Skip to main content

Lipolytic Enzymes and Hydrolytic Rancidity

  • Chapter

Summary

Lipolysis, the enzymic hydrolysis of milk lipids to free fatty acids and partial glycerides, is a constant concern to the dairy industry because of the detrimental effcts it can have on the flvor and other properties of milk and milk products. However, free fatty acids also contribute to the desirable flavor of milk and milk products when present at low concentrations and, in some cheeses, when present at high concentrations.

The enzymes responsible for the detrimental effects of lipolysis are of two main types: those indigenous to milk, and those of microbial origin. The major indigenous milk enzyme is lipoprotein lipase. It is active on the fat in natural milk fat globules only after their disruption by physical treatments or if certain blood serum lipoproteins are present. The major microbial lipases are produced by psychrotrophic bacteria. Many of these enzymes are heat stable and are particularly significant in stored products.

Human milk differs from cows’ milk in that it contains two lipases, a lipoprotein lipase and a bile salt-stimulated lipase. The ability of the latter to cause considerable hydrolysis of ingested milk lipids has important nutritional implications.

Keywords

  • Lipolytic Enzyme
  • High Performance Liquid Chromatog
  • Cheddar Cheese
  • High Performance Liquid Chromatog
  • Psychrotrophic Bacterium

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/0-387-28813-9_15
  • Chapter length: 76 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-28813-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Abdou, A.M. 2003. Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J. Dairy Sci. 86, 127–132.

    CAS  Google Scholar 

  • Adams, D.M., Brawley, T.G. 1981. Heat resistant bacterial lipases and ultra-high temperature sterilization of dairy products. J. Dairy Sci. 64, 1951–1957.

    CAS  Google Scholar 

  • Ahrné, L., Björck, L. 1985. Lipolysis and the distribution of lipase activity in bovine milk in relation to stage of lactation and time of milking. J. Dairy Res. 52, 55–64.

    Google Scholar 

  • Aisaka, K., Terada, O. 1979. Production of lipoprotein lipase and lipase by Rhizopus japonicus. Agric. Biol. Chem. 43, 2125–2129.

    CAS  Google Scholar 

  • Al-Shabibi, M.M.A., Langner, E.H., Tobias, J., Tuckey, S.L. 1964. Effect of added fatty acids on the flavor of milk. J. Dairy Sci. 47, 295–296.

    CAS  CrossRef  Google Scholar 

  • Alford, J.A., Pierce, D.A. 1961. Lipolytic activity of microorganisms at low and intermediate temperatures. III. Activity of microbial lipases at temperatures below 08C. J. Food Sci. 26, 518–524.

    CAS  CrossRef  Google Scholar 

  • Alford, J.A., Pierce, D.A., Suggs, F.G. 1964. Activity of microbial lipases on natural fats and synthetic triglycerides. J. Lipid Res. 5, 390–394.

    CAS  Google Scholar 

  • Alifax, R. 1979. Étude de la lipolyse chez quelques levures isolées de denrées alimentaires variées. Ann. Technol. Agric. 28, 255–272.

    CAS  Google Scholar 

  • Alkanhal, H.A., Frank, J.F., Christen, G.L. 1985. Microbial protease and phospholipase C stimulate lipolysis of washed cream. J. Dairy Sci. 68, 3162–3170.

    CAS  Google Scholar 

  • Alkanhal, H.A., Alshaikh, M.A., Salah, M.S., Mogawer, H.H. 2000. The concentration of free fatty acids and free amino groups in raw milk from cows fed high or low amounts of concentrate. Egypt. J. Dairy Sci. 28, 297–305.

    CAS  Google Scholar 

  • Allen, J.C. 1994, Rancidity in dairy products. In, Rancidity in Foods (J.C. Allen, R.J. Hamilton, eds.), pp. 179–190, Blackie Academic and Professional, London.

    Google Scholar 

  • Anderson, M. 1979. Enzyme immunoassay for measuring lipoprotein lipase activator in milk. J. Dairy Sci. 62, 1380–1383.

    CAS  Google Scholar 

  • Anderson, M. 1981. Inhibition of lipolysis in bovine milk by proteose peptone. J. Dairy Res. 48, 247–252.

    CAS  Google Scholar 

  • Anderson, M. 1982a. Factors affecting the distribution of lipoprotein lipase activity between serum and casein micelles in bovine milk. J. Dairy Res. 49, 51–59.

    CAS  Google Scholar 

  • Anderson, M. 1982b. Stability of lipoprotein lipase in bovine milk. J. Dairy Res. 49, 231–237.

    CAS  Google Scholar 

  • Anderson, M. 1983. Milk lipase and off-flavor development. J. Soc. Dairy Technol. 36, 3–7.

    CAS  Google Scholar 

  • Anderson, M., Needs, E.C., Price, J.C. 1984. Lipolysis during the production of double cream. J. Soc. Dairy Technol. 37, 19–22.

    CAS  Google Scholar 

  • Anderson, M., Heeschen, W., Jellema, A., Kuzdzal-Savoie, S., Needs, E.C., Suhren, G., van Reusel, A. 1991. Determination of free fatty acids in milk and milk products. Bulletin 265, International Dairy Federation, Brussels.

    Google Scholar 

  • Andersson, R.E. 1980. Concentration and partial purification of lipase from Pseudomonas fluorescens. Biochem. Letts 2, 247–252.

    CAS  CrossRef  Google Scholar 

  • Andersson, R.E., Hedlund, C.B., Jonsson, U. 1979. Thermal inactiviation of a heat-resistant lipase produced by the psychrotrophic bacterium Pseudomonas fluorescens. J. Dairy Sci. 62, 361–367.

    CAS  Google Scholar 

  • Andrews, A.T., Anderson, M., Goodenough, D.W. 1987. A study of the heat stabilities of a number of indigenous milk enzymes. J. Dairy Res. 54, 237–246.

    CAS  Google Scholar 

  • Arbige, M.V., Freund, P.R., Silver, S.C., Zelko, J.T. 1986. Novel lipase for Cheddar cheese flavor development. Food Technol. 40(4), 91–96, 98.

    CAS  Google Scholar 

  • Arnold, R.G., Shahani, K.M., Dwivedi, B.K. 1975. Application of lipolytic enzymes to flavor development in dairy products. J. Dairy Sci. 58, 1127–1143.

    CAS  CrossRef  Google Scholar 

  • Arora, S., Joshi, V. K. 1994. Effect of addition of proteose-peptone (PP) fraction to goat milk on the inhibition of induced lipolysis. Indian J. Dairy Sci. 47, 875–879.

    CAS  Google Scholar 

  • Askew, E.W., Emery, R.S., Thomas, J.W. 1970. Lipoprotein lipase of the bovine mammary gland. J. Dairy Sci. 53, 1415–1423.

    CAS  CrossRef  Google Scholar 

  • Aston, J.W., Dulley, J.R. 1982. Cheddar cheese flavor. Aust. J. Dairy Technol. 37, 59–64.

    CAS  Google Scholar 

  • Astrup, H.N. 1984. A case of heat-induced milk rancidity. Meieriposten 73, 282.

    Google Scholar 

  • Astrup, H.N., Baevre, L., Vik-Mo, L., Ekern, A. 1980. Effect on milk lipolysis of restricted feeding with and without supplementation with protected rape seed oil. J. Dairy Res. 47, 287–294.

    CAS  Google Scholar 

  • Astrup, H.N., Vik-Mo, L., Lindstad, P., Ekern, A. 1979. Casein protected oil supplement fed at a low level to milk cows. Milchwissenschaft 34, 290–91.

    CAS  Google Scholar 

  • Aule, O., Worstorff, H. 1975. Influence of mechanical treatment of milk on quantities of FFA and free fat in the milk, as well as on the separability of the milk. Document 86, International Dairy Federation, Brussels, pp. 116–120.

    Google Scholar 

  • Azzara, D.C., Campbell, L.B. 1992. Off-flavors of dairy products: In: Off-flavors in Foods and Beverages (G. Charalambous, ed.), pp. 329–374, Elsevier, Amsterdam.

    Google Scholar 

  • Azzara, C.D., Dimick, P.S. 1985a. Lipolytic enzyme activity of macrophages in bovine mammary gland secretions. J. Dairy Sci. 68, 1804–1812.

    CAS  Google Scholar 

  • Azzara, C.D., Dimick, P.S. 1985b. Lipoprotein lipase activity of milk from cows with prolonged subclinical mastitis. J. Dairy Sci. 68, 3171–3175.

    CAS  Google Scholar 

  • Azzara, C.D., Dimick, P.S., Chalupa, W. 1987. Milk lipoprotein lipase activity during long-term administration of recombinant bovine somatotropin. J. Dairy Sci. 70, 1937–1940.

    CAS  Google Scholar 

  • Bachman, K.C. 1982. Effect of exogenous estradiol and progesterone upon lipase activity and spontaneous lipolysis in bovine milk. J. Dairy Sci. 65, 907–914.

    CAS  Google Scholar 

  • Bachman, K.C., Hayen, M.J., Morse, D., Wilcox, C.J. 1988. Effect of pregnancy, milk yield, and somatic cell count on bovine milk fat hydrolysis. J. Dairy Sci. 71, 925–931.

    CAS  Google Scholar 

  • Bachman, K.C., Wilcox, C.J. 1990a. Effect of time of onset of rapid cooling on bovine milk fat hydrolysis. J. Dairy Sci. 73, 617–620.

    Google Scholar 

  • Bachman, K.C., Wilcox, C.J. 1990b. Effect of blood and high density lipoprotein preparations upon lipase distribution and spontaneous lipolysis in bovine milk. J. Dairy Sci. 73, 3393–3401.

    CAS  Google Scholar 

  • Bachmann, E.W., Rusch, P., Bachmann, M.R. 1985. Caractérisation d’un système lipolytique causant la rancidité spontanée dans le lait et les produits laitiers. Schweiz. Milchwirtsch. Forsch. 14(1), 9–16.

    Google Scholar 

  • Bachmann, M. 1961. Das Problem der Ranzigkeit in Milch und Käse. Schweiz Milchztg. 87, 629–635.

    Google Scholar 

  • Badings, H.T. 1970. Cold-storage defects in butter and their relation to the autoxidation of unsaturated fatty acids. Neth. Milk Dairy J. 24, 145–256.

    Google Scholar 

  • Baillargeon, M.W., McCarthy, S.G. 1991. Geotrichum candidum NRRL Y-553 lipase: purification, characterization and fatty acid specificity. Lipids 26, 831–836.

    CAS  CrossRef  Google Scholar 

  • Bak, M., Sørensen, M.D., Sørensen, E.S., Rasmussen, L.K., Sørensen, O.W., Petersen, T.E., Nielsen, N.C. 2000. The structure of the membrane-binding 38 C-terminal residues from bovine PP3 determined by liquid-and solid-state NMR spectroscopy. Eur. J. Biochem. 267, 188–199.

    CAS  CrossRef  Google Scholar 

  • Bakke, H., Ask, A., Fjeld, K. 1983. Effect of increasing air admission at the claw on lipolysis in milk. Meieriposten 72, 350–352.

    Google Scholar 

  • Balasubramanya, N.N., Bhavadasan, M.K., Naryanan, K.M. 1988. Lipolysis of milk fat in cream. Indian J. Dairy Sci. 41, 269–273.

    CAS  Google Scholar 

  • Balcao, V.M., Kemppinen, A., Malcata, F.X., Kalo, P.J. 1998. Modification of butterfat by selective hydrolysis and interesterification by lipase: process and product characterization. J. Am. Oil Chem. Soc. 75, 1347–1358.

    CAS  Google Scholar 

  • Bandler, D.K., Gravani, R.B., Kinsella, J.E., Ledford, R.A., Senyk, G.F., Shipe, W.F., Wolff, E.T., Zall, R.R. 1981. The milk quality situation in New York State. J. Dairy Sci. 64(Suppl. 1), 56 (abstr).

    Google Scholar 

  • Barach, J.T., Adams, D.M., Speck, M.L. 1976. Low temperature inactivation in milk of heatresistant proteases from psychrotrophic bacteria. J. Dairy Sci. 59, 391–395.

    CAS  CrossRef  Google Scholar 

  • Barbano, D.M., Bynum, D.G., Senyk, G.F. 1983. Influence of reverse osmosis on milk lipolysis. J. Dairy Sci. 66, 2447–2451.

    CAS  Google Scholar 

  • Bassette, R., Fung, D.Y.C., Mantha, V.R. 1986. Off-flavors in milk. CRC Crit. Rev. Food Sci. Nutr. 24, 1–52.

    CAS  Google Scholar 

  • Bell, L.I., Parsons, J.G. 1977. Factors affecting lipase flavor in butter. J. Dairy Sci. 60, 117–122.

    CAS  Google Scholar 

  • Bendicho, S., Trigueros, M.C., Hernandez, T., Martin, O. 2001. Validation and comparison of analytical methods based on the release of p-nitrophenol to determine lipase activity in milk. J. Dairy Sci. 84, 1590–1596.

    CAS  Google Scholar 

  • Bendicho, S., Estela, C., Giner, J., Barbosa Canovas, G.V., Martin, O. 2002. Effects of high intensity pulsed electric field and thermal treatments on a lipase from Pseudomonas fluorescens. J. Dairy Sci. 85, 19–27.

