Advertisement

Conjugated Linoleic Acid: Biosynthesis and Nutritional Significance

  • D. E. Bauman
  • A. L. Lock

Abstract

The term conjugated linoleic acid (CLA) refers to a mixture of positional and geometric isomers of linoleic acid with a conjugated double bond system; milk fat can contain over 20 different isomers of CLA. CLA isomers are produced as transient intermediates in the rumen biohydrogenation of unsaturated fatty acids consumed in the diet. However, cis-9, trans-11 CLA, known as rumenic acid (RA), is the predominant isomer (up to 90% of total) because it is produced mainly by endogenous synthesis from vaccenic acid (VA). VA is typically the major biohydrogenation intermediate produced in the rumen and it is converted to RA by Δ;9-desaturase in the mammary gland and other tissues.

Biomedical studies with animal models have shown that RA as well as VA have anticarcinogenic and antiatherogenic properties, with the effects of VA being related to its conversion to RA. The anticarcinogenic effects have been observed for a wide range of cancer types, but the most impressive results have been reported in relation to mammary cancer. Of special importance, RA and VA are potent anticarcinogens when supplied as natural food components in the form of VA/RA-enriched butter. The functional food considerations of CLA isomers in dairy products realistically relate only to RA as the major isomer, although this should include VA because in humans it serves for the endogenous synthesis of RA. The RA and VA content in milk fat are directly related and they can be markedly enhanced through the use of diet formulation and nutritional management of dairy cows.

Trans-10, cis-12 CLA is another CLA isomer in milk fat which can affect lipid metabolism. It is generally present at low concentrations in milk fat (typically <0.2% of CLA); under some dietary conditions, a portion of the rumen biohydrogenation shifts to produce more of this isomer, although it is still only a minor portion of total CLA. These dietary conditions are associated with milk fat depression and as little as 2 g/d of trans-10, cis-12 leaving the rumen will reduce milk fat synthesis by 20%. Because of the potency and specificity of this CLA isomer, it is being developed as a dairy management tool to allow for a controlled reduction in milk fat output.

CLA isomers in milk fat and how they relate to both animal agriculture and human health are rapidly expanding fields. Milk and dairy products offer exciting opportunities in the area of functional foods, and the functional properties of VA and RA in milk further serve to illustrate the value of dairy products in the human diet.

Keywords

Linoleic Acid Conjugate Linoleic Acid Conjugate Linoleic Acid Isomer Vaccenic Acid Conjugate Linoleic Acid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. AbuGhazaleh, A.A., Jenkins, T.C. 2004. Docosahexaenoic acid promotes vaccenic acid accumulation in mixed ruminal cultures when incubated with linoleic acid. J. Dairy Sci. 87, 1047–1050.Google Scholar
  2. AbuGhazaleh, A.A., Schingoethe, D.J., Hippen, A.R. 2001. Conjugated linoleic acid and other beneficial fatty acids in milk from cows fed soybean meal, fish meal, or both. J. Dairy Sci. 84, 1845–1850.Google Scholar
  3. Adlof, R.O. 2003. Application of silver-ion chromatography to the separation of conjugated linoleic acid isomers. In: Advances in Conjugated Linoleic Acid Research, Vol. 2 (J.-L. Sébédio, W.W. Christie, R.O. Adlof, eds.), pp. 37–55, AOCS Press, Champaign, IL.Google Scholar
  4. Ahnadi, C.E., Beswick, N., Delbecchi, L., Kennelly, J.J., Lacasse, P. 2002. Addition of fish oil to diets for dairy cows. II. Effects on milk fat and gene expression of mammary lipogenic enzymes. J. Dairy Res. 69, 521–531.Google Scholar
  5. Aro, A., Mannisto, S., Salminen, I., Ovaskainen, M.L., Kataja, V., Uusitupa, M. 2000. Inverse association between dietary and serum conjugated linoleic acid and risk of breast cancer in postmenopausal women. Nutr. Cancer. 38, 151–157.CrossRefGoogle Scholar
  6. Auldist, M.J., Kay, J.K., Thomson, N.A., Napper, A.R., Kolver, E.S. 2002. Concentrations of conjugated linoleic acid in milk from cows grazing pasture or fed a total mixed ration for an entire lactation. Proc. NZ Soc. Anim. Prod. 62, 240–247.Google Scholar
  7. Avramis, C.A., Wang, H., McBride, B.W., Wright, T.C., Hill, A.R. 2003. Physical and processing properties of milk, butter, and Cheddar cheeses from cows fed supplemental fish meal. J. Dairy Sci. 86, 2568–2576.Google Scholar
  8. Baer, R.J., Ryali, J., Schingoethe, D.J., Kasperson, K.M., Donovan, D.C., Hippen, A.R., Franklin, S.T. 2001. Composition and properties of milk and butter from cows fed fish oil. J. Dairy Sci. 84, 345–353.Google Scholar
  9. Banni, S., Carta, G., Contini, M.S., Angioni, E., Deiana, M., Dessi, M.A., Melis, M.P., Corongiu, F.P. 1996. Characterization of conjugated diene fatty acids in milk, dairy products and lamb tissues. Nutr. Biochem. 7, 150–155.CrossRefGoogle Scholar
  10. Banni, S., Angioni, E., Murru, E., Carta, G., Melis, M.P., Bauman, D.E., Dong, Y., Ip, C. 2001. Vaccenic acid feeding increases tissue levels of conjugated linoleic acid and suppresses development of premalignant lesions in rat mammary gland. Nutr. Cancer. 41, 91–97.CrossRefGoogle Scholar
  11. Banni, S., Heys, S.D., Wahle, K.W.J. 2003. Conjugated linoleic acids as anticancer nutrients: Studies in vivo and cellular mechanisms. In: Advances in Conjugated Linoleic Acid Research, Vol. 2, (J.-L. Sébédio, W.W. Christie, O.R. Adlof, eds.), pp. 267–282, AOCS Press, Champaign, IL.Google Scholar
  12. Barber, M.C., Ward, R.J., Richards, S.E., Salter, A.M., Buttery, P.J., Vernon, R.G., Travers, M.T. 2000. Ovine adipose tissue monounsaturated fat content is correlated to depotspecific expression of the stearoyl-CoA desaturase gene. J. Anim. Sci. 78, 62–68.Google Scholar
