Applications of Ultrasound to Analysis/Quantitation of Dairy Lipids

  • M. J. W. Povey
  • R. E. Challis


Sound Velocity Cocoa Butter Ultrasound Measurement Adiabatic Compressibility Ultrasound Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akulichev, V.A., Bulanov, V.N. 1982. Sound propagation in a crystallizing liquid. Sov. Phys. Acoust. 27, 377–381.Google Scholar
  2. Allegra, J.R., Hawley, S.A. 1972. Attenuation of sound in suspensions and emulsions: theory and experiments. J. Acoust. Soc. Am. 57, 1545–1564.CrossRefGoogle Scholar
  3. Anson, L.W., Chivers, R.C. 1993. Ultrasonic velocity in suspensions of solids in solids—a comparison of theory and experiment. J. Phys. D: Appl. Phys. 26, 1566–1575.CrossRefGoogle Scholar
  4. Apenten, R.K.O., Buttner, B., Mignot, B., Pascal, D., Povey, M.J.W. 2000. Determination of the adiabatic compressibility of proteins in concentrated solution by a new ultrasonic method. Food Hydrocoll. 14, 83–91.CrossRefGoogle Scholar
  5. Asher, R.C. 1997. Ultrasonic Sensors for Chemical and Process Plants. Institute of Physics Publishing, Bristol.Google Scholar
  6. Beck, M.S., Campogrande, E., Morris, M., Williams, R.A., Waterfall, R.C. 1994. Process Tomography—A Strategy for Industrial Exploitation. UMIST, Manchester.Google Scholar
  7. Bhatia, A.B. 1967. Ultrasonic Absorption, Clarendon Press, Oxford.Google Scholar
  8. Challis, R.E., Tebbutt, J.S., Holmes, A.K. 1998. Equivalence between three scattering formulations for ultrasonic wave propagation in particulate mixtures. J. Phys. D: Applied Phys. 31, 3481–3497.CrossRefGoogle Scholar
  9. Epstein, P.S., Carhart, R.R. 1953. The absorption of sound in suspensions and emulsions. I. Water fog in air. J. Acoust. Soc. Am., 25, 553–565.CrossRefGoogle Scholar
  10. Foldy, L.L. 1945. The multiple scattering of waves. Phys. Rev. 67, 107–119.CrossRefGoogle Scholar
  11. Herzfield, K.F., Litovitz, T.A. 1959. Absorption and Dispersion of Ultrasonic Waves, Academic Press, New York.Google Scholar
  12. Hibberd, D.J., Holmes, A.K., Garrood, M., Fillery-Travis, A.J., Robins, M.M., Challis, R.E. 1997a. Ultrasonic characterization of flocculation in oil-in-water emulsions. In: Food Colloids—Proteins, Lipids and Polysaccharides (E. Dickinson, B. Bergenståhl, eds.), pp. 137–149, Royal Society of Chemistry, Cambridge.Google Scholar
  13. Hibberd, D.J., Holmes, A.K., Garrood, M., Fillery-Travis, A.J., Robins, M.M., Challis, R.E. 1997b. Ultrasonic monitoring of oil in water emulsions during depletion flocculation. J. Coll. Interface Sci. 193, 77–87.CrossRefGoogle Scholar
  14. Hindle, S., Povey, M.J.W., Smith, K.W. 2000. Kinetics of crystallization in n-hexadecane and cocoa butter oil-in-water emulsions accounting for droplet collision mediated nucleation. J. Coll. Interface Sci. 232, 370–380.CrossRefGoogle Scholar
  15. Hindle, S., Povey, M.J.W., Smith, K.W. 2002. Characterizing cocoa butter seed crystals by the oil-in-water emulsion crystallization method. J. Am. Oil. Chem. Soc. 79, 993–1002.CrossRefGoogle Scholar
  16. Hindle, S.A. 1996. A Molecular Modelling Approach to the Prediction of the Effects of Habit Modifiers in Crystallisation in Foods. PhD Thesis, University of Leeds.Google Scholar
  17. Holmes, A.K, Challis, R.E. 1996. Acoustic absorption due to proton transfer in solutions of proteins, peptides and amino acids at neutral pH. J. Acoustic Soc. Am. 100, 1865–1877.CrossRefGoogle Scholar
  18. Holmes, A.K., Challis, R.E., Wedlock, D.J. 1993. A wide bandwidth study of ultrasound velocity and attenuation in suspensions: comparison of theory and experimental measurements. J. Coll. Interface Sci. 156, 261–268.CrossRefGoogle Scholar
  19. Kharakoz, D.P., Sarvazyan, A.P. 1993. Hydrational and intrinsic compressibilities of globularproteins. Biopolymers 33, 11–26.CrossRefGoogle Scholar
  20. Krautkramer, J., Krautkramer, H. 1990. Ultrasonic Testing of Materials. Springer-Verlag, Berlin.Google Scholar
  21. Kremkau, F.D. 2001. Diagnostic Ultrasound Principles and Practice: Principles and Instrumentation. W.B. Saunders Company, Philadelphia.Google Scholar
  22. Kress Rogers, E.C.J.B. 2001. Brimelow, Instrumentation and Sensors for the Food Industry, 2nd edn, Woodhead Publishing, Bradford, UK.Google Scholar
  23. Kuttruff, H. 1991. Ultrasonics: Fundamentals and Applications, Elsevier, Amsterdam.Google Scholar
  24. Lloyd, P., Berry, M.V. 1967. Wave propagation through an assembly of spheres. IV. Relations between different multiple scattering theories. Proc. Phys. Soc. 91, 678–688.CrossRefGoogle Scholar