    CAS  Google Scholar 

  • Bengtsson, G., Olivecrona, T. 1980. Lipoprotein lipase. Mechanism of product inhibition. Eur. J. Biochem. 106, 557–562.

    CAS  CrossRef  Google Scholar 

  • Bengtsson, G., Olivecrona, T. 1982. Activation of lipoprotein lipase by apolipoprotein CII. Demonstration of an effect of the activator on the binding of the enzyme to milk-fat globules. FEBS Letts 147, 183–187.

    CAS  CrossRef  Google Scholar 

  • Bengtsson-Olivecrona, G., Olivecrona, T., Jörnvall, H. 1986. Lipoprotein lipases from cow, guinea-pig and man. Structural characterization and identification of protease-sensitive internal regions. Eur. J. Biochem. 161, 281–288.

    CAS  CrossRef  Google Scholar 

  • Benzonana, G., Esposito, S. 1971. On the positional and chain specificities of Candida cylindracea lipase. Biochim. Biophys. Acta 231, 15–22.

    CAS  Google Scholar 

  • Berkow, S.E., Freed, L.M., Hamosh, M., Bitman, J., Wood, D.L., Happ, B., Hamosh, P. 1984. Lipases and lipids in human milk: effect of freeze-thawing and storage. Pediatr. Res. 18, 1257–1262.

    CAS  CrossRef  Google Scholar 

  • Bernback, S., Bläckberg, L., Hernell, O. 1990. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase and bile saltstimulated lipase. J. Clin. Invest. 85, 1221–1226.

    CAS  Google Scholar 

  • Bhavadasan, M.K., Balasubramanya, N.N., Narayanan, K.M. 1988. Lipoprotein lipase and lipolysis in buffalo milk. Indian J. Dairy Sci. 41, 427–431.

    CAS  Google Scholar 

  • Bills, D.D., Day, E.A. 1964. Determination of the major free fatty acids in Cheddar cheese. J. Dairy Sci. 47, 733–738.

    CAS  CrossRef  Google Scholar 

  • Birschbach, P. 1992. Pregastric esterases. Bulletin 269, International Dairy Federation, Brussels, pp. 36–39.

    Google Scholar 

  • Bjørke, K., Castberg, H.B. 1976. Lipolytic activity in goat’s milk. Nord-Eur. Mejeri-Tidsskr. 8, 296–304.

    Google Scholar 

  • Bläckberg, L., Hernell, O. 1983. Further characterization of the bile salt-stimulated lipase in human milk. FEBS Letts 157, 337–341.

    CrossRef  Google Scholar 

  • Bläckberg, L., Angquist, K.A., Hernell, O. 1987. Bile salt-stimulated lipase in human milk: evidence for its synthesis in the lactating mammary gland. FEBS Letts 217, 37–41.

    CrossRef  Google Scholar 

  • Bläckberg, L, Hernell, O., Olivecrona, T. 1981a. Hydrolysis of human milk fat globules by pancreatic lipase. J. Clin. Invest. 67, 1748–1752.

    Google Scholar 

  • Bläckberg, L., Lombardo, D., Hernell, O., Guy, O., Olivecrona, T. 1981b. Bile salt-stimulated lipase in human milk and carboxyl ester hydrolase in pancreatic juice. FEBS Letts 136, 284–288.

    CrossRef  Google Scholar 

  • Blake, M.R., Koka, R., Weimer, B.C. 1996. A semiautomated reflectance colorimetric method for the determination of lipase activity in milk. J. Dairy Sci. 79, 1164–1171.

    CAS  Google Scholar 

  • Blaton, B., Vandamme, D., Peeters, H. 1974. Activation of lipoprotein lipase in vitro by unsaturated phospholipids. FEBS Letts 44, 185–188.

    CAS  CrossRef  Google Scholar 

  • Bodyfelt, F.W., Tobias, J., Trout, G.M. 1988. The Sensory Evaluation of Dairy Products, pp. 76–80, AVI, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Bosset, J.-O., Imhof, M.I., Steiger, G.J. 1990. Le titrage potentiométrique des acides gras libres du lait et de la crème comme alternative au titrage visuel selon Deeth. Proc. 23rd Int. Dairy Cong. Montreal, Brief Commun. Abstr. Papers 1, 221.

    Google Scholar 

  • Bozoğlu, F., Swaisgood, H.E., Adams, D.M. 1984. Isolation and characterization of an extracellular heat-stable lipase produced by Pseudomonas fluorescens MC50. J. Agric. Food Chem. 32, 2–6.

    CrossRef  Google Scholar 

  • Brand, E., Liaudat, M., Olt, R., Linxweiler, W. 2000. Rapid determination of lipase in raw, pasteurised and UHT-milk. Milchwissenschaft 55, 573–576.

    CAS  Google Scholar 

  • Bråthen, G. 1980. Lipolysis in milk. Automated determination of the acidity value with the AutoAnalyzer and assessment of results. Meieriposten 69, 345–352.

    Google Scholar 

  • Bråthen, G. 1984. Lipolysis in milk and factors responsible for its development. In: Challenges to Contemporary Dairy Analytical Techniques, pp. 279–292, The Royal Society of Chemistry, London.

    Google Scholar 

  • Brendehaug, J., Abrahamsen, R.K. 1986. Chemical composition of milk from a herd of Norwegian goats. J. Dairy Res. 53, 211–221.

    CAS  Google Scholar 

  • Brunner, J.R. 1950. The effectiveness of some antifoaming agents in the condensing of skimmilk and whey. J. Dairy Sci. 33, 741–746.

    CAS  CrossRef  Google Scholar 

  • Buchanan, R.A. 1965. Lipolysis and the frothing of milk-steam frothing test. Aust. J. Dairy Technol. 20, 62–66.

    CAS  Google Scholar 

  • Bucky, A.R., Hayes, P.R., Robinson, D.S. 1987. A modified ultra-high temperature treatment for reducing microbial lipolysis in stored milk. J. Dairy Res. 54, 275–282.

    CAS  Google Scholar 

  • Buermeyer, J., Lamprecht, S., Rudzik, L. 2001. Application of infrared spectroscopy to the detection of free fatty acids in raw milk. Deutsch. Milchwirtsch. 52, 1020–1023.

    Google Scholar 

  • Buffa, M., Guamis, B., Pavia, M., Trujillo, A.J. 2001. Lipolysis in cheese made from raw, pasteurized or high-pressure-treated goats’ milk. Int. Dairy J. 11, 175–179.

    CAS  CrossRef  Google Scholar 

  • Bynum, D.G., Senyk, G.F., Barbano, D.M. 1984. Determination of free fatty acid content of Cheddar cheese by a copper soap method. J. Dairy Sci. 67, 1521–1524.

    Google Scholar 

  • Carlsson, A., Björck, L. 1992. Liquid chromatography verification of tetracycline residues in milk and influence of milk fat lipolysis on the detection of antibiotic residues by microbial assays and the Charm II test. J. Food Prot. 55, 374–378.

    CAS  Google Scholar 

  • Cartier, P., Chilliard, Y. 1990. Spontaneous lipolysis in bovine milk: combined effects of nine characteristics in native milk. J. Dairy Sci. 73, 1178–1186.

    CAS  CrossRef  Google Scholar 

  • Cartier, P., Chilliard, Y., Chazal, M.-P. 1984. Dosage de l’activité lipasique et des acides gras libres du lait par titration automatic colorimétrique. Lait 64, 340–355.

    CAS  CrossRef  Google Scholar 

  • Cartier, P., Chilliard, Y., Paquet, D. 1990. Inhibiting and activating effects of skim milks and proteose-peptone fractions on spontaneous lipolysis and purified lipoprotein lipase activity in bovine milk. J. Dairy Sci. 73, 1173–1177.

    CAS  CrossRef  Google Scholar 

  • Castberg, H.B., Hernell, O. 1975. Role of serum-stimulated lipase in lipolysis in human milk. Milchwissenschaft 30, 721–724.

    CAS  Google Scholar 

  • Castberg, H.B., Solberg. P. 1974. The lipoprotein lipase and the lipolysis in bovine milk. Meieriposten 63, 961–975.

    Google Scholar 

  • Castberg, H.B., Solberg, P., Egelrud, T. 1975. Tributyrinate as a substrate for the determination of lipase activity in milk. J. Dairy Res. 42, 247–253.

    CAS  Google Scholar 

  • Castberg, H.B., Egelrud, T., Solberg, P., Olivecrona, T. 1975. Lipases in bovine milk and the relationship between the lipoprotein lipase and tributyrate hydrolysing activities in cream and skim-milk. J. Dairy Res. 42, 255–266.

    CAS  Google Scholar 

  • Celestino, E.L., Iyer, M., Roginski, H. 1996. The effects of refrigerated storage on the quality of raw milk. Aust. J. Dairy Technol. 51, 59–63.

    Google Scholar 

  • Champagne, C.P., Laing, R.R., Roy, D., Mafu, A.A., Griffiths, M.W. 1994. Psychrotrophs in dairy products: their effects and their control. Crit. Rev. Food Sci. Nutr. 34, 1–30.

    CAS  CrossRef  Google Scholar 

  • Chapman, H.R., Sharpe, M.E. 1981. Microbiology of cheese. In: Dairy Microbiology, Vol. II, The Microbiology of Milk Products (R.K. Robertson, ed.), pp. 157–243, Applied Science, London.

    Google Scholar 

  • Chapman, H.R., Sharpe, M.E., Law, B.A. 1976. Some effects of low-temperature storage of milk on cheese production and Cheddar cheese flavor. Dairy Ind. Int. 41, 42–45.

    Google Scholar 

  • Chavarri, F., Virto, M., Martin, C., Nájera, I., Santisteban, A., Barron, L.J.R., DeRenobales, M. 1997. Determination of free fatty acids in cheese: comparison of two analytical methods. J. Dairy Res., 64, 445–452.

    CAS  CrossRef  Google Scholar 

  • Chazal, M.P., Chilliard, Y. 1985. The effect of animal factors on milk lipolysis. Dairy Sci. Abstr. 49, 364.

    Google Scholar 

  • Chazal, M.P., Chilliard, Y. 1986. Effect of stage of lactation, stage of pregnancy, milk yield and herd management on seasonal variation in spontaneous lipolysis in bovine milk. J. Dairy Res. 53, 529–538.

    CAS  Google Scholar 

  • Chazal, M.P., Chilliard, Y. 1987a. Effect of breed of cow Friesian and Montbéliarde on spontaneous and induced lipolysis in milk. J. Dairy Res. 54, 7–11.

    CAS  Google Scholar 

  • Chazal, M.P., Chilliard, Y. 1987b. Effets respectifs du stade de lactation, du stade de gestation et du niveau de production sur la lipolyse spontanée du lait de vache. Lait 67, 379–392.

    CrossRef  Google Scholar 

  • Chazal, M.P., Chilliard, Y. 1987c. Les variations individuelles de la lipolyse spontanée du lait de vache: effet du numéro de lactation et répétabilité au cours de deux lactations successives. Lait 67, 437–450.

    CrossRef  Google Scholar 

  • Chazal, M.P., Chilliard, Y., Coulon, J.B. 1987. Effect of nature of forage on spontaneous lipolysis in milk from cows in late lactation. J. Dairy Res. 54, 13–18.

    CAS  Google Scholar 

  • Chen, J.H.S., Bates, C.R. 1962. Observations on the pipeline milker operation and its effects on rancidity. J. Milk Food Technol. 25, 176–182.

    Google Scholar 

  • Chen, L., Daniel, R.M., Coolbear, T. 2003. Detection and impact of protease and lipase activities in milk and milk powders. Int.Dairy J. 13, 255–275.

    CrossRef  CAS  Google Scholar 

  • Chilliard, Y. 1982. Variations physiologiques des activités lipasiques et de la lipolyse spontanée dans les laits de vache, de chèvre et de femme: revue bibliographique. Lait 62, 126–154.

    CAS  CrossRef  Google Scholar 

  • Chilliard, Y., Morand-Fehr, P. 1976. Activité lipolytique du lait de chèvre. I. Mise en évidence d’une activité lipoprotéine-lipasique. Ann. Technol. Agric. 25, 219–230.

    CAS  Google Scholar 

  • Chilliard, Y., Morand-Fehr, P. 1978. Variations physiologiques de l’activité du lait de chèvre. Lait 58, 1–16.

    CAS  CrossRef  Google Scholar 

  • Chilliard, Y., Bauchart, D., Cartier, P., Chazal, M.-P. 1983. É talonnage, comparaison et automatisation de differentes méthodes de dosage des acides gras libres du lait de vache. INRA-ITEB (France), Report No. 84031.

    Google Scholar 

  • Chilliard, Y., Selselet-Attou, G., Bas, P., Morand-Fehr. P. 1984. Characteristics of lipolytic system in goat milk. J. Dairy Sci. 67, 2216–2223.

    CAS  Google Scholar 

  • Choi, I.W., Jeon, I.J. 1993. Patterns of fatty acids released from nilk fat by residual lipase during storage of ultra-high temperature processed milk. J. Dairy Sci. 76, 78–85.