  13. Bauman, D.E., Currie, W.B. 1980. Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63, 1514–1529.Google Scholar
  14. Bauman, D.E., Griinari, J.M. 2001. Regulation and nutritional manipulation of milk fat: Lowfat milk syndrome. Livest. Prod. Sci. 70, 15–29.CrossRefGoogle Scholar
  15. Bauman, D.E., Griinari, J.M. 2003. Nutritional regulation of milk fat synthesis. Ann. Rev. Nutr. 23, 203–227.CrossRefGoogle Scholar
  16. Bauman, D.E., Barbano, D.M., Dwyer, D.A., Griinari, J.M. 2000. Production of butter with enhanced conjugated linoleic acid for use in biomedical studies with animal models. J. Dairy Sci. 83, 2422–2425.Google Scholar
  17. Bauman, D.E., Baumgard, L.H., Corl, B.A., Griinari, J.M. 2001. Conjugated linoleic acid (CLA) and the dairy cow. In: Recent Advances in Animal Nutrition 2001 (P.C. Garnsworthy, J. Wiseman, eds.), pp. 221–250, Nottingham University Press, Nottingham.Google Scholar
  18. Bauman, D.E., Corl, B.A., Peterson, D.G. 2003. The biology of conjugated linoleic acids in ruminants. In: Advances in Conjugated Linoleic Acid Research, Vol. 2 (J.-L. Sébédio, W.W. Christie, R.O. Adlof, eds.), pp. 146–173, AOCS Press, Champaign, IL.Google Scholar
  19. Bauman, D.E., Lock A.L., Corl B.A., Ip C., Salter A.M., Parodi P.W. 2005. Milk fatty acids and human health: potential role of conjugated linoleic acid and trans fatty acids. In: Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress. (K. Sejrsen, T. Hvelplund, and M.O. Nielsen, eds.), pp. 523–555, Wageningen Academic Publishers, Wageningen, The Netherlands. Academic Publishers.Google Scholar
  20. Baumgard, L.H., Corl, B.A., Dwyer, D.A., Sæbø A., Bauman, D.E. 2000. Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. Am. J. Physiol. 278, R179–R184.Google Scholar
  21. Baumgard, L.H., Sangster, J.K., Bauman, D.E. 2001. Milk fat synthesis in dairy cows is progressively reduced by increasing supplemental amounts of trans-10, cis-12 conjugated linoleic acid (CLA). J. Nutr. 131, 1764–1769.Google Scholar
  22. Baumgard, L.H., Matitashvili, E., Corl, B.A., Dwyer, D.A., Bauman, D.E. 2002. trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. J. Dairy Sci. 85, 2155–2163.Google Scholar
  23. Beaulieu, A.D., Palmquist, D.L. 1995. Differential-effects of high-fat diets on fatty-acid composition in milk of Jersey and Holstein cows. J. Dairy Sci. 78, 1336–1344.Google Scholar
  24. Belury, M.A. 2002. Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Ann. Rev. Nutr. 22, 505–531.CrossRefGoogle Scholar
  25. Bernal-Santos, G., Perfield, J.W., Barbano, D.M., Bauman, D.E., Overton, T.R. 2003. Production responses of dairy cows to dietary supplementation with conjugated linoleic acid (CLA) during the transition period and early lactation. J. Dairy Sci. 86, 3218–3228.Google Scholar
  26. Bickerstaffe, R., Annison, E.F. 1969. Glycerokinase and desaturase activity in pig, chicken and sheep intestinal epithelium. Comp. Biochem. Physiol. 31, 47–54.CrossRefGoogle Scholar
  27. Bickerstaffe, R., Annison, E.F. 1970. The desaturase activity of goat and sow mammary tissue. Comp. Biochem. Physiol. 35, 653–665.CrossRefGoogle Scholar
  28. Bickerstaffe, R., Johnson, A.R. 1972. The effect of intravenous infusions of sterculic acid on milk fat synthesis. Br. J. Nutr. 27, 561–570.CrossRefGoogle Scholar
  29. Booth, R.G., Dann, W.J., Kon, S.K., Moore, T. 1933. A new variable factor in butter fat. Chem. Ind. 52, 270 (1 page).Google Scholar
  30. Bretillon, L., Chardigny, J.M., Gregoire, S., Berdeaux, O., Sébédio, J.-L. 1999. Effects of conjugated linoleic acid isomers on the hepatic microsomal desaturation activities in vitro. Lipids. 34, 965–969.CrossRefGoogle Scholar
  31. Burdge, G.C., Lupoli, B., Russell, J.J., Tricon, S., Kew, S., Banerjee, T., Shingfield, K.J., Beever, D.E., Grimble, R.F., Williams, C.M., Yaqoob, P., Calder, P.C. 2004. Incorporation of cis-9, trans-11 or trans-10, cis-12 conjugated linoleic acid into plasma and cellular lipids in healthy men. J. Lipid Res. 45, 736–741.CrossRefGoogle Scholar
  32. Cameron, P.J., Rogers, M., Oman, J., May, S.G., Lunt, D.K., Smith, S.B. 1994. Stearoyl coenzyme A desaturase enzyme activity and mRNA levels are not different in subcutaneous adipose tissue from Angus and American Wagyu steers. J. Anim. Sci. 72, 2624–2628.Google Scholar
  33. Campbell, W., Drake, M.A., Larick, D.K. 2003. The impact of fortification with conjugated linoleic acid (CLA) on the quality of fluid milk. J. Dairy Sci. 86, 43–51.Google Scholar
  34. Chajes, V., Lavillonniere, F., Maillard, V., Giraudeau, B., Jourdan, M.L., Sébédio, J.-L., Bougnoux, P. 2003. Conjugated linoleic acid content in breast adipose tissue of breast cancer patients and the risk of metastasis. Nutr. Cancer. 45, 17–23.CrossRefGoogle Scholar
  35. Chang, J.H.P., Lunt, D.K., Smith, S.B. 1992. Fatty acid composition and fatty acid elongase and stearoyl-CoA desaturase activities in tissues of steers fed high oleate sunflower seed. J. Nutr. 122, 2074–2080.Google Scholar
  36. Chilliard, Y., Ferlay, A., Doreau, M. 2001. Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livest. Prod. Sci. 70, 31–48.CrossRefGoogle Scholar
  37. Chilliard, Y., Ferlay, A., Mansbridge, R.M., Doreau, M. 2000 Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech. 49, 181–205.CrossRefGoogle Scholar
  38. Choi, Y.J., Kim, Y.C., Han, Y.B., Park, Y., Pariza, M.W., Ntambi, J.M. 2000. The trans-10, cis-12 isomer of conjugated linoleic acid down regulates stearoyl-CoA desaturase 1 gene expression in 3T3-L1 adipocytes. J. Nutr. 130, 1920–1924.Google Scholar
  39. Chouinard, P.Y., Corneau, L., Barbano, D.M., Metzger, L.E., Bauman, D.E. 1999a. Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. J. Nutr. 129, 1579–1584.Google Scholar