  25. Marshall, T., Challis, R.E., Holmes, A.K., Tebbutt, J.S. 2002. Modeling ultrasonic compression wave absorption during the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 49, 1583–1591.CrossRefGoogle Scholar
  26. Marshall, T., Tebbutt, J.S., Challis, R.E. 2000. Monitoring the crystallization from solution of a reactive dye by ultrasound. Measurement Sci. Technol. 11, 509–517.CrossRefGoogle Scholar
  27. Matheson, A.J. 1971. Molecular Acoustics. Wiley-Interscience, London.Google Scholar
  28. McCrum, N.G., Read, B.E., Williams, G. 1967. Anelastic and Dielectric Effects in Polymeric Solids. Wiley, New York.Google Scholar
  29. McSkimin, H.J. 1964. Ultrasonic methods for measuring the mechanical properties of liquids and solids. In: Physical Acoustics, Vol 1, Part A (W.P. Mason, ed.), Academic Press, New York.Google Scholar
  30. Mulet, A., Benedito, J., Bon, J., Sanjuan, N. 1999. Review: Low intensity ultrasonics in food technology, Food Sci. Technol. Int. 5, 285–297.CrossRefGoogle Scholar
  31. O’Neill, T.J., Tebbutt, J.S., Challis, R.E. 2001. Convergence criteria for scattering models of ultrasonic wave propagation in suspensions of particles. IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 48, 419–424.CrossRefGoogle Scholar
  32. Pavlovskaya, G.E., McClements, D.J., Povey, M.J.W. 1992a. Ultrasonic investigation of aqueous solutions of a globular protein Food Hydrocoll. 6, 253–262.CrossRefGoogle Scholar
  33. Pavlovskaya, G.E., McClements, D.J., Povey, M.J.W. 1992b. Ultrasonic studies of aqueous salt solutions of a globular protein. In: Developments in Acoustics and Ultrasonics (M.J. W. Povey, D.J. McClements, eds.), pp. 243–246, Institute of Physics Publishing, Bristol.Google Scholar
  34. Pavlovskaya, G.E., McClements, D.J., Povey, M.J.W. 1992c. A preliminary study of the influence of dextran on the precipitation of legumin from aqueous salt solutions. Int. J. Food Sci. Technol. 27, 629–635.Google Scholar
  35. Pinfield, V.J., Povey, M.J.W. 1997. Thermal scattering must be accounted for in the determination of adiabatic compressibility. J. Phys. Chem. B. 101, 1110–1112.CrossRefGoogle Scholar
  36. Povey, M.J.W. 1997a. Rapid determination of food material properties. In: Ultrasound in Food Processing (M.J.W. Povey, T.J. Mason, eds.), pp. 30–59, Chapman and Hall, London.Google Scholar
  37. Povey, M.J.W. 1997b. Ultrasonic Techniques for Fluids Characterization, Academic Press, San Diego.Google Scholar
  38. Povey, M.J.W. 2001. Ultrasound spectroscopy: the power to transform manufacturing, diagnostics and formulation, Pharmaceutical Visions 1, 24–28.CrossRefGoogle Scholar
  39. Povey, M.J.W., Higgs, D. 2001. Ultrasonic spectroscopy, one of the food industry’s latest tools. Food Sci. Technol. 15, 54–55.Google Scholar
  40. Povey, M.J.W., Wilkinson, J.M. 1980. Application of ultrasonic pulse-echo techniques to albumen quality testing-a preliminary report. Br. Poult. Sci. 21, 489–495.Google Scholar
  41. Povey, M.J.W., Hindle, S., Smith, K.W. 2001. Crystallization in food emulsions. In: Food Colloids—Fundamentals of Formulation (E. Dickinson, R. Miller, eds.), pp. 152–162, Royal Society of Chemistry, Cambridge.Google Scholar
  42. Povey, M.J.W. 2001. Crystallization of oil-in-water emulsions. In: Crystallization Processes in Fats and Lipid Systems (K Sato, N. Garti, eds.), pp. 255–288, Marcel Dekker, New York.Google Scholar
  43. Self, G., Povey, M.J.W., Wainwright, H. 1992. What do ultrasound measurements in fruit and vegetables tell you? In: Developments in Acoustics and Ultrasonics (M.J.W. Povey, D. J. McClements eds.), pp. 129–164, Institute of Physics Publishing, Bristol.Google Scholar
  44. Urick, R.J. 1947. A sound velocity method for determining the compressibility of finely divided substances. J. Appl. Phys. 18, 983–987.CrossRefGoogle Scholar
  45. Urick, R.J., Ament, W.S. 1949. The propagation of sound in composite media. J. Acoust. Soc. Am. 21, 115–119.CrossRefGoogle Scholar
  46. Vickers, Z.M., Wasserman, S.S. 1979 Sensory qualities of food sounds based on individual perceptions. J. Text. Stud. 10, 319–332.CrossRefGoogle Scholar
  47. Waterman, P.C., Truell, R. 1961. Multiple scattering of waves. J. Math. Phys. 2, 512–537.CrossRefGoogle Scholar
  48. Wood, A.B. 1941. A Textbook of Sound, G. Bell and Sons, London.Google Scholar
  49. Ying, C.F., Truell, R. 1956. Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J. Appl. Phys. 27, 1086–1097.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. J. W. Povey
    • 1
  • R. E. Challis
    • 2
  1. 1.University of LeedsLeedsUK
  2. 2.University of NottinghamUniversity Park, NottinghamUK

Personalised recommendations