    CAS  Google Scholar 

  • Choi, I.W., Jeon, I.J., Smith, J.S. 1994. Isolation of lipase-active fractions from ultra-high temperature-processed milk and their patterns of releasing fatty acids from milk fat emulsion. J. Dairy Sci. 77, 2168–2176.

    CAS  CrossRef  Google Scholar 

  • Christen, G.L. 1993. Analysis. In: Dairy Science and Technology Handbook. Vol. 1, Principles and Properties (Y.H. Hui, ed.), pp. 83–157, VCH Publishers Inc, New York.

    Google Scholar 

  • Christen, G.L., Lee, C.M., Maruri, J.L., Penfield, M.P. 1992. Simple extraction-titration procedure correlates well with sensory perception of hydrolytic rancidity. J. Dairy Sci. 75, 119.

    Google Scholar 

  • Christen, G.L., Wang, W.-C., Ren, T.-J. 1986. Comparison of the heat resistance of bacterial lipases and proteases and the effect on ultra-high temperature milk quality. J. Dairy Sci. 69, 2769–2778.

    CAS  Google Scholar 

  • Christmass, M.A., Mitoulas, L.R., Hartmann, P.E., Arthur, P.G. 1998. A semiautomated enzymatic method for determination of nonesterified fatty acid concentration in milk and plasma. Lipids 33, 1043–1049.

    CAS  CrossRef  Google Scholar 

  • Chung, G.H., Lee, Y.P., Jeohn, G.H., Yoo, O.J., Rhee, J.S. 1991. Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. Agric. Biol. Chem. 55, 2359–2365.

    CAS  Google Scholar 

  • Claypool, L.L. 1965. Studies on Milk Lipase Activation, PhD Thesis, University of Minnesota.

    Google Scholar 

  • Clegg, R.A. 1980. Activation of milk lipase by serum proteins: possible role in the occurrence of lipolysis in raw bovine milk. J. Dairy Res. 47, 61–70.

    CAS  Google Scholar 

  • Clegg, R.A. 1981. Lipoprotein lipase in the mammary gland and milk. Ann. Rep. Hannah Res. Inst. 75–87.

    Google Scholar 

  • Cogan, T.M. 1977. A review of heat resistant lipases and proteinases and the quality of dairy products. Irish J. Food Sci. Technol. 1, 95–105.

    CAS  Google Scholar 

  • Collins, S.J., Bester, B.H., McGill, A.E.J. 1993. Influence of psychrotrophic bacterial growth in raw milk on the sensory acceptance of UHT skim milk. J. Food Prot. 56, 418–425.

    Google Scholar 

  • Collomb, M., Spahni, M. 1995. Review of methods used for determination of free fatty acids in milk and milk products. Lebensm. Wiss. Technol. 28, 355–379.

    CAS  CrossRef  Google Scholar 

  • Connolly, J.F., Murphy, J.J., O’Connor, C.B., Headon, D.R. 1979. Relationship between lipolysed flavor and free fatty acid levels in milk and butter. Irish J. Food Sci. Technol. 3, 79–92.

    CAS  Google Scholar 

  • Cooke, B.C. 1973. The influence of incubation temperature on microbial lipase specificity. N.Z. J. Dairy Sci. Technol. 8, 126.

    CAS  Google Scholar 

  • Cousin, M.A. 1982. Presence and activity of psychrotrophic microorganisms in milk and dairy products: a review. J. Food Prot. 45, 172–207.

    Google Scholar 

  • Cousin, M.A. 1989. Physical and biochemical effects on milk components. In: Enzymes of Psychrotrophs in Raw Food (R.C. McKellar, ed.), pp. 205–225, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Cousin, M.A., Marth, E.H. 1977. Cheddar cheese made from milk that was precultured with psychrotrophic bacteria. J. Dairy Sci. 60, 1048–1056.

    CAS  Google Scholar 

  • Craven, H.M., Macauley, B.J. 1992. Microorganisms in pasteurised milk after refrigerated storage. 3. Effect of milk processor. Aust. J. Dairy Technol. 47, 50–55.

    Google Scholar 

  • Danthine, S., Blecker, C., Paquot, M., Innocente, N., Deroanne, C. 2000. Progress in milk fat globule membrane research: a review. Lait 80, 209–222.

    CAS  CrossRef  Google Scholar 

  • Day, E.A. 1966. Role of milk lipids in flavors of dairy products. In: Flavor Chemistry (R.F. Gould, ed.), pp. 94–120, American Chemical Society, Washington.

    Google Scholar 

  • de Boer, R., Nooy, P.F.C. 1980. Concentration of raw whole milk by reverse osmosis and its influence on fat globules. Desalination 35, 201–211.

    CrossRef  Google Scholar 

  • Deeth, H.C. 1978. Fluorimetric detection of carboxyl-esterase activity in milk. Proc. 20th Int. Dairy Cong. (Paris) E, 364–365.

    Google Scholar 

  • Deeth, H.C. 1983. Phospholipid degradation by phospholipases of some psychrotrophic bacteria. In: Fats for the Future. Proc. Int. Conf. Oils Fats Waxes, 132–135, Duromark Publications, Auckland.

    Google Scholar 

  • Deeth, H.C., Fitz-Gerald, C.H. 1975a. Factors governing the susceptibility of milk to spontaneous lipolysis. Document 86, International Dairy Federation, Brussels, pp. 24–34.

    Google Scholar 

  • Deeth, H.C., Fitz-Gerald, C.H. 1975b. The relevance of milk lipase activation to rancidity in Cheddar cheese. Aust. J. Dairy Technol. 30, 74–76.

    CAS  Google Scholar 

  • Deeth, H.C., Fitz-Gerald, C.H. 1976. Lipolysis in dairy products: a review. Aust. J. Dairy Technol. 31, 53–64.

    CAS  Google Scholar 

  • Deeth, H.C., Fitz-Gerald, C.H. 1977. Some factors involved in milk lipase activation by agitation. J. Dairy Res. 44, 569–583.

    CAS  Google Scholar 

  • Deeth, H.C., Fitz-Gerald, C.H. 1978. Effects of mechanical agitation of raw milk on the milk-fat globule in relation to the level of induced lipolysis. J. Dairy Res. 45, 373–380.

    CAS  Google Scholar 

  • Deeth, H.C., Smith, R.A.D. 1983. Lipolysis and other factors affecting the steam frothing capacity of milk. Aust. J. Dairy Technol. 38, 14–19.

    CAS  Google Scholar 

  • Deeth, H.C., Touch, V. 2000. Methods for detecting lipase activity in milk and milk products. Aust. J. Dairy Technol. 55, 153–168.

    CAS  Google Scholar 

  • Deeth, H.C., Fitz-Gerald, C.H., Snow, A.J. 1983. A gas chromatographic method for the quantitative determination of free fatty acids in milk and milk products. N.Z. J. Dairy Sci. Technol. 18, 13–20.

    CAS  Google Scholar 

  • Deeth, H.C., Fitz-Gerald, C.H., Wood, A.F. 1975. A convenient method for determining the extent of lipolysis. Aust. J. Dairy Technol. 30, 109–111.

    CAS  Google Scholar 

  • Deeth, H.C., Fitz-Gerald, C.H., Wood, A.F. 1979. Lipolysis and butter quality. Aust. J. Dairy Technol. 34, 146–149.

    Google Scholar 

  • Deeth, H.C., Khusniati, T., Datta, N., Wallace, R.B. 2002. Spoilage patterns of skim and whole milks. J. Dairy Res. 69, 227–241.

    CAS  CrossRef  Google Scholar 

  • De Feo, A.A., Dimick, P.S., Kilara, A. 1982. Purification and partial characterization of caprine milk lipoprotein lipase. J. Dairy Sci. 65, 2308–2316.

    Google Scholar 

  • de Jong, C., Badings, H.T. 1990. Determination of free fatty acids in milk and cheese. Procedures for extraction, clean up and capillary gas chromatographic analysis. J. High Resol. Chromatogr. 13, 94–98.

    CrossRef  Google Scholar 

  • de Jong, C., Palma, K., Neeter, R. 1994. Sample preparation before capillary gas-chromatographic estimation of free fatty acids in fermented dairy products. Neth. Milk Dairy J. 48, 151–156.

    CAS  Google Scholar 

  • de Laborde de Monpezat, T., de Jeso, B., Butour, J.L., Chavant, L., Sancholle, M. 1990. A fluorimetric method for measuring lipase activity based on umbelliferyl esters. Lipids 25, 661–664.

    CrossRef  Google Scholar 

  • de la Fuente, M.A., Juarez, M. 1993. Review: determination of free fatty acids in milk products. Rev. Esp. Cie. Tecnol. Aliment. 33, 247–269.

    Google Scholar 

  • Delahunty, C.M., Piggott, J.R. 1995. Current methods to evaluate contribution and interactions of components to flavor of solid food using hard cheese as an example. Int. J. Food Sci. Technol. 30, 555–570.

    CAS  Google Scholar 

  • Dieckelmann, M., Johnson, L.A., Beacham, I.R. 1998. The diversity of lipases from psychrotrophic strains of Pseudomonas: a novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. J. Appl. Microbiol. 85, 527–536.

    CAS  CrossRef  Google Scholar 

  • Dill, C.W., Chen, C.T., Alford, E.S., Edwards, R.L., Richter, R.L., Garza, C. 1984. Lipolytic activity during storage of human milk: accumulation of free fatty acids. J. Food Prot. 47, 690–693.

    CAS  Google Scholar 

  • Dillon, P., Crosse, S., O’Brien. B. 1997. Effect of concentrate supplementation of grazing dairy cows in early lactation on milk production and milk processing quality. Irish J. Agric. Food Res. 36, 145–159.

    Google Scholar 

  • Dogan, B., Boor, K.J. 2003. Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl. Environ. Microbiol. 69, 130–138.

    CAS  CrossRef  Google Scholar 

  • Doi O., Nojima, S. 1971. Phospholipase C from Bacillus cereus. Biochim. Biophys. Acta 248, 234–244.

    CAS  Google Scholar 

  • Dole, V.P., Meinertz, H. 1960. Microdetermination of long-chain fatty acids in plasma and tissues. J. Biol. Chem. 235, 2595–2599.

    CAS  Google Scholar 

  • Doody, K., O’Shea, J., Raftery, T.F. 1975. Mechanical factors in the milking plant affecting the level of free fatty acids. Document 86, International Dairy Federation, Brussels, pp. 146–155.

    Google Scholar 

  • Downes, T.E.H., Nieuwoudt, J.A., Slabbert, E.A. 1974. The influence of the physical treatment of milk in milking machine systems, and during cream separation, on the lipolysis of milk fat. S. Afr. J. Dairy Technol. 6, 215–220.

    Google Scholar 

  • Downey, W.K. 1974. Enzyme systems influencing processing and storage of milk and milk products. Proc. 19th Int. Dairy Cong. New Delhi 2, 323–357.

    Google Scholar 

  • Downey, W.K. 1975. Lipolysis in milk and dairy products. Definition of problem. Document 86, International Dairy Federation, Brussels, pp. ii–iv.

    Google Scholar 

  • Downey, W.K. 1980. Risks from pre-and post-manufacture lipolysis. Document 118, International Dairy Federation, Brussels, pp. 4–18.

    Google Scholar 

  • Downey, W.K., Andrews, P. 1966. Studies on the properties of cow’s-milk tributyrinases and their interaction with milk proteins. Biochem. J. 101, 651–660.

    CAS  Google Scholar 

  • Downey, W.K., Andrews, P. 1969. Evidence for the presence of several lipases in cow’s milk. Biochem. J. 112, 559–562.

    CAS  Google Scholar 

  • Downey, W.K., Murphy, R.F. 1975. Partitioning of the lipolytic enzymes in bovine milk. Document 86, International Dairy Federation, Brussels, pp. 19–23.

    Google Scholar 

  • Drew, P.G., Manners, J.G. 1985. Microbiological aspects of reverse osmosis concentration of milk. Aust. J. Dairy Technol. 40, 108–112.

    Google Scholar 

  • Driessen, F.M. 1976. A comparative study of the lipase in bovine colostrum and in bovine milk. Neth. Milk Dairy J. 30, 186–196.

    CAS  Google Scholar 

  • Driessen, F.M. 1987. Inactivation of lipases and proteinases indigenous and bacterial. Bulletin 238, International Dairy Federation, Brussels, pp. 71–93.

    Google Scholar 

  • Driessen, F.M., Jellema, A., van Luin, F.J.P., Stadhouders, J., Wolbers, G.J.M. 1977. The estimation of the fat acidity in raw milk. An adaptation of the BDI method, suitable for routine assays. Neth. Milk Dairy J. 31, 40–55.

    CAS  Google Scholar 

  • Driessen, F.M., Stadhouders, J. 1971. Heat stability of lipase of Alcaligenes viscolactis 23 al. Neth. Milk Dairy J. 25, 141–144.

    CAS  Google Scholar 

  • Driessen, F.M., Stadhouders, J. 1974. Thermal activation and inactivation of exocellular lipases of some Gram-negative bacteria common in milk. Neth. Milk Dairy J. 28, 10–22.