  40. Chouinard, P.Y., Corneau, L., Sæbø A., Bauman, D.E. 1999b. Milk yield and composition during abomasal infusion of conjugated linoleic acids in dairy cows. J. Dairy Sci. 82, 2737–2745.CrossRefGoogle Scholar
  41. Chouinard, P.Y., Corneau, L., Butler, W.R., Chilliard, Y., Drackley, J.K., Bauman, D.E. 2001. Effect of dietary lipid source on conjugated linoleic acid concentrations in milk fat. J. Dairy Sci. 84, 680–690.Google Scholar
  42. Christie, W.W. 1982. A simple procedure for the rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 23, 1072–1075.Google Scholar
  43. Christie, W.W. 2003. Analysis of conjugated linoleic acid: an overview, In; Advances in Conjugated Linoleic Acid Research, Vol. 2 (J.-L. Sébédio, W.W. Christie and R.O. Adlof, eds.), pp. 1–12, AOCS Press, Champaign, IL.Google Scholar
  44. Chung, M., Ha, S., Jeong, S., Bok, J., Cho, K., Baik, M., Choi, Y. 2000. Cloning and characterization of bovine stearoyl CoA desaturase 1 cDNA from adipose tissues. Biosci. Biotechnol. Biochem. 64, 1526–1530.CrossRefGoogle Scholar
  45. Cooney, A., Headon, D.R. 1989. Molecular-cloning of the bovine gene encoding the stearyl coenzyme-A desaturase. Biochem. Soc. Trans. 17, 382–383.Google Scholar
  46. Corl, B.A., Baumgard, L.H., Dwyer, D.A., Griinari, J.M., Phillips, B.S., Bauman, D.E. 2001. The role of Δ9 — desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem. 12, 622–630.CrossRefGoogle Scholar
  47. Corl, B.A., Baumgard, L.H., Griinari, J.M., Delmonte, P., Morehouse, K.M., Yurawecz, M.P., Bauman, D.E. 2002. trans-7, cis-9 CLA is synthesized endogenously by Δ9 — desaturase in dairy cows. Lipids. 37, 681–688.CrossRefGoogle Scholar
  48. Corl, B.A., Barbano, D.M., Bauman, D.E., Ip, C. 2003. cis-9, trans-11 CLA derived endogenously from trans-11 18:1 reduces cancer risk in rats. J. Nutr. 133, 2893–2900.Google Scholar
  49. Cruz-Hernandez, C., Deng, Z., Zhou, J., Hill, A.R., Yurawecz, M.P., Delmonte, P., Mossoba, M. M., Dugan, M.E.R., Kramer, J.K.C. 2004. Methods for analysis of conjugated linoleic acids and trans-18:1 isomers in dairy fats by using a combination of gas chromatography, silver-ion thin-layer chromatography/gas chromatography, and silver-ion liquid chromatography. J. AOAC Int. 87, 545–562.Google Scholar
  50. Davis, C.L., Brown, R.E. 1970. Low-fat milk syndrome. In: Physiology of Digestion and Metabolism in the Ruminant (A.T. Phillipson, ed.), pp. 545–565, Oriel Press, Newcastleupon-Tyne, UK.Google Scholar
  51. Dawson, R.M.C., Kemp, P. 1970. Biohydrogenation of dietary fats in ruminants. In: Physiology of Digestion and Metabolism in the Ruminant (A.T. Phillipson, ed.), pp. 504–518, Oriel Press, Newcastle-upon-Tyne, UK.Google Scholar
  52. Demment, M.W., Allen, L.H. 2003. Animal source foods to improve micronutrient nutrition and human function in developing countries. J. Nutr. 133,Suppl. 2 3875S–4062S.Google Scholar
  53. DePeters, E.J., Medrano, J.F., Reed, B.A. 1995. Fatty acid composition of milk fat from three breeds of dairy cattle. Can. J. Anim. Sci. 75, 264–269.Google Scholar
  54. de Veth, M.J., McFadden, J.W., Griinari, J.M., Gulati, S.K., Luchini, N.D., Bauman, D.E. 2003. Comparison of the effect of different rumen protected forms of CLA on milk fat synthesis. J. Dairy Sci. 86(Suppl. 1), 146–147.Google Scholar
  55. de Veth, M.J., Griinari, J.M., Pfeiffer, A.M., Bauman, D.E. 2004. Effect of CLA on milk fat synthesis in dairy cows: Comparison of inhibition by methyl esters and free fatty acids, and relationships among studies. Lipids. 39, 365–372.CrossRefGoogle Scholar
  56. Dhiman, T.R., Anand, G.R., Satter, L.D., Pariza, M.W. 1999. Conjugated linoleic acid content of milk from cows fed different diets. J. Dairy Sci. 82, 2146–2156.Google Scholar
  57. Dhiman, T.R., Satter, L.D., Pariza, M.W., Galli, M.P., Albright, K., Tolosa, M.X. 2000. Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. J. Dairy Sci. 83, 1016–1027.Google Scholar
  58. Dobson, G. 2003. Gas chromatography-mass spectrometry of conjugated linoleic acids and metabolites. In: Advances in Conjugated Linoleic Acid Research, Vol. 2 (J.-L. Sébédio, W.W. Christie, R.O. Adlof, eds.), pp. 13–36, AOCS Press, Champaign, IL.Google Scholar
  59. Donovan, D.C., Schingoethe, D.J., Baer, R.J., Ryali, J., Hippen, A.R., Franklin, S.T. 2000. Influence of dietary fish oil on conjugated linoleic acid and other fatty acids in milk fat from lactating dairy cows. J. Dairy Sci. 83, 2620–2628.CrossRefGoogle Scholar
  60. Doreau, M., Ferlay, A. 1994. Digestion and utilization of fatty acids by ruminants. Anim. Feed Sci. Technol. 45, 379–396.CrossRefGoogle Scholar
  61. Doreau, M., Chilliard, Y., Rulquin, H., Demeyer, D.I. 1997a. Manipulation of milk fat in dairy cows. In: Recent Advances in Animal Nutrition 1997 (P.C. Garnsworthy, J. Wiseman, eds.), pp. 81–109, Nottingham University Press, Nottingham, UK.Google Scholar
  62. Doreau, M., Demeyer, D.I., Van Nevel, C.J. 1997b. Transformation and effects of unsaturated fatty acids in the rumen: Consequences on milk fat secretion. In: Milk Composition, Production and Biotechnology (R.A.S. Welch, D.J.W. Burns, S.R. Davis, A.I. Popay, C.G. Prosser, eds.), pp. 73–92, CAB International, Wallinford, Oxfordshire, UK.Google Scholar
  63. Duckett, S. K., Andrae, J.G., Owens, F.N. 2002. Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J. Anim. Sci. 80, 3353–3360.Google Scholar
  64. Franklin, S.T., Martin, K.R., Baer, R.J., Schingoethe, D.J., Hippen, A.R. 1999. Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and trans vaccenic acids in milk of dairy cows. J. Nutr. 129, 2048–2054.Google Scholar
  65. Giesy, J.G., McGuire, M.A., Shafii, B., Hanson, T.W. 2002. Effect of dose of calcium salts of conjugated linoleic acid (CLA) on percentage and fatty acid content of milk fat in midlactation Holstein cows. J. Dairy Sci. 85, 2023–2029.Google Scholar
