emulsifying fat. Food Technol. 15, 468–473.

    Google Scholar 

  • Takeo, K., Kuge, T. 1969. Complexes of starchy materials with organic compounds. Part III. X-Ray studies on amylose and cyclodextrin complexes. Agric. Biol. Chem. (Tokyo), 33, 1174–1180.

    CAS  Google Scholar 

  • Tobias, J., Tracy, P.H. 1958. Observation on low fat dairy spreads. J. Dairy Sci. 41, 1117–1120.

    CrossRef  Google Scholar 

  • Tornberg, E., Ediriweera, N. 1987. Coalescence stability of protein-stabilised emulsions. In: Food Emulsions and Foams (E. Dickinson, ed.), pp. 52–63, Royal Society of Chemistry, London.

    Google Scholar 

  • Vakaleris, D.G., Sabharwal, K. 1972. Stability of fluid food emulsions. II. Interacting effects of electrolytes, sodium caseinate and emulsifiers. J. Dairy Sci. 55, 283–288.

    CAS  CrossRef  Google Scholar 

  • van den Berg, G. 1982. Developments in buttermaking. Proc. XXI Int. Dairy Congr. (Moscow) 2, 153–159.

    Google Scholar 

  • van Vliet, T. 1991. Spreadability of (low-fat) spreads; some rheological aspects. Int. Food Ingr. 2, 36–39.

    Google Scholar 

  • Verhagen, L.A.M., Warnaar, L.G. 1984. Low calorie spread based on a low melting butterfat fraction. U.S. Patent. 4, 436, 760.

    Google Scholar 

  • Weckel, K.G. 1965. Dairy spreads. Manuf. Milk Prod. J. 56, 5–6.

    Google Scholar 

  • Wiedermann, L.H. 1978. Margarine and margarine oil, formulation and control. J. Am. Oil Chem. Soc. 55, 823–829.

    CAS  Google Scholar 

Further Reading

  • Brooker, B.E. 1989. Application of X-ray analysis to the study of food materials. Microscopy Anal., 3, 39–42.

    Google Scholar 

  • Dickinson, E., Murray, A., Murray, B.S., Stainsby, G. 1987. Properties of adsorbed layers in emulsions containing a mixture of caseinate and gelatin. In: Food Emulsions and Foams (E. Dickinson, ed.), p. 99 (1 page), Royal Society of Chemistry, London.

    Google Scholar 

  • Dickinson, E., Murray, B.S., Stainsby, G. 1988. Coalescence stability of emulsion-sized droplets at a planar oil-water interface and the relationship to protein film surface rheology. J. Chem. Soc., Faraday Trans. I, 84, 871–883.

    CAS  CrossRef  Google Scholar 

  • Dickinson, E., Rolfe, Susan, E., Dalgleish, D.G. 1988. Competitive adsorption of αs1-casein and β-casein in oil-in-water emulsions. Food Hydrocoll. 2, 397–405.

    CAS  CrossRef  Google Scholar 

  • Dickinson, E. 1989 Surface and emulsifying properties of caseins. J. Dairy Res. 56, 471–477.

    CrossRef  Google Scholar 

  • Goff, H.D., Liboff, M., Jordan, W.K., Kinsella, J.E. 1987. The effects of polysorbate 80 on the fat emulsion in ice cream mix: evidence from transmission electron microscopy studies. Food Microstruct. 6, 193–198.

    CAS  Google Scholar 

  • Griffin, M.C.A., Infante, R.B., Klein, R.A. 1984. Structural domaines of κ-casein show different interaction with dimyristoyl phosphatidylcholine monolayers. Chem. Phys. Lips. 36, 91–98.

    CAS  CrossRef  Google Scholar 

  • Haighton, A.J. 1959. The measurement of the hardness of margarine and fats with cone penetrometers. J. Am. Oil Chem. Soc. 36, 345–348.

    CAS  Google Scholar 

  • Heertje, I., Visser, J., Smits, P. 1985. Structure formation in acid milk gels. Food Microstruct. 4, 267–277.

    CAS  Google Scholar 

  • Higgs, S.J., Norrington, R.J. 1971. Rheological properties of selected foodstuffs. Proc. Biochem. 6, 52–54.

    Google Scholar 

  • Keogh, M.K., Morrissey, A. 1990. Anhydrous milk fat. 6. Baked goods. Irish J. Food Sci. Technol. 14, 69–83.

    Google Scholar 

  • Mulvihill, D.M., Fox, P.F. 1989. Properties of milk proteins. In: Developments in Dairy Chemistry, 4. Functional Proteins, (P.F. Fox, ed.), pp. 131–172, Elsevier Applied Science, London.

    Google Scholar 

  • van den Enden, J.C., Haighton, A.J., van Putte, K., Vermaas, L.F., Waddington, D. 1978. A method for the determination of the solid phase content of fats using pulse nuclear magnetic resonance. Fette, Seifen, Anstrichm. 80, 180–186.

    CrossRef  Google Scholar 

  • Vanderpoorten, R., Weckx, M. 1972. Breakdown of casein by rennet and microbial milkclotting enzymes. Neth. Milk Dairy J. 26, 47–59.

    CAS  Google Scholar 

  • Weckel, K.G. 1952. Dairy spreads — their potential market and manufacturing procedure. Milk Plant Month. 41, 24–28.

    Google Scholar 

  • Yamauchi, K., Shimizu, M., Ardo, T. 1982. Milk fat globule membrane proteins in aseptically packed ultra-heat-treated milk: Changes during storage. Agric. Biol. Chem. (Tokyo), 46, 823–825.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Keogh, M.K. (2006). Chemistry and Technology of Butter and Milk Fat Spreads. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry Volume 2 Lipids. Springer, Boston, MA. https://doi.org/10.1007/0-387-28813-9_9

Download citation