    CAS  Google Scholar 

  • Driessen, F.M., Stadhouders, J. 1975. Lipolysis in hard cheese made from pasteurized milk. Document 86, International Dairy Federation, Brussels, pp. 101–107.

    Google Scholar 

  • Dring, R., Fox, P.F. 1983. Purification and characterization of a heat-stable lipase from Pseudomonas fluorescens AFT 29. Irish J. Food Sci. Technol. 7, 157–171.

    CAS  Google Scholar 

  • Dumant, J.P., Delespaul, G., Miguot, B., Adda, J. 1977. Influence des bactéries psychrotrophes sur les qualités organoleptiques de fromages à pâte molle. Lait 57, 619–630.

    CrossRef  Google Scholar 

  • Duncan, S.E., Christen, G.L., Penfield, M.P. 1991. Rancid flavor of milk: relationship of acid degree value, free fatty acids, and sensory perception. J. Food Sci. 56, 394–397.

    CAS  CrossRef  Google Scholar 

  • Dunkley, W.L. 1946. Research on rancidity in milk greatly advanced since 1726. Can. Dairy Ice Cream. J. 25(6), 27–28, 70, 72.

    Google Scholar 

  • Dunkley, W.L. 1951. Hydrolytic rancidity in milk. I. Surface tension and fat acidity as measures of rancidity. J. Dairy Sci. 34, 515–520.

    CAS  CrossRef  Google Scholar 

  • Dunkley, W.L., Smith, L.M. 1951. Hydrolytic rancidity in milk. IV. Relation between tributyrinase and lipolysis. J. Dairy Sci. 34, 940–947.

    CAS  CrossRef  Google Scholar 

  • Earley, R.R., Hansen, A.P. 1982. Effect of process and temperature during storage on ultra high temperature steam-injected milk. J. Dairy Sci., 65, 11–16.

    CAS  Google Scholar 

  • Egelurd, T., Olivecrona, T. (1972). The purification of lipoprotein lipase from bovine milk. J. Biol. Chem. 247, 6212–6217.

    Google Scholar 

  • Egelrud, T., Olivecrona, T. 1973. Purified bovine milk lipoprotein lipase: activity against lipid substrates in the absence of exogenous serum factors. Biochim. Biophys. Acta 306, 115–127.

    CAS  Google Scholar 

  • Eibel, H., Kessler, H.G. 1987. Bacteriological, sensory and chemico-physical changes in pasteurized cream due to heating and storage. Dairy Sci. Abstr. 49, 452.

    Google Scholar 

  • El Soda, M., Korayem, M., Ezzat, N. 1986. The esterolytic and lipolytic activities of lactobacilli. III. Detection and characterization of the lipase system. Milchwissenschaft 41, 353–355.

    Google Scholar 

  • Ellis, L.A., Hamosh, M. 1992. Bile salt stimulated lipase: comparative studies in ferret milk and lactating mammary gland. Lipids 27, 917–922.

    CAS  CrossRef  Google Scholar 

  • Enerbäck, S., Semb, H., Bengtsson-Olivecrona, G., Carlsson, P., Hermansson, M.-L., Olivecrona, T., Bjursell, G. 1987. Molecular cloning and sequence analysis of cDNA encoding lipoprotein lipase of guinea pig. Gene 58, 1–12.

    CrossRef  Google Scholar 

  • Evers, J.M., Palfreyman, K.R. 2001. Free fatty acid levels in New Zealand raw milk. Aust. J. Dairy Technol. 56, 198–201.

    CAS  Google Scholar 

  • Evers, J.M., Luckman, M.S., Palfreyman, K.R. 2000. The BDI method-part I: determination of free fatty acids in cream and whole milk powder. Aust. J. Dairy Technol. 55, 33–36.

    CAS  Google Scholar 

  • Farkye, N.Y., Imafidon, G.I. 1995. Thermal denaturation of indigenous milk enzymes. In: Heat Induced Changes in Milk (P.F. Fox, ed.), pp. 331–348, International Dairy Federation, Brussels.

    Google Scholar 

  • Fitz-Gerald, C.H. 1974. Milk lipase activation by agitation-influence of temperature. Aust. J. Dairy Technol. 29, 28–31.

    CAS  Google Scholar 

  • Fitz-Gerald, C.H., Deeth, H.C. 1983. Factors influencing lipolysis by skim milk cultures of some psychrotrophic microorganisms. Aust. J. Dairy Technol. 38, 97–103.

    CAS  Google Scholar 

  • Fitz-Gerald, C.H., Deeth, H.C., Coghill, D.M. 1982. Low temperature inactivation of lipases from psychrotrophic bacteria. Aust. J. Dairy Technol. 37, 51–54.

    CAS  Google Scholar 

  • Fitz-Gerald, C.H., Deeth, H.C., Kitchen, B.J. 1981. The relationship between the levels of free fatty acids, lipoprotein lipase, carboxylesterase, N-acetyl-β-D-glucosaminidase, somatic cell count and other mastitis indices in bovine milk. J. Dairy Res. 48, 253–265.

    CAS  Google Scholar 

  • Fleming, M.G. 1979. Lipolysis in bovine milk as affected by mechanical and temperature activation—a review. Irish J. Food Sci. Technol. 3, 111–130.

    CAS  Google Scholar 

  • Forster, T.L., Bendixen, H.A., Montgomery, M.W. 1959. Some esterases of cow’s milk. J. Dairy Sci. 42, 1903–1912.

    CAS  CrossRef  Google Scholar 

  • Forster, T.L., Montgomery, M.W., Montoure, J.E. 1961. Some factors affecting the activity of the A-, B-and C-esterases of bovine milk. J. Dairy Sci. 44, 1420–1430.

    CAS  CrossRef  Google Scholar 

  • Fouts, E.L., Weaver, E. 1936. Observations on the development of rancidity in sweet milk, cream and butter. J. Dairy Sci. 19, 482–483.

    Google Scholar 

  • Fox, C.W., Chrisope, G.L., Marshall, R.T. 1976. Incidence and identification of phospholipase-C-producing bacteria in fresh and spoiled homogenized milk. J. Dairy Sci. 59, 1857–1864.

    CAS  CrossRef  Google Scholar 

  • Fox, P.F. 1980. Enzymes other than rennets in dairy technology. J. Soc. Dairy Technol. 33, 118–128.

    CAS  Google Scholar 

  • Fox, P.F. 1988. Acceleration of cheese ripening. Food Biotechnol. 2, 133–185.

    CAS  CrossRef  Google Scholar 

  • Fox, P.F., Grufferty, 1991. Exogenous enzymes in dairy technology. In: Food Enzymology, Vol. 1 (P.F. Fox, ed.), pp. 219–69, Elsevier Applied Science, London.

    Google Scholar 

  • Fox, P.F., Guinee, T.P. 1987. Italian cheeses. In: Cheese: Chemistry, Physics and Microbiology, Vol. 2 (P.F. Fox, ed.), pp. 221–255, Elsevier Applied Science, London.

    Google Scholar 

  • Fox, P.F., Law, B.A. 1991. Enzymology of cheese ripening. Food Biotechnol. 5, 239–262.

    CAS  Google Scholar 

  • Fox, P.F., Power, P., Cogan, T. 1989. Isolation and molecular characteristics. In: Enzymes of Psychrotrophs in Raw Food (R.C. McKellar, ed.), pp. 57–120, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Fox, P.F., Yaguchi, M., Tarassuk, N.P. 1967. Distribution of lipase in milk proteins. II. Dissociation from k-casein with dimethylformamide. J. Dairy Sci. 50, 307–312.

    CAS  CrossRef  Google Scholar 

  • Frankel, E.N., Tarassuk, N.P. 1955. Extraction — titration method for free fatty acids in milk and cream. J. Dairy Sci. 38, 751–763.

    CAS  CrossRef  Google Scholar 

  • Frankel, E.N., Tarassuk, N.P. 1959. Inhibition of lipase and lipolysis in milk. J. Dairy Sci. 42, 409–419.

    CAS  CrossRef  Google Scholar 

  • Fredeen, H., Bowstead, J.E., Dunkley, W.L., Smith, L.M. 1951. Hydrolytic rancidity in milk. II. Some management and environmental factors influencing lipolysis. J. Dairy Sci. 34, 521–528.

    CAS  CrossRef  Google Scholar 

  • Fredrikzon, B., Hernell, O., Bläckberg, L., Olivecrona, T. 1978. Bile salt-stimulated lipase in human milk: evidence of activity in vivo and of a role in the digestion of milk retinol esters. Pediatr. Res. 12, 1048–1052.

    CAS  CrossRef  Google Scholar 

  • Freed, L.M., York, C.M., Hamosh, P., Mehta, N.R., Hamosh, M. 1987. Bile salt-stimulated lipase of human milk: characteristics of the enzyme in the milk of mothers of premature and full-term infants. J. Pediat. Gastroenterol. Nutr. 6, 598–604.

    CAS  CrossRef  Google Scholar 

  • Freed, L.M., York, C.M., Hamosh, M., Sturman, J.A., Hamosh, P. 1986. Bile salt-stimulated lipase in non-primate milk: longitudinal variation and lipase characteristics in cat and dog milk. Biochim. Biophys. Acta 878, 209–215

    CAS  Google Scholar 

  • Freudenberg, E. 1966. A lipase in the milk of the gorilla. Experientia 22, 317 (1 page).

    CAS  CrossRef  Google Scholar 

  • Fryer, T.F., Reiter, B., Lawrence, R.C. 1967. Lipolytic activity of lactic acid bacteria. J. Dairy Sci. 50, 388–389.

    CAS  CrossRef  Google Scholar 

  • Fukumoto, J., Iwai, M., Tsujisaka, Y. 1963. Studies on lipase. I. Purification and crystallization of a lipase secreted by Aspergillus niger. J. Gen. Appl. Microbiol. 9, 353–361.

    Google Scholar 

  • Fukumoto, J., Iwai, M., Tsujisaka, Y. 1964. Studies on lipase. II. Purification and properties of a lipase secreted by Rhizopus delemar. J. Gen. Appl. Microbiol. 10, 257–265.

    Google Scholar 

  • Furukawa, M., Narahara, H., Lee, E.L., Johnston, J.M. 1994. Platelet-activating factor acetylhydrolase activity in human milk and its possible role in the prevention of necrotizing enterocolitis. J. Lipid Mediat. Cell Signal. 10, 93–94.

    CAS  Google Scholar 

  • Gaffney, P.J., Harper, W.J. 1965. Lipase activity in somatic cells from separator slime. J. Dairy Sci. 48, 613–615.

    CAS  CrossRef  Google Scholar 

  • Garcia, H.S., Reyes, H.R., Malcata, F.X., Hill, C.G., Amundson, C.H. 1990. Determination of the major free fatty acids in milkfat using a three-component mobile phase for HPLC analysis. Milchwissenschaft 45, 757–759.

    CAS  Google Scholar 

  • Garcia, H.S., Storkson, J.M., Pariza, M.W., Hill, C.G., Jr. 1998. Enrichment of butteroil with conjugated linoleic acid via enzymatic interesterification acidolysis reactions. Biotechnol. Letts 20, 393–395.

    CAS  CrossRef  Google Scholar 

  • Garcia, M.L., Sanz, B., Garcia-Collia, P., Ordonez, J.A. 1989. Activity and thermostability of the extracellular lipases and proteinases from pseudomonads isolated from raw milk. Milchwissenschaft 44, 547–550.

    CAS  Google Scholar 

  • Gaya, P., Medina, M., Rodriguez Martin, M.A., Nunez, M. 1990. Accelerated ripening of ewes’ milk Manchego cheese: the effect of elevated ripening temperatures. J. Dairy Sci., 73, 26–32.

    CAS  CrossRef  Google Scholar 

  • Gholson, J.H., Schexnailder, R.H., Rusoff, L.L. 1966. Influence of a poor-quality, low-energy ration on lipolytic activity in milk. J. Dairy Sci. 49, 1136–1139.

    CAS  CrossRef  Google Scholar 

  • Gillin, F.D., Cooper, R.W., Reiner, D.S., Das, S., Mestecky, J., Blair, C., Ogra, P.L. 1991. Secretory defenses against Giardia lamblia. In: Immunology of Milk and the Neonate, (J. Mestechy, C. Blair, P.L. Ogra eds.), pp. 227–233, Plenum Press, New York.

    Google Scholar 

  • Girardet, J.M., Linden, G., Loye, S., Courthaudon, J.L., Lorient, D. 1993. Study of mechanism of lipolysis inhibition by bovine milk proteose-peptone component 3. J. Dairy Sci. 76, 2156–2163.

    CAS  CrossRef  Google Scholar 

  • Girardet, J.M., Linden, G. 1996. PP3 component of bovine milk: a phosphorylated whey glycoprotein. J. Dairy Res. 63, 333–350.

    CAS  Google Scholar 

  • Goldberg, I.J., Blaner, W.S., Goodman, D.S. 1986. Immunologic and enzymatic comparisons between human and bovine lipoprotein lipase. Arch. Biochem. Biophys. 244, 580–584.

    CAS  CrossRef  Google Scholar 

  • Grappin, R., Beuvier, E. 1997. Possible implication of milk pasteurization on the manufacture and sensory quality of ripened cheese. Int. Dairy J. 7, 751–761.