  66. Gnädig, S., Chamba, J.-F., Perreard, E., Chappez, S. Chardigny, J.-M., Rickert, R., Steinhart, H., Sébédio, J.-L. 2004. Influence of manufacturing conditions on the conjugated linoleic acid content and the isomer composition in ripened French Emmental cheese. J. Dairy Res., 71, 367–371.CrossRefGoogle Scholar
  67. Gomez, F.E., Bauman, D.E., Ntambi, J.M., Fox, B.G. 2003. Effects of sterculic acid on stearoyl-CoA desaturase in differentiating 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 300, 316–326.CrossRefGoogle Scholar
  68. Gonzalez, S., Duncan, S.E., O’Keefe, S.F., Sumner, S.S., Herbein, J.H. 2003. Oxidation and textural characteristics of butter and ice cream with modified fatty acid profiles. J. Dairy Sci. 86, 70–77.Google Scholar
  69. Griinari, J.M., Bauman, D.E. 1999. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Advances in Conjugated Linoleic Acid Research, Vol. 1 (M.P. Yurawecz, M.M. Mossoba, J.K.G. Kramer, M.W. Pariza, G. Nelson, eds.), AOCS Press, Champaign, IL, pp. 180–200.Google Scholar
  70. Griinari, J.M., Bauman, D.E. 2003. Update on theories of diet-induced milk fat depression and potential applications. In: Recent Advances in Animal Nutrition 2003 (P.C. Garnsworthy, J. Wiseman, eds.), pp. 115–156, Nottingham University Press, Nottingham, UK.Google Scholar
  71. Griinari, J.M., Shingfield, K.J. 2002. Effect of diet on milk fat trans fatty acid and CLA isomer composition in ruminants. Abstracts 93rd AOCS Annual Meeting. AOCS Press, Champaign, IL. (Abstr. S2).Google Scholar
  72. Griinari, J.M., Dwyer, D.A., McGuire, M.A., Bauman, D.E., Palmquist, D.L., Nurmela, K.V.V. 1998. trans-octadecenoic acids and milk fat depression in lactating dairy cows. J. Dairy Sci. 81, 1251–1261.Google Scholar
  73. Griinari, J.M., Bauman, D.E., Chilliard, Y., Perajoki, P., Nurmela, K.V.V. 2000a. Dietary influences on conjugated linoleic acids (CLA) in bovine milk fat. 3rd Meeting European Section of AOCS, Helsinki. pp. 87.Google Scholar
  74. Griinari, J.M., Corl, B.A., Lacy, S.H., Chouinard, P.Y., Nurmela, K.V.V., Bauman, D.E. 2000b. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9 — desaturase. J. Nutr. 130, 2285–2291.Google Scholar
  75. Ha, Y.L., Grimm, N.K., Pariza, M.W. 1987. Anticarcinogens from ground beef: heat altered derivatives of linoleic acid. Carcinogenesis. 8, 1881–1887.CrossRefGoogle Scholar
  76. Harfoot, C.G. 1981. Lipid metabolism in the rumen. In: Lipid Metabolism in Ruminant Animals (W.W. Christie, ed.), pp. 21–55, Pergamon Press Ltd., Oxford, UK.Google Scholar
  77. Harfoot, C.G., Hazlewood, G.P. 1997. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem, 2nd edn (P.N. Hobson, D.S. Stewart, eds.), pp. 382–426, Chapman and Hall, London.Google Scholar
  78. Horton, J.D., Goldstein, J.L., Brown, M.S. 2002. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131.CrossRefGoogle Scholar
  79. Ip, C., Chin, S.F., Scimeca, J.A., Pariza, M.A. 1991. Mammary cancer prevention by conjugated dieonic derivatives of linoleic acid. Cancer Res. 51, 6118–6124.Google Scholar
  80. Ip, C., Singh, M., Thompson, H.J., Scimeca, J.A. 1994. Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Res. 54, 1212–1215.Google Scholar
  81. Ip, C., Scimeca, J.A., Thompson, H.J. 1995. Effect of timing and duration of dietary conjugated linoleic acid on mammary cancer prevention. Nutr. Cancer. 24, 241–247.CrossRefGoogle Scholar
  82. Ip, C., Banni, S., Angioni, E., Carta, G., McGinley, J., Thompson, H.J., Barbano, D., Bauman, D.E. 1999. Conjugated linoleic acid-enriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. J. Nutr. 129, 2135–2142.Google Scholar
  83. Ip, M.M., Masso-Welch, P.A., Ip, C. 2003. Prevention of mammary cancer with conjugated linoleic acid: Role of the stroma and epithelium. J. Mammary Gland Biol. Neoplasia. 8, 103–118.CrossRefGoogle Scholar
  84. Jahreis, G., Fritsche, J., Steinhart, H. 1997. Conjugated linoleic acid in milk fat: High variation depending on production system. Nutr. Res. 17, 1479–1484.CrossRefGoogle Scholar
  85. JeVcoat, R., Pollard, M.R. 1977. Studies on the inhibition of the desaturases by cyclopropenoid fatty acids. Lipids. 12, 480–485.CrossRefGoogle Scholar
  86. Jenkins, T.C. 1993. Lipid metabolism in the rumen. J. Dairy Sci. 76, 3851–3863.CrossRefGoogle Scholar
  87. Jiang, J., Bjöerck, L., Fondén, R., Emanuelson, M. 1996. Occurrence of conjugated cis-9, trans-11-octadecadienoic acid in bovine milk: Effects of feed and dietary regimen. J. Dairy Sci. 79, 438–445.Google Scholar
  88. Jiang, J., Björck, L., Fondén, R. 1997. Conjugated linoleic acid in Swedish dairy products with special reference to the manufacture of hard cheeses. Int. Dairy J. 7, 863–867.CrossRefGoogle Scholar
  89. Kay, J.K., Mackle, T.R., Auldist, M.J., Thomson, N.A., Bauman, D.E. 2004. Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture. J. Dairy Sci. 87, 369–378.Google Scholar
  90. Keeney, M. 1970. Lipid metabolism in the rumen. In: Physiology of Digestion and Metabolism in the Ruminant (A.T. Phillipson, ed.), pp. 489–503, Oriel Press, Newcastle-upon-Tyne, UK.Google Scholar
  91. Kelly, M.L., Bauman, D.E. 1996. Conjugated linoleic acid: A potent anticarcinogen found in milk fat. Proc. Cornell Nutr. Conf. 68–74.Google Scholar
  92. Kelly, M.L., Berry, J.R., Dwyer, D.A., Griinari, J.M., Chouinard, P.Y., Van Amburgh, M.E., Bauman, D.E. 1998a. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J. Nutr. 128, 881–885.Google Scholar
  93. Kelly, M.L., Kolver, E.S., Bauman, D.E., Van Amburgh, M.E., Muller, L.D. 1998b. Effect of intake of pasture on concentrations of conjugated linoleic acid in milk of lactating cows. J. Dairy Sci. 81, 1630–1636.CrossRefGoogle Scholar
  94. Kelsey, J.A., Corl, B.A., Collier, R.J., Bauman, D.E. 2003. The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J. Dairy Sci. 86, 2588–2597.Google Scholar
  95. Kemp, P., Lander, D.J. 1984. Hydrogenation in vitro of alpha-linolenic acid to stearic-acid by mixed cultures of pure strains of rumen bacteria. J. Gen. Microbiol. 130, 527–533.Google Scholar
  96. Kepler, C.R., Tove, S.B. 1967. Biohydrogenation of unsaturated fatty acids; III: Purification and properties of a linoleate 12-cis, 11-trans-isomerase from Butyrivibrio fibrissolvens. J. Biol. Chem. 242, 5685–5692.Google Scholar
  97. Kepler, C.R., Tucker, W.P., Tove, S.B. 1970. Biohydrogenation of unsaturated fatty acids; IV: Substrate specificity and inhibition of linoleate 12-cis, 11-trans-isomerase from Butyrivibrio fibrissolvens. J. Biol. Chem. 245, 3612–3620.Google Scholar
  98. Kim, Y.J., Liu, R.H., Rychlik, J.L., Russell, J.B. 2002. The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J. Appl. Microbiol. 92, 976–982.CrossRefGoogle Scholar
  99. Kinsella, J.E. 1972. Stearyl CoA as a precursor of oleic acid and glycerolipids in mammary microsomes from lactating bovine: possible regulatory step in milk triglyceride synthesis. Lipids. 7, 349–355.CrossRefGoogle Scholar
  100. Kraft, J., Collomb, M., Mockel, P., Sieber, R., Jahreis, G. 2003. Differences in CLA isomer distribution of cow’s milk lipids. Lipids. 38, 657–664.CrossRefGoogle Scholar
  101. Kramer, J.K.C., Fellner, V., Dugan, M.E.R., Sauer, F.D., Mossoba, M.M., Yurawecz, M.P. 1997. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids. 32, 1219–1228.CrossRefGoogle Scholar
  102. Kramer, J.K.G., Parodi, P.W., Jensen, R.G., Mossoba, M.M., Yurawecz, M.P., Adlof, R.O. 1998. Rumenic acid: A proposed common name for the major conjugated linoleic acid isomer found in natural products. Lipids. 33, 835.CrossRefGoogle Scholar
  103. Kramer, J.K.C., Cruz-Hernandez, C., Deng, Z., Zhou, J., Jahreis, G., Dugan, M.E.R. 2004. Analysis of conjugated linoleic acid and trans 18:1 isomers in synthetic and animal products. Am. J. Clin. Nutr. 79, 1137S–1145S.Google Scholar
  104. Kritchevsky, D., Tepper, S.A., Wright, S., Tso, P., Czarnecki, S.K. 2000. Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J. Am. Coll. Nutr. 19, 472S–477S.Google Scholar
  105. Kritchevsky, D., Tepper, S.A., Wright, S., Czarnecki, S.K. 2002. Influence of graded levels of conjugated linoleic acid (CLA) on experimental atherosclerosis in rabbits. Nutr. Res. 22, 1275–1279.CrossRefGoogle Scholar
  106. Kritchevsky, D., Tepper, S.A., Wright, S., Tso, P., Czarnecki, S.K. 2004. Conjugated linoleic acid isomer effects in atherosclerosis: Growth and regression of lesions. Lipids. 39, 611–616.CrossRefGoogle Scholar
  107. Lacasse, P., Kennelly, J.J., Delbecchi, L., Ahnadi, C.E. 2002. Addition of protected and unprotected fish oil to diets for dairy cows. I. Effects on the yield, composition and taste of milk. J. Dairy Res. 69, 511–520.CrossRefGoogle Scholar
  108. Lawless, F., Murphy, J.J., Harrington, D., Devery, R., Stanton, C. 1998. Elevation of conjugated cis-9, trans-11-octadecadienoic acid in bovine milk because of dietary supplementation. J. Dairy Sci. 81, 3259–3267.CrossRefGoogle Scholar
  109. Lawless, F., Stanton, C., L’Escop, P., Devery, R., Dillon, P., Murphy, J.J. 1999. Influence of breed on bovine milk cis-9, trans-11-conjugated linoleic acid content. Livest. Prod. Sci. 62, 43–49.CrossRefGoogle Scholar
  110. Lee, K.N., Kritchevsky, D., Pariza, M.W. 1994. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis. 108, 19–25.CrossRefGoogle Scholar
  111. Lee, K.N., Pariza, M.W., Ntambi, J.M. 1998. Conjugated linoleic acid decreases hepatic steroyl-Co-A desaturase mRNA expression. Biochem. Biophys. Res. Commun. 248, 817–821.CrossRefGoogle Scholar
  112. Libby, P. 2002 Inflammation in atherosclerosis. Nature. 420, 868–874.CrossRefGoogle Scholar
  113. Lin, H., Boylston, T.D., Chang, M.J., Luedecke, L.O., Shultz, T.D. 1999. Conjugated linoleic acid content of Cheddar-type cheeses as affected by processing. J. Food Sci. 64, 874–878.CrossRefGoogle Scholar
  114. Lock, A.L., Bauman, D.E. 2004. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids. 39, 1197–1206.CrossRefGoogle Scholar
  115. Lock, A.L., Garnsworthy, P.C. 2002. Independent effects of dietary linoleic and linolenic fatty acids on the conjugated linoleic acid content of cows’ milk. Anim. Sci. 74, 163–176.Google Scholar
  116. Lock, A.L., Garnsworthy, P.C. 2003. Seasonal variation in milk conjugated linoleic acid and Δ9-desaturase activity in dairy cows. Livest. Prod. Sci. 79, 47–59.CrossRefGoogle Scholar
  117. Lock, A.L., Corl, B.A., Barbano, D.M., Bauman, D.E., Ip, C. 2004. The anticarcinogenic effect of trans-11 18:1 is dependent on its conversion to cis-9, trans-11 CLA by Δ9-desaturase in rats. J. Nutr. 134, 2698–2704.Google Scholar
  118. Lock, A.L., Bauman D.E., Garnsworthy P.C. 2005a. Effect of production variables on the cis-9, trans-11 conjugated linoleic acid content of cows’ milk. J. Dairy Sci. 88, 2714–2717.Google Scholar
  119. Lock, A.L., Horne C.A.M., Bauman D.E., Salter A.M. 2005b. Butter naturally enriched in conjugated linoleic acid and vaccenic acid alters tissue fatty acids and improves the plasma lipoprotein profile in cholesterol-fed hamsters. J. Nutr. 135, 1934–1939.Google Scholar
  120. Loor, J.J., Herbein, J.H. 1998. Exogenous conjugated linoleic acid isomers reduce bovine milk fat concentration and yield by inhibiting de novo fatty acid synthesis. J. Nutr. 128, 2411–2419.Google Scholar
  121. Loor, J.J., Herbein, J.H. 2001. Alterations in blood plasma and milk fatty acid profiles of lactating Holstein cows in response to ruminal infusion of a conjugated linoleic acid mixture. Anim. Res. 50, 463–476.CrossRefGoogle Scholar
  122. Lusis, A.J. 2000 Atherosclerosis. Nature. 407, 233–241.CrossRefGoogle Scholar