    CrossRef  Google Scholar 

  • Griffiths, M.W. 1983. Synergistic effects of various lipases and phospholipase C on milk fat. J. Food Technol. 18, 495–505.

    CAS  CrossRef  Google Scholar 

  • Griffiths, M.W. 1989. Effect of temperature and milk fat on extracellular enzyme synthesis by psychrotrophic bacteria during growth in milk. Milchwissenschaft 44, 539–543.

    CAS  Google Scholar 

  • Griffiths, M.W., Phillips, J.D., Muir, D.D. 1981. Thermostability of proteases and lipases from a number of species of psychrotrophic bacteria of dairy origin. J. Appl. Bacteriol. 50, 289–303.

    CAS  Google Scholar 

  • Gripon, J.C. 1987. Mould-ripened cheeses. In: Cheese: Chemistry, Physics and Microbiology, Vol. 2 (P.F. Fox, ed.), pp. 121–149, Elsevier Applied Science, London.

    Google Scholar 

  • Gripon, J.-C., Monnet, V., Lamberet, G., Desmazeaud, M.J. 1991, Microbial enzymes in cheese ripening. In: Food Enzymology, Vol. 1 (P.F. Fox, ed.), pp. 131–168, Elsevier Applied Science, London.

    Google Scholar 

  • Gudding, R. 1982. Increased free fatty acid concentrations in mastitic milk. J. Food Prot. 45, 1143–1144.

    CAS  Google Scholar 

  • Hall, B., Muller, D.P.R. 1982. Studies on the bile salt stimulated lipolytic activity of human milk using whole milk as source of both substrate and enzyme. I. Nutritional implications. Pediatr. Res. 16, 251–255.

    CAS  Google Scholar 

  • Hamosh, M. 1979. A review. Fat digestion in the newborn: role of lingual lipase and preduodenal digestion. Pediatr. Res. 13, 615–622.

    CAS  CrossRef  Google Scholar 

  • Hamosh, M. 1998. Protective function of proteins and lipids in human milk. Biol. Neonate 74, 163–176.

    CAS  CrossRef  Google Scholar 

  • Hamosh, M., Ellis, L.A., Pollock, D.R., Henderson, T.R., Hamosh, P. 1996. Breastfeeding and the working mother: effect of time and temperature of short-term storage on proteolysis, lipolysis, and bacterial growth in milk. Pediatrics 97, 492–498.

    CAS  Google Scholar 

  • Hamosh, M., Scanlon, J.W., Ganot, D., Likel, M., Scanlon, K.B., Hamosh, P. 1981. Characterization of lipase in gastric aspirates of premature and term infants. J. Clin. Invest. 67, 838–846.

    CAS  Google Scholar 

  • Hamosh, M., Scow, R.O. 1971. Lipoprotein lipase activity in guinea pig and rat milk. Biochim. Biophys. Acta 231, 283–289.

    CAS  Google Scholar 

  • Hansen, A.P., Swartzel, K.R. 1980. Taste panel testing of ultra high temperature fluid dairy products. J. Food Qual., 4, 203–216.

    Google Scholar 

  • Harper, W.J., Schwartz, D.P., El-Hagarawy, I.S. 1956. A rapid silica gel method for measuring total free fatty acids in milk. J. Dairy Sci. 39, 46–50.

    CAS  CrossRef  Google Scholar 

  • Hawney, S.G., Royal, L. 1970. The effect of storage on the growth of psychrophilic bacteria and on the flavor of bulk collected milk. Proc. 18th Int. Dairy Cong. Sydney 1E, 502 (abstr).

    Google Scholar 

  • Hemingway, E.B., Smith, G.H., Rook, J.A.F., O’Flanagan, N.C. 1970. Lipase taint. J. Soc. Dairy Technol. 23, 44–48.

    CAS  Google Scholar 

  • Henningson, R.W., Adams, J.B. 1967. Influence of melting point of milk-fat and ambient temperature on incidence of spontaneous rancidity in cow’s milk. J. Dairy Sci. 50, 961–962.

    Google Scholar 

  • Heo, T.R. 1983. Vergleichende Untersuchungen über die Eigenschaften der milcheigenen Lipase aus normaler und spontan ranzig werdender Rohmilch. Milchwissenschaft 38, 680.

    Google Scholar 

  • Hermansen, J.E., Larsen, T., Andersen, J.O. 1995. Does zinc play a role in the resistance of milk to spontaneous lipolysis? Int. Dairy J. 5, 473–481.

    CAS  CrossRef  Google Scholar 

  • Hernell, O. 1975. Human milk lipases. III. Physiological implications of the bile salt-stimulated lipase. Eur. J. Clin. Invest. 5, 267–272.

    CAS  Google Scholar 

  • Hernell, O. 1985. Specificity of human milk bile salt-stimulated lipase. J. Pediatr. Gastroenterol. Nutr. 4, 517–519.

    CAS  CrossRef  Google Scholar 

  • Hernell, O., Blackberg, L. 1994. Human milk bile salt-stimulated lipase: functional and molecular aspects. J. Pediatr. 125(Suppl. 2), S56–S61.

    CAS  Google Scholar 

  • Hernell, O., Olivecrona, T. 1974a. Human milk lipases. I. Serum-stimulated lipases. J. Lipid Res. 15, 367–374.

    CAS  Google Scholar 

  • Hernell, O., Olivecrona, T. 1974b. Human milk lipases. II. Bile salt-stimulated lipase. Biochim. Biophys. Acta 369, 234–244.

    CAS  Google Scholar 

  • Herrington, B.L. 1954. Lipase-a review. J. Dairy Sci. 37, 775–789.

    CAS  CrossRef  Google Scholar 

  • Herrington, B.L., Krukovsky, V.N. 1939. Studies on lipase action. I. Lipase action in normal milk. J. Dairy Sci. 22, 127–133.

    CAS  CrossRef  Google Scholar 

  • Heuchel, V. 1994. Comparison of the effects of different types of milking machine cluster on lipolysis in cow milk. In: Premières Rencontres Autour des Recherches sur les Ruminants, pp. 125–128, Institut de l’Elevage, Paris.

    Google Scholar 

  • Hicks, C.L., Purba, A., O’Leary, J. 1990. Effect of cycle pumping milk on cheese yield. Cult. Dairy Prod. J. 25(1), 20–24.

    Google Scholar 

  • Hisserich, D., Reuter, H. 1984. Grenzen der mechanischen Beanspruchung von Rohmilch für die induzierte Lipolyse. Milchwissenschaft 39, 333–335.

    Google Scholar 

  • Hlynka, I., Hood, E.G., Gibson, C.A. 1945. The degree of fat dispersion in cheese milk and its relation to the mechanism of increased lipase action in agitated milk. J. Dairy Sci. 28, 79–83.

    CAS  CrossRef  Google Scholar 

  • Hohe, K.A., Dimick, P.S., Kilara, A. 1985. Milk lipoprotein lipase distribution in the major fractions of bovine milk. J. Dairy Sci. 68, 1067–1073.

    CAS  Google Scholar 

  • Horwood, J.F., Lloyd, G.T., Stark, W. 1981. Some flavor components of Feta cheese. Aust. J. Dairy Technol. 36, 34–37.

    CAS  Google Scholar 

  • Howles, P.N., Stemmerman, G.N., Fenoglio Preiser, C.M., Hui, D.Y. 1999. Carboxyl ester lipase activity in milk prevents fat-derived intestinal injury in neonatal mice. Am. J. Physiol. 277, G653–G661.

    CAS  Google Scholar 

  • Hoynes, M.C.T., Downey, W.K. 1973. Relationship of the lipase and lipoprotein lipase activities of bovine milk. Biochem. Soc. Trans. 1, 256–259.

    CAS  Google Scholar 

  • Huang, H.T., Dooley, J.G. 1976. Enhancement of cheese flavors with microbial esterases. Biotechnol. Bioeng. 18, 909–919.

    CAS  CrossRef  Google Scholar 

  • Huge-Jensen, B., Galluzzo, D.R., Jensen, R.G. 1987. Partial purification and characterization of free and immobilized lipases from Mucor miehei. Lipids 22, 559–565.

    CAS  CrossRef  Google Scholar 

  • Humbert, E.S., Campbell, J.N., Blankenagel, G., Gebre-Egziabher, A. 1985. Extended storage of raw milk. II. The role of thermization. Can. Inst. Food Sci. Technol. 18, 302–305.

    CAS  Google Scholar 

  • Humbert, G., Guingamp, M.F., Linden, G. 1997. Method for the measurement of lipase activity in milk. J. Dairy Res. 64, 465–469.

    CAS  CrossRef  Google Scholar 

  • Hunter, A.C. 1966. Lipolysis in raw milk in north-east Scotland. Dairy Ind. 31, 277–279.

    Google Scholar 

  • Hunter, A.C., Wilson, J.M., Greig, G.W. 1968. Spontaneous rancidity in milk from individual cows. J. Soc. Dairy Technol. 21, 139–144.

    Google Scholar 

  • Ikezawa, H., Mori, M., Ohyabu, T., Taguchi, R. 1978. Studies on sphingomyelinase of Bacillus cereus. I. Purification and properties. Biochim. Biophys. Acta 528, 247–256.

    CAS  Google Scholar 

  • Innis, S.M., Dyer, R., Nelson, C.M. 1994. Evidence that palmitic acid is absorbed as sn-2 monoacylglycerol from human milk by breast-fed infants. Lipids 29, 541–545.

    CAS  CrossRef  Google Scholar 

  • IDF 1983. Lipolysis in milk and milk products. Results of Questionnaire 282/A. B-Doc. 105, International Dairy Federation, Brussels.

    Google Scholar 

  • IDF 1987. Significance of lipolysis in the manufacture and storage of dairy products. B-Doc. 144, International Dairy Federation, Brussels.

    Google Scholar 

  • IDF 1989. Milkfat products and butter. Determination of fat acidity. IDF Standard Provisional 6B:1989, International Dairy Federation, Brussels.

    Google Scholar 

  • IDF 1991. A practical guide to the control of lipolysis in the manufacture of dairy products. Bulletin 264, International. Dairy Federation, Brussels, pp. 26–28.

    Google Scholar 

  • Ivanov, A., Titball, R.W., Kostadinova, S. 1996. Characterisation of a phospholipase C produced by Pseudomonas fluorescens. Microbiol. Pavia 19, 113–121.

    CAS  Google Scholar 

  • Iverius, P.H., Lindahl, U., Egelrud, T., Olivecrona, T. 1972. Effects of heparin on lipoprotein lipase from bovine milk. J. Biol Chem. 247, 6610–6616.

    CAS  Google Scholar 

  • Iverson, S.J., Kirk, C.L., Hamosh, M., Newsome, J. 1991. Milk lipid digestion in the neonatal dog: the combined actions of gastric and bile salt-stimulated lipase. Biochim. Biophys. Acta 1083, 109–119.

    CAS  Google Scholar 

  • Jaeger, K.E., Ransac, S., Dijkstra, B.W., Colson, C., van Heuvel, M., Misset, O. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15, 29–63.

    CAS  CrossRef  Google Scholar 

  • Jellema, A. 1975. Note on susceptibility of bovine milk to lipolysis. Neth. Milk Dairy J. 29, 145–152.

    Google Scholar 

  • Jellema, A. 1980. Physiological factors associated with lipolytic activity in cow’s milk. Document 118, International Dairy Federation, Brussels, pp. 33–40.

    Google Scholar 

  • Jellema, A. 1986. Some factors affecting the susceptibility of raw cow milk to lipolysis. Milchwissenschaft 41, 553–558.

    CAS  Google Scholar 

  • Jellema, A., Schipper, C.J. 1975. Influence of physiological factors on the lipolytic susceptibility of milk. Document 86, International Dairy Federation, Brussels, pp. 2–6.

    Google Scholar 

  • Jensen, R.G. 1964. Lipolysis. J. Dairy Sci. 47, 210–215.

    CAS  CrossRef  Google Scholar 

  • Jensen, R.G. 1974. Characteristics of the lipase from the mold, Geotrichum candidum: a review. Lipids 9, 149–157.

    CAS  CrossRef  Google Scholar 

  • Jensen, R.G. 1983. Detection and determination of lipase acylglycerol hydrolase activity from various sources. Lipids 18, 650–657.

    CAS  CrossRef  Google Scholar 

  • Jensen, R.G., Gander, G.W., Duthie, A.H. 1960. Spontaneous and induced lipolysis in milk during alternate feeding of two winter rations and of a winter ration and pasture. J. Dairy Sci. 43, 762–768.

    CAS  CrossRef  Google Scholar 

  • Jensen, R.G., Pitas, R.E. 1976. Milk lipoprotein lipases: a review. J. Dairy Sci. 59, 1203–14.

    CAS  CrossRef  Google Scholar 

  • Jensen, G.K., Poulsen, H.H. 1992. Sensory aspects. Bulletin 271, International. Dairy Federation, Brussels, pp. 26–31.

    Google Scholar 

  • Jeon, I.J. 1994. Flavor chemistry of dairy lipids: review of free fatty acids. In: Lipids in Food Flavors (C.T. Chang, T.G. Hartman, eds.), American Chemical Society, Washington, DC, pp. 196–207.