  123. Lynch, J.M., Lock, A.L., Dwyer, D.A., Norbaksh, R., Barbano, D.M., Bauman, D.E. 2005. Flavor and stability of pasteurized milk with elevated levels of conjugated linoleic acid and vaccenic acid. J. Dairy Sci. 88, 489–498.Google Scholar
  124. Mahfouz, M.M., Valicenti, A.J., Holman, R.T. 1980. Desaturation of isomeric tran-soctadecenoic acids by rat liver microsomes. Biochim. Biophys. Acta 618, 1–12.Google Scholar
  125. McCann, S.E., Ip, C., Ip, M.M., McGuire, M.K., Muti, P., Edge, S.B., Trevisan, M., Freudenheim, J.L. 2004. Dietary intake of conjugated linoleic acids and risk of premenopausal and postmenopausal breast cancer, Western New York Exposures and Breast Cancer Study (WEB study). Cancer Epidemiol. Biomarkers Prev. 13, 1480–1484.Google Scholar
  126. McDonald, T.M., Kinsella, J.E. 1973. Stearyl-CoA desaturase of bovine mammary microsomes. Arch. Biochem. Biophys. 156, 223–231.CrossRefGoogle Scholar
  127. McLeod, R.S., LeBlanc, A.M., Langille, M.A., Mitchell, P.L., Currie, D.L. 2004. Conjugated linoleic acids, atherosclerosis, and hepatic very-low-density lipoprotein metabolism. Am. J. Clin. Nutr. 79, 1169S–1174S.Google Scholar
  128. Meir, K.S., Leitersdorf, E. 2004. Atherosclerosis in the apolipoprotein E-deficient mouse: A decade of progress. Arterioscler. Thromb. Vasc. Biol. 24, 1–9.CrossRefGoogle Scholar
  129. Michaud, A.L., Yurawecz, M.P., Delmonte, P., Corl, B.A., Bauman, D.E., Brenna, J.T. 2003. Identification and characterization of conjugated fatty acid methyl esters of mixed double bond geometry by acetonitrile chemical ionization tandem mass spectrometry. Anal. Chem. 75, 4925–4930.CrossRefGoogle Scholar
  130. Moore, C.E., Hafliger, H.C., Mendivil, O.B., Sanders, S.R., Bauman, D.E., Baumgard, L.H. 2004. Increasing amounts of conjugated linoleic acid (CLA) progressively reduces milk fat synthesis immediately postpartum. J. Dairy Sci. 87, 1886–1895.Google Scholar
  131. Moore, T. 1939. Spectroscopic changes in fatty acids. VI: General. Biochem. J. 33, 1635–1638.Google Scholar
  132. Mosley, E.E., Powell, G.L., Riley, M.B., Jenkins, T.C. 2002. Microbial biohydrogenation of oleic acid to trans isomers in vitro. J. Lipid Res. 43, 290–296.Google Scholar
  133. Munday, J.S., Thompson, K.G., James, K.A.C. 1999. Dietary conjugated linoleic acids promote fatty streak formation in the C57BL/6 mouse atherosclerosis model. Br. J. Nutr. 81, 251–255.Google Scholar
  134. National Research Council 1988. Designing Foods: Animal Product Options in the Marketplace. National Academy Press, Washington, D.C.Google Scholar
  135. Nicolosi, R.J., Rogers, E.J., Kritchevsky, D., Scimeca, J.A., Huth, P.J. 1997. Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery. 22, 266–277.Google Scholar
  136. Noone, E.J., Roche, H.M., Nugent, A.P., Gibney, M.J. 2002. The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. Br. J. Nutr. 88, 243–251.CrossRefGoogle Scholar
  137. Ntambi, J.M. 1999. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J. Lipid Res. 40, 1549–1558.Google Scholar
  138. Ntambi, J.M., Miyazaki, M. 2004. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res. 43, 91–104.CrossRefGoogle Scholar
  139. Offer, N.W., Marsden, M., Dixon, J., Speake, B.K., Thacker, F.E. 1999. Effect of dietary fat supplements on levels of n-3 polyunsaturated fatty acids, trans acids and conjugated linoleic acid in bovine milk. Anim. Sci. 69, 613–625.Google Scholar
  140. Offer, N.W., Marsden, M., Phipps, R.H. 2001. Effect of oil supplementation of a diet containing a high concentration of starch on levels of trans fatty acids and conjugated linoleic acids in bovine milk. Anim. Sci. 73, 533–540.Google Scholar
  141. Ozols, J. 1997. Degradation of hepatic stearyl CoA Δ9-desaturase. Mol. Biol. Cell. 8, 2281–2290.Google Scholar
  142. Palmquist, D.L., Beaulieu, A.D., Barbano, D.M. 1993. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 76, 1753–1771.CrossRefGoogle Scholar
  143. Palmquist, D.L., Lock, A.L., Shingfield, K.J., Bauman, D.E. 2005. Biosynthesis of conjugated linoleic acid in ruminants and humans. In: Advances in Food and Nutrition Research (S.L. Taylor, ed.), Elsevier Inc., San Diego, CA. pp. 179–217. vol 50.CrossRefGoogle Scholar
  144. Palmquist, D.L., St Pierre, N., McClure, K.E. 2004. Tissue fatty acid profiles can be used to quantify endogenous rumenic acid synthesis in lambs. J. Nutr. 134, 2407–2414.Google Scholar
  145. Pariza, M.W. 1999. The biological activities of conjugated linoleic acid. In: Advances in Conjugated Linoleic Acid Research, Vol. 1 (M.P. Yurawecz, M.M. Mossoba, J.K.G. Kramer, M.W. Pariza, G. Nelson, eds.), pp. 12–20, AOCS Press, Champaign, IL.Google Scholar
  146. Pariza, M.W., Ashoor, S.H., Chu, F.S., Lund, D.B. 1979. Effects of temperature and time on mutagen formation in pan-fried hamburger. Cancer Lett. 7, 63–69.CrossRefGoogle Scholar
  147. Park, Y., Storkson, J.M., Ntambi, J.M., Cook, M.E., Sih, C.J., Pariza, M.W. 2000. Inhibition of hepatic stearoyl-CoA desaturase activity by trans-10, cis-12 conjugated linoleic acid and its derivatives. Biochim. Biophys. Acta 1486, 285–292.Google Scholar
  148. Parodi, P.W. 1977. Conjugated octadecienoic acids of milk fat. J. Dairy Sci. 60, 1550–1553.Google Scholar
  149. Parodi, P.W. 2003. Conjugated linoleic acid in food. In: Advances in Conjugated Linoleic Acid Research, Vol. 2 (J.-L. Sébédio, W.W. Christie, R.O. Adlof, eds.), pp. 101–122, AOCS Press, Champaign, IL.Google Scholar
  150. Parodi, P.W. 2004. Milk fat in human nutrition. Aust. J. Dairy Technol. 59, 3–59.Google Scholar
  151. Perfield, J.W., Bernal-Santos, G., Overton, T.R., Bauman, D.E. 2002. Effects of dietary supplementation of rumen-protected conjugated linoleic acid in dairy cows during established lactation. J. Dairy Sci. 85, 2609–2617.Google Scholar