    Google Scholar 

  • Johnson, P.E., Von Gunton, R.L. 1961. Effect of feeding sorghum silage on the lipolytic activity of milk. J. Dairy Sci. 44, 969.

    CrossRef  Google Scholar 

  • Jolly, R.C., Kosikowski, F.V. 1975a. Flavor development in pasteurized milk blue cheese by animal and microbial lipase preparations. J. Dairy Sci. 58, 846–852.

    CAS  CrossRef  Google Scholar 

  • Jolly, R.C., Kosikowski, F.V. 1975b. A new blue cheese food material from ultrafiltrated skim milk and microbial enzyme-mold spore reacted fat. J. Dairy Sci. 58, 1272–1275.

    CrossRef  Google Scholar 

  • Joshi, N.S., Thakar, P.N. 1994. Methods to evaluate deterioration of milk fat-a critical appraisal. J. Food Sci. Technol. Mysore 31, 181–196.

    CAS  Google Scholar 

  • Juarez, M., de la Fuente, M.A., Fontecha, J. 1992. Improved gas chromatographic method for the determination of the individual free fatty acids in cheese using a capillary column and a PTV injector. Chromatographia 33, 351–355.

    CAS  CrossRef  Google Scholar 

  • Jubelin, J., Boyer, J. 1972. The lipolytic activity of human milk. Eur. J. Clin. Invest. 2, 417–421.

    CAS  CrossRef  Google Scholar 

  • Jurczak, M.E., Sciubisz, A. 1981. Studies on the lipolytic changes in milk from cows with mastitis. Milchwissenschaft 36, 217–219.

    CAS  Google Scholar 

  • Jurczak, M.E., Sciubisz, A. 1982. Influence of a-lipoprotein and degradation of somatic cells in milk on the spontaneous lipolysis. Proc. 21st Int. Dairy Cong. Montreal 21(1), 197–198.

    Google Scholar 

  • Jurczak, M.E. 1996. The effect of the shared blood of various strains of Friesian cattle and diverse feeding on technological traits of raw milk. Ann. Warsaw Agric. Univ., Anim. Sci. 32, 33–45.

    Google Scholar 

  • Kalogridou-Vassiliadou, D. 1984. Lipolytic activity and heat resistance of extracellular lipases of some Gram-negative bacteria. Milchwissenschaft 39, 601–603.

    CAS  Google Scholar 

  • Kalogridou-Vassiliadou, D., Alichanidis, E. 1984. Effect of refrigerated storage of milk on the manufacture and quality of Teleme cheese. J. Dairy Res. 51, 629–636.

    CAS  Google Scholar 

  • Kästli, P. 1967. Definition of mastitis. Ann. Bull. Part 3, pp. 1–5, International Dairy Federation Brussels.

    Google Scholar 

  • Kästli, P., Padrutt, O., Baumgartner, H. 1967. Will the milk of cows treated with hormones acquire a rancid flavor due to increased lipase content? Schweiz. Milchztg. 93, 197.

    Google Scholar 

  • Keenan, T.W., Heid, H.W., Stadler, J., Jarasch, E.-D. Franke, W.W. 1982. Tight attachment of fatty acids to proteins associated with milk lipid globule membrane. Eur. J. Cell Biol. 26, 270–276.

    CAS  Google Scholar 

  • Kelley, L.A., Dunkley, W.L. 1954. Hydrolytic rancidity induced by pipeline milkers. J. Milk Food Technol. 17, 306–312, 319.

    Google Scholar 

  • Kelly, P.L. 1945. Milk lipase activity: a method for its determination and its relationship to the estrual cycle. J. Dairy Sci. 28, 803–820.

    CAS  CrossRef  Google Scholar 

  • Kester, J.J., Brunner, J.R. 1982. Milk-fat globule membrane as possible origin of proteosepeptone glycoproteins. J. Dairy Sci. 65, 2241–2252.

    CAS  CrossRef  Google Scholar 

  • Khan, I.M., Dill, C.W., Chandan, R.C., Shahani, K.M. 1967. Production and properties of the extracellular lipase of Achromobacter lipolyticum. Biochim. Biophys. Acta 132, 68–77.

    CAS  Google Scholar 

  • Kilara, A. 1985. Enzyme-modified lipid food ingredients. Process Biochem. 202, 35–45.

    Google Scholar 

  • Kim, G.Y., Kwon, I.K., Kang, C.G., Goh, J.S. 1994. Effects of casein on the stability and activity of lipase isolated from milk fat globules. Kor. J. Dairy Sci. 16, 155–160.

    Google Scholar 

  • Kinnunen, P.K.J., Huttunen, J.K., Ehnholm, C. 1976. Properties of purified bovine milk lipoprotein lipase. Biochim. Biophys. Acta 450, 342–351.

    CAS  Google Scholar 

  • Kinsella, J.E., Houghton, G. 1975. Phospholipids and fat secretion by cows on normal and low fiber diets: lactational trends. J. Dairy Sci. 58, 1288–1293.

    CAS  CrossRef  Google Scholar 

  • Kinsella, J.E., Hwang, D. 1976. Biosynthesis of flavors by Penicillium roqueforti. Biotechnol. Bioeng. 18, 927–938.

    CAS  CrossRef  Google Scholar 

  • Kintner, J.A., Day, E.A. 1965. Major free fatty acids in milk. J. Dairy Sci. 48, 1575–1581.

    CAS  CrossRef  Google Scholar 

  • Kirchgessner, T.G., Svenson, K.L., Lusis, A.J., Schotz, M.C. 1987. The sequence of cDNA encoding lipoprotein lipase. J. Biol. Chem. 262, 8463–8466.

    CAS  Google Scholar 

  • Kirst, E. 1980. Lipolytische Vorgänge in Milch und Milchprodukten. Literaturbericht und Untersuchungen zum Einfluss von Rühren und Pumpen auf das Milchfett. Lebensm.-Ind. 27, 27–31

    CAS  Google Scholar 

  • Kishonti, E. 1975. Influence of heat resistant lipases and proteases in psychrotrophic bacteria on product quality. Document 86, International Dairy Federation, Brussels, pp. 121–124.

    Google Scholar 

  • Kishonti, E., Sjöström, G. 1970. Influence of heat resistant lipases and proteases in psychrotrophic bacteria on product quality. Proc. 18th Int. Dairy Cong. (Sydney) 1E, 501.

    Google Scholar 

  • Kitchen, B.J. 1971. Bovine milk esterases. J. Dairy Res. 38, 171–177.

    CAS  Google Scholar 

  • Kitchen, B.J., Cranston, K. 1969. Lipase activation in farm milk supplies. Aust. J. Dairy Technol. 24, 107–112.

    CAS  Google Scholar 

  • Kleinhenz, J., Harper, W. J. 1997. Lower molecular weight free fatty acids in full fat and low fat Swiss cheese. Milchwissenschaft 52, 622–625.

    CAS  Google Scholar 

  • Kodgev, A., Rachev, R. 1970. The influence of some factors on the acidity of milk. Proc. 18th Int. Dairy Cong. (Sydney) 1E, 200 (abstr.).

    Google Scholar 

  • Kojima, Y., Kobayashi, M., Shimizu, S. 2003. A novel lipase from Pseudomonas fluorescens HU380: Gene cloning, overproduction, renaturation-activation, two-step purification, and characterization. J. Biosci. Bioeng. 96, 242–249.

    CAS  Google Scholar 

  • Koka, R., Weimer, B. C. 2001. Influence of growth conditions on heat-stable phospholipase activity in Pseudomonas. J. Dairy Res. 68, 109–116.

    CAS  CrossRef  Google Scholar 

  • Kolar, C.W., Mickle, J.B. 1963. Relationship between milk fat acidity, short-chain fatty acids and rancid flavors in milk. J. Dairy Sci. 46, 569–571.

    CAS  CrossRef  Google Scholar 

  • Kon, H., Saito, Z. 1997. Factors causing temperature activation of lipolysis in cow’s milk. Milchwissenschaft 52, 435–440.

    CAS  Google Scholar 

  • Koops, J., Klomp, H. 1977. Rapid colorimetric determination of free fatty acids lipolysis in milk by the copper soap method. Neth. Milk Dairy J. 31, 56–74.

    CAS  Google Scholar 

  • Koops, J., Klomp, H., van Hemert, H. 1990. Rapid enzymatic assay of free fatty acids lipolysis in farm tank milk by a segmented continuous flow method. Comparison of the results with those obtained by the BDI procedure. Neth. Milk Dairy J. 44, 3–19.

    CAS  Google Scholar 

  • Korn, E.D. 1955. Clearing factor, a heparin-activated lipoprotein lipase. II. Substrate specificity and activation of coconut oil. J. Biol. Chem. 215, 15–26.

    CAS  Google Scholar 

  • Korn, E.D. 1962. The lipoprotein lipase of cow’s milk. J. Lipid. Res. 3, 246–250.

    CAS  Google Scholar 

  • Kroll, S. 1989. Thermal stability. In: Enzymes of Psychrotrophs in Raw Food (R.C. McKellar, ed.), pp. 121–152, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Krukovsky, V.N., Herrington, B.L. 1939. Studies of lipase action. II. The activation of milk lipase by temperature changes. J. Dairy Sci. 22, 137–147.

    CAS  CrossRef  Google Scholar 

  • Krukovsky, V.N., Herrington, B.L. 1942a. Studies of lipase action. IV. The inactivation of milk lipase by heat. J. Dairy Sci. 25, 231–236.

    CAS  CrossRef  Google Scholar 

  • Krukovsky, V.N., Herrington, B.L. 1942b. Studies of lipase action. VI. The effect of lipolysis upon flavor score of milk. J. Dairy Sci. 25, 237–239.

    CAS  CrossRef  Google Scholar 

  • Krukovsky, V.N., Sharp, P.F. 1936. Effect of lipolysis on the churnability of cream obtained from the milk of cows in advanced lactation. J. Dairy Sci. 19, 279–284.

    CAS  CrossRef  Google Scholar 

  • Kugimiya, W., Otani, Y., Hashimoto, Y., Tagaki, Y. 1986. Molecular cloning and nucleotide sequence of the lipase gene from Pseudomonas fragi. Biochem. Biophys. Res. Commun. 141, 185–190.

    CAS  CrossRef  Google Scholar 

  • Kumura, H., Mikawa, K., Saito, Z. 1991. Influence of concomitant protease on the thermostability of lipase of psychrotrophic bacteria. Milchwissenschaft 46, 144–148.

    CAS  Google Scholar 

  • Kumura, H., Mikawa, K., Saito, Z. 1993. Influence of milk proteins on the thermostability of the lipase from Pseudomonas fluorescens 33. J. Dairy Sci. 76, 2164–2167.

    CAS  CrossRef  Google Scholar 

  • Kuzdzal-Savoie, S. 1975. Is there a correlation between organoleptic and chemical procedures for the assessment of lipolysis? Document 86, International Dairy Federation, Brussels, pp165–70.

    Google Scholar 

  • Kuzdzal-Savoie, S. 1980. Determination of free fatty acids in milk and milk products. Bulletin 118, International Dairy Federation, Brussels, pp. 53–66.

    Google Scholar 

  • Kwan, K.K., Skura, B.J. 1985. Identiflcation of proteolytic pseudomonads isolated from raw milk. J. Dairy Sci. 68, 1902–1909.

    CAS  Google Scholar 

  • Labots, H., Galesloot, T.E. 1959. Formation of cream particles in pasteurized milk. Neth. Milk Dairy J. 13, 79–99.

    Google Scholar 

  • Lamberet, G., Lenoir, J. 1976. Characteristics of the Penicillium caseicolum lipolytic system. Nature of the system. Lait 56, 119–134.

    CAS  CrossRef  Google Scholar 

  • Landaas, A., Solberg, P. 1974. A simple extraction-titration procedure for the determination of free fatty acids in milk. Meieriposten 63, 497–506.

    Google Scholar 

  • Landaas, A., Solberg, P. 1978. Production and characterization of lipase from a fluorescent pseudomonad. Proc. 20th Int. Dairy Cong. (Paris) E, 304–305.

    Google Scholar 

  • La Rosa, J.C., Levy, R.I., Herbert, P., Lux, S.E. and Fredrickson, D.S. 1970. A specific apoprotein activator for lipoprotein lipase. Biochem. Biophys. Res. Commun. 41, 57–62.

    CrossRef  Google Scholar 

  • Law, B.A. 1979. Reviews of the progress of Dairy Science: enzymes of psychrotrophic bacteria and their effects on milk and milk products. J. Dairy Res. 46, 573–588.

    CAS  Google Scholar 

  • Law, B.A. 1984. Flavor development in cheeses. In: Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk (F.L. Davies, B.A. Law, eds.), pp. 187–208, Elsevier Applied Science, London.

    Google Scholar 

  • Law, B.A., Wigmore, A.S. 1985. Effect of commercial lipolytic enzymes on flavor development in Cheddar cheese. J. Soc. Dairy Technol. 38, 86–88.

    CAS  Google Scholar 

  • Law, B.A., Sharpe, M.E., Chapman, H.R. 1976. The effect of lipolytic Gram-negative psychrotrophs in stored milk on the development of rancidity in Cheddar cheese. J. Dairy Res. 43, 459–468.