  152. Perfield, J.W., Delmonte, P., Lock, A.L., Yurawecz, M.P., Bauman, D.E. 2004a. trans-10, trans-12 conjugated linoleic acid (CLA) reduces the Δ9-desaturase index without affecting milk fat yield in lactating dairy cow. J. Dairy Sci. 87(Suppl. 1), 128.Google Scholar
  153. Perfield, J.W., Lock, A.L., Pfeiffer, A.M., Bauman, D.E. 2004b. Effects of amide-protected and lipid-encapsulated conjugated linoleic acid (CLA) supplements on milk fat synthesis. J. Dairy Sci. 87, 3010–3016.Google Scholar
  154. Perfield, J.W., Sæbø, A., Bauman, D.E. 2004c. Use of conjugated linoleic acid (CLA) enrichments to examine the effects of trans-8, cis-10 CLA, and cis-11, trans-13 CLA on milk-fat synthesis. J. Dairy Sci. 87, 1196–1202.Google Scholar
  155. Peterson, D.G., Baumgard, L.H., Bauman, D.E. 2002a. Milk fat response to low doses of trans-10, cis-12 conjugated linoleic acid (CLA). J. Dairy Sci. 85, 1764–1766.Google Scholar
  156. Peterson, D.G., Kelsey, J.A., Bauman, D.E. 2002b. Analysis of variation in cis-9, trans-11 conjugated linoleic acid (CLA) in milk fat of dairy cows. J. Dairy Sci. 85, 2164–2172.Google Scholar
  157. Peterson, D.G., Matitashvili, E.A., Bauman, D.E. 2003. Diet-induced milk fat depression in dairy cows results in increased trans-10, cis-12 CLA in milk fat and coordinate suppression of mRNA abundance for mammary enzymes involved in milk fat synthesis. J. Nutr. 133, 3098–3102.Google Scholar
  158. Peterson, D.G., Matitashvili, E.A., Bauman, D.E. 2004. The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. J. Nutr. 134, 2523–2527.Google Scholar
  159. Phelps, R.A., Shenstone, F.S., Kemmerer, A.R., Evans, R.J. 1965. A review of cyclopropenoid compounds: biological effects of some derivatives. Poult. Sci. 44, 358–394.Google Scholar
  160. Piperova, L.S., Teter, B.B., Bruckental, I., Sampugna, J., Mills, S.E., Yurawecz, M.P., Fritsche, J., Ku, K., Erdman, R.A. 2000. Mammary lipogenic enzyme activity, trans fatty acids and conjugated linoleic acids are altered in lactating dairy cows fed a milk fat-depressing diet. J. Nutr. 130, 2568–2574.Google Scholar
  161. Piperova, L.S., Sampugna, J., Teter, B.B., Kalscheur, K.F., Yurawecz, M.P., Ku, Y., Morehouse, K.M., Erdman, R.A. 2002. Duodenal and milk trans octadecenoic acid and conjugated linoleic acid (CLA) isomers indicate that postabsorptive synthesis is the predominant source of cis-9-containing CLA in lactating dairy cows. J. Nutr. 132, 1235–1241.Google Scholar
  162. Piperova, L.S., Moallem, U., Teter, B.B., Sampugna, J., Yurawecz, M.P., Morehouse, K.M., Luchini, D., Erdman, R.A. 2004. Changes in milk fat in response to dietary supplementation with calcium salts of trans-18:1 or conjugated linoleic fatty acids in lactating dairy cows. J. Dairy Sci. 87, 3836–3844.Google Scholar
  163. Pollard, M.R., Gunstone, F.D., James, A.T., Morris, L.J. 1980. Desaturation of positional and geometric isomers of monoenoic fatty acids by microsomal preparations from rat liver. Lipids. 15, 306–314.CrossRefGoogle Scholar
  164. Precht, D., Molkentin, J. 1997. Trans-geometrical and positional isomers of linoleic acid including conjugated linoleic acid (CLA) in German milk and vegetable fats. Fett-Lipid. 99, 319–326.CrossRefGoogle Scholar
  165. Proell, J.M., Mosley, E.E., Powell, G.L., Jenkins, T.C. 2002. Isomerization of stable isotopically labeled elaidic acid to cis and trans monoenes by ruminal microbes. J. Lipid Res. 43, 2072–2076.CrossRefGoogle Scholar
  166. Ramaswamy, N., Baer, R.J., Schingoethe, D.J., Hippen, A.R., Kasperson, K.M., Whitlock, L. A. 2001a. Composition and flavor of milk and butter from cows fed fish oil, extruded soybeans, or their combination. J. Dairy Sci. 84, 2144–2151.Google Scholar
  167. Ramaswamy, N., Baer, R.J., Schingoethe, D.J., Hippen, A.R., Kasperson, K.M., Whitlock, L.A. 2001b. Consumer evaluation of milk high in conjugated linoleic acid. J. Dairy Sci. 84, 1607–1609.Google Scholar
  168. Reh, W.A., Maga, E.A., Collette, N.M.B., Moyer, A., Conrad-Brink, J.S., Taylor, S.J., De-Peters, E.J., Oppenheim, S., Rowe, J.D., BonDurant, R.H., Anderson, G.B., Murray, J.D. 2004. Hot topic: Using a stearoyl-CoA desaturase transgene to alter milk fatty acid composition. J. Dairy Sci. 87, 3510–3514.Google Scholar
  169. Rickert, R., Steinhart, H., Fritsche, J., Sehat, N., Yurawecz, M.P., Mossoba, M.M., Roach, J.A.G., Eulitz, K., Ku, Y., Kramer, J.K.G. 1999. Enhanced resolution of conjugated linoleic acid isomers by tandem-column silver-ion high performance liquid chromatography. J. High Resol. Chromatogr. 22, 144–148.CrossRefGoogle Scholar
  170. Riel, R.R. 1963. Physico-chemical characteristics of Canadian milk fat: Unsaturated fatty acids. J. Dairy Sci. 46, 102–106.CrossRefGoogle Scholar
  171. Ritzenthaler, K.L., McGuire, M.K., Falen, R., Shultz, T.D., Dasgupta, N., McGuire, M.A. 2001. Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. J. Nutr. 131, 1548–1554.Google Scholar
  172. Sæbø, A., Perfield II, J.W., Delmonte, P.M., Yurawecz, P., Lawrence, P., Brenna, J.T., Bauman, D.E.. 2005. Milk fat synthesis is unaffected by abomasal infusion of the conjugated diene 18:3 isomers cis-6, trans-8, cis-12 and cis-6, trans-10, cis-12. Lipids 40, 89–95.CrossRefGoogle Scholar
  173. Scimeca, J.A. 1999. Cancer inhibition in animals. In: Advances in Conjugated Linoleic Acid Research, Vol. 1 (M.P. Yurawecz, M.M. Mossoba, J.K.G. Kramer, M.W. Pariza, G. Nelson, eds.), pp. 420–443, AOCS Press, Champaign, IL.Google Scholar
  174. Sehat, N., Kramer, J.K.G., Mossoba, M.M., Yurawecz, M.P., Roach, J.A.G., Eulitz, K., Morehouse, K.M., Ku, Y. 1998. Identification of conjugated linoleic acid isomers in cheese by gas chromatography, silver ion high performance liquid chromatography and mass spectral reconstructed ion profiles. Comparison of chromatographic elution sequences. Lipids 33, 963–971.CrossRefGoogle Scholar