    CAS  Google Scholar 

  • Lawrence, R.C. 1967. Microbial lipases and related esterases. Dairy Sci. Abstr. 29, 1–8, 59–70.

    Google Scholar 

  • Lawrence, R.C., Fryer, T.F., Reiter, B. 1967. The production and characterization of lipases from a Micrococcus and a Pseudomonas. J. Gen. Microbiol. 48, 401–418.

    CAS  Google Scholar 

  • Lebedev, A.B., Umanskii, M.S. 1979. Thermal inactivation of milk lipoprotein lipase. Appl. Biochem. Microbiol. 15, 560–563.

    Google Scholar 

  • Lee, H.J., Olson, N.F., Ryan, D.S. 1980. Characterization of pregastric esterases. J. Dairy Sci. 63, 1834–1838.

    CAS  Google Scholar 

  • Lin, J.C.C., Jeon, I.J. 1987. Effect of commercial food grade enzymes on free fatty acid profiles in granular Cheddar cheese. J. Food Sci. 52, 78–83, 87.

    CAS  Google Scholar 

  • Lindqvist, B., Roos, T., Fujita, H. 1975. Auto-Analyzer determination of free fatty acids in farm milk. Modification of present methods to simplify transportation of sample. Milchwissenschaft 30, 12–17.

    CAS  Google Scholar 

  • Linfield, W.M., Serota, S., Sivieri, L. 1985. Lipid — lipase interactions. 2. A new method for the assay of lipase activity. J. Am. Oil Chem. Soc. 62, 1152–1154.

    CAS  CrossRef  Google Scholar 

  • Lombard, S.H., Bester, B.H. 1979. The incidence of rancidity in drinking milk supplies. S. Afr. J. Dairy Technol. 11, 163–166.

    Google Scholar 

  • Long, C.A., Patton, S. 1978. Metabolism of phosphotidyl choline in freshly secreted milk. J. Dairy Sci. 61, 124–127.

    CAS  Google Scholar 

  • Lu, J.Y., Liska, B.J. 1969. Lipase from Pseudomonas fragi. Properties of the enzyme. Appl. Microbiol. 18, 108–113.

    CAS  Google Scholar 

  • Luedecke, L.O. 1964. Relationship between California Mastitis Test reactions and leucocyte count, catalase activity and A-esterase activity of milk from opposite quarters. J. Dairy Sci. 47, 696.

    Google Scholar 

  • Luhtala, A., Antila, M. 1968. über die Lipasen und die Lipolyse der Milch. Fette Seifen Anstr Mittel 70, 280–288.

    CAS  CrossRef  Google Scholar 

  • Ma, Y., Ryan, C., Barbano, D.M., Galton, D.M., Rudan, M.A., Boor, K.J. 2000. Effects of somatic cell count on quality and shelf-life of pasteurized fluid milk. J. Dairy Sci. 83, 264–274.

    CAS  Google Scholar 

  • Mabbitt, L.A. 1981. Metabolic activity of bacteria in raw milk. Kieler Milchw. ForschBer. 33, 273–280.

    CAS  Google Scholar 

  • MacLeod, P. Anderson, E.O., Dowd, L.R. Smith, A.C., Glazier, L.R. 1957. The Effect of various pipeline milking conditions on the acid degree and flavor score of milk. J. Milk Food Technol. 20, 185–188.

    CAS  Google Scholar 

  • Magnusson, F. 1974. Relationship between hydrolytic rancidity in milk and design and management of milking equipment. Proc. 19th Int. Dairy Cong. (New Delhi) 1E, 19–20.

    Google Scholar 

  • Mahieu, H. 1983. Méthode rapide de dosage des acides gras libres dans le lait: méthode Lipo R. Rev. Meéd. Vét. 135, 709–716.

    Google Scholar 

  • Makhzoum, A., Owusu, R.K. and Knapp, J.S. 1996. Purification and properties of lipase from Pseudomonas fluorescens strain 2D. Int. Dairy J. 6, 459–472.

    CAS  CrossRef  Google Scholar 

  • Marin, A., Mawhinney, T.P., Marshall, R.T. 1984. Glycosidic activities of Pseudomonas fluorescens on fat-extracted skim milk, buttermilk and milk fat globule membranes. J. Dairy Sci. 67, 52–59.

    CAS  Google Scholar 

  • Marquardt, R.R., Forster, T.L. 1962. Arylesterase activity of bovine milk as related to incidence of mastitis. J. Dairy Sci. 45, 653 abstr..

    Google Scholar 

  • Marquardt, R.R., Forster, T.L. 1965. Milk A-esterase levels as influenced by stage of lactation. J. Dairy Sci. 48, 1526–1528.

    CAS  CrossRef  Google Scholar 

  • Martinez, F.E., Davidson, A.G.F., Anderson, J.D., Nakai, S., Desai, I.D., Radcliffe, A. 1992. Effects of ultrasonic homogenization of human milk on lipolysis, IgA, IgG, lactoferrin and bacterial content. Nutr. Res. 12, 561–568.

    CAS  CrossRef  Google Scholar 

  • Matselis, E., Roussis, I.G. 1998. Proteinase and lipase production by Pseudomonas fluorescens. Proteolysis and lipolysis in thermized ewe’s milk. Food Contr. 9, 251–259.

    CrossRef  Google Scholar 

  • McCarney, T.A., Mullan, W.M.A., Rowe, M. T. 1994. The Effect of carbonation of milk on the yield and quality of Cheddar cheese. In: Cheese Yield and Factors Affecting its Control, Special Issue No. 9402, pp. 302–308, International Dairy Federation; Brussels.

    Google Scholar 

  • McDaniel, M.R., Sather, L.A., Lindsay, R.C. 1969. Influence of free fatty acids on sweet cream butter flavor. J. Food Sci. 34, 251–254.

    CAS  CrossRef  Google Scholar 

  • McDonald, S.T., Spurgeon, K.R., Gilmore, T.M., Parson, J.G., Seas, S.W. 1986. Flavor and other properties of Cheddar cheese made from rancid milk. Cult. Dairy Prod. J. 213, 16, 19-21.

    Google Scholar 

  • McDowell, A.K.R. 1969. Storage of chilled cream in relation to butter quality. J. Dairy Res. 36, 225–226.

    Google Scholar 

  • McKay, D.B., Dieckelmann, M., Beacham, I.R. 1995. Degradation of triglycerides by a pseudomonad isolated from milk: the roles of lipase and esterase studied using recombinant strains over-producing, or specifically deficient in these enzymes. J. Appl. Bacteriol. 78, 216–223.

    CAS  Google Scholar 

  • McKellar, R.C. 1986. A rapid colorimetric assay for the extracellular lipase of Pseudomonas fluorescens B52 using β-naphthyl caprylate. J. Dairy Res. 53, 117–127.

    CAS  Google Scholar 

  • McKellar, R.C. (ed.) 1989. Enzymes of Psychrotrophs in Raw Food. CRC Press, Boca Raton, FL.

    Google Scholar 

  • McKellar, R.C., Cholette, H. 1986. Determination of the extracellular lipases of Pseudomonas fluorescens spp. in skim milk with the β-naphthyl caprylate assay. J. Dairy Res. 53, 301–312.

    CAS  Google Scholar 

  • McKillop, A.M., O’Hare, M.M.T., Craig, J.S., Halliday, H.L. 2004. Characterization of the C-terminal region of molecular forms of human milk bile salt-stimulated lipase. Acta Paediatr. 93, 10–16.

    CAS  CrossRef  Google Scholar 

  • McNeill, G.P., Connolly, J.F. 1989. A method for the quantification of individual free fatty acids in cheese: application to ripening of Cheddar-type cheeses. Irish J. Food Sci. Technol. 13, 119–128.

    CAS  Google Scholar 

  • McNeill, G.P., O’Donoghue, A., Connolly, J.F. 1986. Quantification and identification of flavor components leading to lipolytic rancidity in stored butter. Irish J. Food Sci. Technol. 10, 1–10.

    CAS  Google Scholar 

  • McSweeney, P.L.H., Fox, P.F., Lucey, J.A., Jordan, K.N., Cogan, T.M. 1993. Contribution of the indigenous microflora to the maturation of Cheddar cheese. Int. Dairy J., 3, 613–634.

    CAS  CrossRef  Google Scholar 

  • Menassa, A., Lamberet, G. 1982. Contribution à l’étude du système lipolytique de Pencillium roqueforti. Caractères comparés de deux activités exocellulaires. Lait 62, 32–43.

    CAS  CrossRef  Google Scholar 

  • Menger, J.W. 1975. Experience with lipolytic activities in milk and milk products. Document 86, International Dairy Federation, Brussels, pp. 108–112.

    Google Scholar 

  • Miwa, H., Yamamoto, M. 1990. Liquid chromatographic determination of free and total fatty acids in milk and milk products as their 2-nitrophenylhydrazides. J. Chromatogr. 523, 235–246.

    CAS  CrossRef  Google Scholar 

  • Mogensen, G., Jansen, K. 1986. Effect of pasteurization on lipase activity in milk, cream and butter. Dairy Sci. Abstr. 48, 244 (abstr no. 2073).

    Google Scholar 

  • Morand-Fehr, P., Bas, P., Legendre, D., Rouzeau, A., Hervieu, J. 1990. Effet des conditions de la traite à la machine sur la lipolyse du lait de chèvre. Proc. 23rd Int. Dairy Cong. (Montreal), Brief Commun. 1, 20 (abstr).

    Google Scholar 

  • Morley, N., Kuksis, A. 1977. Lack of fatty acid specificity in the lipolysis of oligo-and polyunsaturated triacylglycerols by milk lipoprotein lipase. Biochim. Biophys. Acta 487, 332–342.

    CAS  Google Scholar 

  • Mortensen, B.K., Jansen, K. 1982. Lipase activity in cream and butter. Proc. 21st Int. Dairy Cong. (Montreal) 1(1), 334–335.

    Google Scholar 

  • Moskowitz, G.J., Cassaigne, R., West, I.R., Shen, T., Feldman, L.I. 1977. Hydrolysis of animal fat and vegetable oil with Mucor miehei esterase. J. Agric. Food Chem. 25, 1146–1150.

    CAS  CrossRef  Google Scholar 

  • Mottar, J. 1981. Heat resistant enzymes in UHT milk and their influence on sensoric changes during uncooled storage. Milchwissenschaft 36, 87–91.

    CAS  Google Scholar 

  • Mottar, J.F. 1989. Effect on the quality of dairy products. In: Enzymes of Psychrotrophs in Raw Food (R.C. McKellar, ed.), pp. 227–243, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Mouillet, L., Luquet, F.M., Nicod, H., Boudier, J.F., Mahieu, H. 1981. La lipolyse des laits. étude d’une méthode rapide de mesure. Lait 61, 171–186.

    CAS  CrossRef  Google Scholar 

  • Muir, D.D., Kelly, M.E., Phillips, J.D. 1978a. The Effect of storage temperature on bacterial growth and lipolysis in raw milk. J. Soc. Dairy Technol. 31, 203–208.

    Google Scholar 

  • Muir, D.D., Kelly, M.E., Phillips, J.D., Wilson, A.G. 1978b. The quality of blended raw milk in creameries in south-west Scotland. J. Soc. Dairy Technol. 31, 137–144.

    Google Scholar 

  • Muir, D.D., Phillips, J.D., Dalgleish, D.G. 1979. The lipolytic and proteolytic activity of bacteria isolated from blended raw milk. J. Soc. Dairy Technol. 32, 19–23.

    CAS  Google Scholar 

  • Mukherjee, S. 1950. Preliminary investigations on factors influencing rancidity. Ind. Chem. Soc. 27, 557–562.

    CAS  Google Scholar 

  • Mulder, H., Walstra, P. 1974. The Milk Fat Globule:Emulsion Science as Applied to Milk and Comparable Food. Commonwealth Agricultural Bureaux, Farnham Royal, UK.

    Google Scholar 

  • Munnich, K., Haasmann, S. 1999. Lipases in milk. A comparison of 2 methods for the determination of lipases in milk. DMZ, Lebensm.-Ind. Milchwirtsch. 120, 490–493.

    CAS  Google Scholar 

  • Murphy, J.J., Connolly, J.F., Headon, D.R. 1979. A study of factors associated with free fatty acid development in milk. Irish J. Food Sci. Technol. 3, 131–150.

    CAS  Google Scholar 

  • Murphy, S.C., Cranker, K., Senyk, G.F., Barbano, D.M., Saeman, A.I., Galton, D.M. 1989. Influence of bovine mastitis on lipolysis and proteolysis in milk. J. Dairy Sci. 72, 620–626.

    CAS  Google Scholar 

  • Nadkarni, S.R. 1971. Studies on bacterial lipase. Part II. Study of the characteristics of partially purified lipase from Pseudomonas aeruginosa. Enzymologia 40, 302–313.

    CAS  Google Scholar 

  • Nakai, S. 1983. Derancidification of milk by adsorption. J. Dairy Sci. 66, 1815–1821.

    CAS  Google Scholar 

  • Nakai, S., Perrin, J.J., Wright, V. 1970. Simple test for lipolytic rancidity in milk. J. Dairy Sci. 53, 537–540.