  175. Selberg, K.T., Lowe, A.C., Staples, C.R., Luchini, N.D., Badinga, L. 2004. Production and metabolic responses of periparturient Holstein cows to dietary conjugated linoleic acid and trans-octadecenoic acids. J. Dairy Sci. 87, 158–168.Google Scholar
  176. Shantha, D.C., Decker, E.A. 1995. Conjugated linoleic acid concentrations in cooked beef containing antioxidants and hydrogen donors. J. Food Lipids. 2, 57–64.Google Scholar
  177. Shantha, D.C., Decker, E.A., Ustunol, Z. 1992. Conjugated linoleic acid concentration in processed cheese. J. Am. Oil Chem. Soc. 69, 425–428.CrossRefGoogle Scholar
  178. Shimano, H. 2001. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog. Lipid Res. 40, 439–452.CrossRefGoogle Scholar
  179. Shingfield, K.J., Ahvenjarvi, S., Toivonen, V., Arola, A., Nurmela, K.V.V., Huhtanen, P., Griinari, J.M. 2003. Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim. Sci. 77, 165–179.Google Scholar
  180. Stanton, C., Lawless, F., Kjellmer, G., Harrington, D., Devery, R., Connolly, J.F., Murphy, J. 1997. Dietary influences on bovine milk cis-9, trans-11-conjugated linoleic acid content. J. Food Sci. 62, 1083–1086.CrossRefGoogle Scholar
  181. Stanton, C., Murphy, J., McGrath, E., Devery, R. 2003. Animal feeding strategies for conjugated linoleic acid enrichment of milk. In: Advances in Conjugated Linoleic Acid Research, Vol. 2 (J.-L. Sébédio, W.W. Christie, R.O. Adlof, eds.), pp. 123–145, AOCS Press, Champaign, IL.Google Scholar
  182. Thompson, H.J., Zhu, Z.J., Banni, S., Darcy, K., Loftus, T., Ip, C. 1997. Morphological and biochemical status of the mammary gland as influenced by conjugated linoleic acid: Implication for a reduction in mammary cancer risk. Cancer Res. 57, 5067–5072.Google Scholar
  183. Toomey, S., Roche, H., Fitzgerald, D., Belton, O. 2003. Regression of pre-established atherosclerosis in the apoE(-/-) mouse by conjugated linoleic acid. Biochem. Soc. Trans. 31, 1075–1079.CrossRefGoogle Scholar
  184. Tricon, S., Burdge, G.C., Kew, S., Banerjee, T., Russell, J.J., Jones, E.L., Grimble, R.F., Williams, C.M., Yaqoob, P., Calder, P.C. 2004. Opposing effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am. J. Clin. Nutr. 80, 614–620.Google Scholar
  185. Turpeinen, A.M., Mutanen, M., Aro, A., Salminen, I., Basu, S., Palmquist, D.L., Griinari, J. M. 2002. Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am. J. Clin. Nutr. 76, 504–510.Google Scholar
  186. Urquhart, P., Parkin, S.M., Rogers, J.S., Bosley, J.A., Nicolaou, A. 2002. The effect of conjugated linoleic acid on arachidonic acid metabolism and eicosanoid production in human saphenous vein endothelial cells. Biochim. Biophys. Acta 1580, 150–160.Google Scholar
  187. Verhulst, A., Janssen, G., Parmentier, G., Eyssen, H. 1987. Isomerization of polyunsaturated long chain fatty acids by propionibacteria. System. Appl. Microbiol. 9, 12–15.Google Scholar
  188. Voorrips, L.E., Brants, H.A.M., Kardinaal, A.F.M., Hiddink, G.J., van den Brandt, P.A., Goldbohm, R.A. 2002. Intake of conjugated linoleic acid, fat, and other fatty acids in relation to postmenopausal breast cancer: The Netherlands Cohort Study on Diet and Cancer. Am. J. Clin. Nutr. 76, 873–882.Google Scholar
  189. Wahle, K.W. 1974. Desaturation of long-chain fatty acids by tissue preparations of the sheep, rat and chicken. Comp. Biochem. Physiol. 48B, 87–105.Google Scholar
  190. Ward, R.J., Travers, M.T., Richards, S.E., Vernon, R.G., Salter, A.M., Buttery, P.J., Barber, M.C. 1998. Stearoyl-CoA desaturase mRNA is transcribed from a single gene in the ovine genome. Biochim. Biophys. Acta 1391, 145–156.Google Scholar
  191. Werner, S.A., Luedecke, L.O., Shultz, T.D. 1992. Determination of conjugated linoleic acid content and isomer distribution in three Cheddar-type cheeses: Effects of cheese cultures, processing and aging. J. Agric. Food Chem. 40, 1817–1821.CrossRefGoogle Scholar
  192. White, S.L., Bertrand, J.A., Wade, M.R., Washburn, S.P., Green, J.T., Jenkins, T.C. 2001. Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 84, 2295–2301.Google Scholar
  193. Whitlock, L.A., Schingoethe, D.J., Hippen, A.R., Kalscheur, K.F., Baer, R.J., Ramaswamy, N., Kasperson, K.M. 2002. Fish oil and extruded soybeans fed in combination increase conjugated linoleic acids in milk of dairy cows more than when fed separately. J. Dairy Sci. 85, 234–243.Google Scholar
  194. Wilson, T.A., Nicolosi, R.J., Chrysam, M., Kritchevsky, D. 2000. Conjugated linoleic acid reduces early aortic atherosclerosis greater than linoleic acid in hypercholesterolemic hamsters. Nutr. Res. 20, 1795–1805.CrossRefGoogle Scholar
  195. Yokoyama, M.T., Davis, C.L. 1971. Hydrogenation of unsaturated fatty acids by Treponema (borrelia) strain B25, a rumen spirochete. J. Bacteriol. 107, 519–527.Google Scholar
  196. Yu, Y., Correll, P.H., Vanden Heuvel, J.P. 2002. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: Evidence for a PPAR gamma-dependent mechanism. Biochim. Biophys. Acta, 1581, 89–99.Google Scholar
  197. Yurawecz, M.P., Roach, J.A.G., Sehat, N., Mossoba, M.M., Kramer, J.K.G., Fritsche, J., Steinhart, H., Ku, Y. 1998. A new conjugated linoleic acid isomer, 7 trans, 9 cis-octadecadienoic acid, in cow milk, cheese, beef and human milk and adipose tissue. Lipids. 33, 803–809.CrossRefGoogle Scholar
  198. Yurawecz, M.P., Kramer, J.K.G., Ku, Y. 1999. Methylation procedures for conjugated linoleic acid. In: Advances in Conjugated Linoleic Acid Research, Vol. 1 (M.P. Yurawecz, M.M. Mossoba, J.K.G. Kramer, M.W. Pariza, G. Nelson, eds.), pp. 64–82, AOCS Press, Champaign, IL.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. E. Bauman
    • 1
  • A. L. Lock
    • 1
  1. 1.Department of Animal ScienceCornell UniversityIthaca

Personalised recommendations