    CAS  CrossRef  Google Scholar 

  • Nakanishi, T., Tagata, Y. 1972. The distribution and some properties of esterase, alkaline phosphatase and acid phosphatase in cow’s milk. Jap. J. Dairy Sci. 21, A-207–215.

    CAS  Google Scholar 

  • Nashif, S.A., Nelson, F.E. 1953. The lipase of Pseudomonas fragi. J. Dairy Sci. 36, 481–487.

    CAS  CrossRef  Google Scholar 

  • Needs, E.C. 1992. Effects of long-term deep-freeze storage on the condition of the fat in raw sheep’s milk. J. Dairy Res. 59, 49–55.

    CAS  Google Scholar 

  • Needs, E.C., Ford, G.D., Owen, A.J., Tuckley, B., Anderson, M. 1983. A method for the quantitative determination of individual free fatty acids in milk by ion exchange resin adsorption and gas-liquid chromatography. J. Dairy Res. 50, 321–329.

    CAS  Google Scholar 

  • Nelson, J.H., Jensen, R.G., Pitas, R.E. 1977. Pregastric esterases and other oral lipases-a review. J. Dairy Sci. 60, 327–362.

    CAS  Google Scholar 

  • Neville, M.C., Waxman, L.J., Jensen, D., Eckel, R.H. 1991. Lipoprotein lipase in human milk: compartmentalization and Effect of fasting, insulin and glucose. J. Lipid Res. 32, 251–257.

    CAS  Google Scholar 

  • Nielsen, J.V. 1978. Technical factors in cooling which are thought to affect lipase activity in milk. Nord. Mejeriind. 5, 9–12, 20.

    Google Scholar 

  • Nilsson, J., Bläckberg, L., Carlsson, P., Enerbäck, S., Hernell, O., Bjursell, G. 1990. cDNA cloning of human-milk bile-salt-stimulated lipase and evidence for its identity to pancreatic carboxylic ester hydrolase. Eur. J. Biochem. 192, 543–550

    CAS  CrossRef  Google Scholar 

  • Nilsson, R., Willart, S. 1960. Lipolytic activity in milk. I. The influence of homogenization on the fat splitting in milk. Rep. Milk Dairy Res. Alnarp. 60.

    Google Scholar 

  • Nilsson, R., Willart, S. 1961. Lipolytic activity in milk. II. The heat inactivation of the fat-splitting in milk. Rep. Milk Dairy Res. Alnarp. 64.

    Google Scholar 

  • Nilsson-Ehle, P., Egelrud, T., Belfrage, P., Olivecrona, T., Borgström, B. 1973. Positional specificity of purified milk lipoprotein lipase. J. Biol. Chem. 248, 6734–6737.

    CAS  Google Scholar 

  • Nyberg, L., Farooqi, A., Bläckberg, L., Duan, R., Nilsson, A., Hernell, O., Duan, R.D. 1998. Digestion of ceramide by human milk bile salt-stimulated lipase. J. Pediat. Gastroenterol. Nutr. 27, 560–567.

    CAS  CrossRef  Google Scholar 

  • O’Brien, B., Crosse, S., Dillon, P. 1996. Effects of offering a concentrate or silage supplement to grazing dairy cows in late lactation on animal performance and on milk processability. Irish J. Agric. Food Res. 35, 113–125.

    Google Scholar 

  • O’Brien, B., Mehra, R., Connolly, J.F., Harrington, D. 1999. Seasonal variation in the composition of Irish manufacturing and retail milks. 1. Chemical composition and renneting properties. Irish J. Agric. Food Res. 38, 53–64.

    CAS  Google Scholar 

  • O’Brien, B., O’Callaghan, E., Connolly, B., Fleming, M. 1996. Free fatty acid levels in milk and dairy products. Farm Food 6, 8–9.

    Google Scholar 

  • O’Brien, B., O’Callaghan, E., Dillon, P. 1998. Effect of various milking machine systems and components on free fatty acid levels in milk. J. Dairy Res., 65, 335–339.

    CAS  CrossRef  Google Scholar 

  • O’Connell, J.M., Cogan, T.M., Downey, W.K. 1975. Lipolysis in butter pre-and post-manufacture. Document 86, International Dairy Federation, Brussels, pp. 92–100.

    Google Scholar 

  • O’Connor, C.J., Cleverly, D.R. 1989. The role of bile-salt-stimulated human milk lipase in neonatal nutrition. In: Fats for the Future (R.C. Cambie, ed.), pp. 109–28, Ellis Horwood, Chichester.

    Google Scholar 

  • O’Donnell, E.T. 1978. Heat resistance of lipase enzymes produced by psychrotrophic bacteria. Proc. 20th Int. Dairy Cong. (Paris) E, 307.

    Google Scholar 

  • Ohren, J.A., Tuckey, S.L. 1969. Relation of flavor development in Cheddar cheese to chemical changes in the fat of the cheese. J. Dairy Sci. 52, 598–607.

    CAS  CrossRef  Google Scholar 

  • Okuda, H., Fujii, S. 1968 Relationship between lipase and esterase. J. Biochem. 64, 377–385

    CAS  Google Scholar 

  • Olivecrona, T. 1980. Biochemical aspects of lipolysis in bovine milk. Document 118, International Dairy Federation, Brussels, pp. 19–25.

    Google Scholar 

  • Olivecrona, T., Bengtsson-Olivecrona, G. 1991 Indigenous enzymes in milk.-II Lipase. In: Food Enzymology (P.F. Fox, ed.), pp. 62–78, Elsevier Applied Science, London.

    Google Scholar 

  • Olivecrona, T., Vilaro, S., Olivecrona, G. 2003. Lipases in milk. In: Advanced Dairy Chemistry, Vol. 1, Proteins (P.F. Fox, P.L.H. McSweeney, eds.), pp. 473–494, Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Ortiz, M.J., Kesler, E.M., Watrous, G.H., Cloninger, W.H. 1970. Effect of the cow’s body condition and stage of lactation on development of milk rancidity. J. Milk Food Technol. 33, 339–342.

    Google Scholar 

  • östlund-Lindqvist, A.-M., Iverius, P.-H. 1975. Activation of highly purified lipoprotein lipase from bovine milk. Biochem. Biophys. Res. Commun. 65, 1447–1455.

    CrossRef  Google Scholar 

  • Oterholm, A., Ordal, Z.J., Witter, L.D. 1968. Glycerol ester hydrolase activity of lactic acid bacteria. Appl. Microbiol. 16, 524–527.

    CAS  Google Scholar 

  • Oterholm, A., Ordal, Z.J., Witter, L.D. 1970. Glycerol ester hydrolase activity of Propionibacterium shermanii. J. Dairy Sci. 53, 592–593.

    CAS  CrossRef  Google Scholar 

  • Overcast, W.W., Skean, J.D. 1959. Growth of certain lipolytic microorganisms at 4°C and their influence on free fat acidity and flavor of pasteurized milk. J. Dairy Sci. 42, 1479–1485.

    CAS  CrossRef  Google Scholar 

  • Owens, J.J. 1978a. Lecithinase positive bacteria in milk. Process Biochem. 13(1), 13–14, 30.

    Google Scholar 

  • Owens, J.J. 1978b. Observations on lecithinases from milk contaminants. Process Biochem. 13(7), 10, 12, 18.

    CAS  Google Scholar 

  • Owusu, R.K., Makhzoum, A., Knapp, J.S. 1992, Heat inactivation of lipase from psychrotrophic Pseudomonas fluorescens P38: Activation parameters and enzyme stability at low or ultra high temperature. Food Chem. 44, 261–268.

    CAS  CrossRef  Google Scholar 

  • Palmer, L.S. 1922. Bitter milk of advanced lactation. A lipase fermentation. J. Dairy Sci. 5, 201–211.

    CAS  CrossRef  Google Scholar 

  • Pande, D., Mathur, M.P. 1990. Evidence for the presence of a lipoprotein lipase in bovine UHT milk and its ionic binding to heparin. J. Food Sci. Technol. 27, 382–384.

    CAS  Google Scholar 

  • Pande, D., Mathur, M.P. 1992. Storage studies on UHT milk in relation to residual proteases and lipases with particular reference to casein and lipid decomposition. Indian J. Dairy Sci. 45, 469–476.

    CAS  Google Scholar 

  • Parks, O.W., Allen, C. 1979. State of unesterified fatty acids in skim-milk. J. Dairy Sci. 62, 1045–1050.

    CAS  Google Scholar 

  • Parodi, P.W. 1994, Conjugated linoleic acid: an anticarcinogenic fatty acid present in milk fat. Aust. J. Dairy Technol. 49, 93–97.

    CAS  Google Scholar 

  • Parry, R.M., Chandan, R.C., Shahani, K.M. 1966. Rapid and sensitive assay for milk lipase. J. Dairy Sci. 49, 356–360.

    CAS  CrossRef  Google Scholar 

  • Patel, H.G., Thakar, P.N. 1994. Biomodification of milk fat-a review. Indian J. Dairy Sci. 47, 899–911.

    CAS  Google Scholar 

  • Patton, S. 1964. Flavor thresholds of volatile fatty acids. J. Food Sci. 29, 679–680.

    CrossRef  Google Scholar 

  • Paulsen, P.V., Kowalewska, J., Hammond, E.G., Glatz, B.A. 1980. Role of microflora in production of free fatty acids and flavor in Swiss cheese. J. Dairy Sci. 63, 912–918.

    CAS  Google Scholar 

  • Pedersen, D.K. 2003. Determination of casein and free fatty acids in milk by means of FT-IR techniques. In: Proc. IDF Symposium on Advancement in Analytical Techniques, Holstebro, Denmark, Bulletin 383, International Dairy Federation, Brussels, pp. 48–51.

    Google Scholar 

  • Phillips, J.D., Griffiths, M.W., Muir, D.D. 1981. Growth and associated enzymic activity of spoilage bacteria in pasteurised double cream. J. Soc. Dairy Technol. 34, 113–119.

    Google Scholar 

  • Picon, A., Gaya, P., Medina, M., Nunez, M. 1997. Proteinases encapsulated in stimulated release liposomes for cheese ripening. Biotechnol. Letts 19, 345–348.

    CAS  CrossRef  Google Scholar 

  • Pillay, V.T., Myhr, A.N., Gray, J.I. 1980. Lipolysis in milk. I. Determination of free fatty acids and threshold value for lipolyzed flavor detection. J. Dairy Sci. 63, 1213–1218.

    CAS  Google Scholar 

  • Pinheiro, A.J.R., Liska, B.J., Parmelee, C.E. 1965. Heat stability of lipases of selected psychrophilic bacteria in milk and Purdue Swiss-type cheese. J. Dairy Sci. 48, 983–984.

    CAS  CrossRef  Google Scholar 

  • Portman, O.W., Alexander, M. 1976. Influence of lysophosphatidyl choline on the metabolism of plasma lipoproteins. Biochim. Biophys. Acta 450, 322–334.

    CAS  Google Scholar 

  • Posner, I., Bermúdez, D. 1977. Lipoprotein lipase stabilization by a factor of bovine milk. Acta Cient. Venez. 28, 277–283.

    CAS  Google Scholar 

  • Rajesh, P., Kanawjia, S.K. 1990. Flavor enhancement in buffalo milk Gouda cheese. Indian J. Dairy Sci. 43, 614–619.

    Google Scholar 

  • Ram, M., Joshi, V.K. 1989. Effect of addition of proteose-peptone components-3,-5 and-8 on inhibition of lipolysis in buffalo milk. Indian J. Dairy Sci. 42, 771–774.

    CAS  Google Scholar 

  • Rapp, D., Olivecrona, T. 1978. Kinetics of milk lipoprotein lipase. Studies with tributyrin. Eur. J. Biochem. 91, 379–385.

    CAS  CrossRef  Google Scholar 

  • Rasmussen, M.D., Frimer, E.S., Horvath, Z., Madsen, N.P., Klastrup, O., Jensen, N.E. 1988. Milking system with separate air and milk transport. Effect on yield, milkability, milk quality, udder health and vacuum conditions. Dairy Sci. Abstr. 50, 232.

    Google Scholar 

  • Reddy, M.N., Maraganore, J.M., Meredith, S.C., Heinrikson, R.L., Kezdy, F.J. 1986. Isolation of an active-site peptide of lipoprotein lipase from bovine milk and determination of its amino acid sequence. J. Biol. Chem. 261, 9678–9683.

    CAS  Google Scholar 

  • Reed, A.W., Deeth, H.C., Clegg, D.E. 1984. Liquid chromatographic method for quantitative detemination of free fatty acids in butter. J. Assoc. Off. Anal. Chem. 67, 718–721.

    CAS  Google Scholar 

  • Reiner, D.S., Wang, C.-S., Gillen, F.D. 1986. Human milk kills Giardia lamblia by generating toxic lipolytic products. J. Infect. Dis. 154, 825–832.

    CAS  Google Scholar 

  • Ren, T.J., Frank, J.F., Christen, G.L. 1988. Characterization of lipase of Pseudomonas fluorescens 27 based on fatty acid profiles. J. Dairy Sci. 71, 1432–1438.

    CAS  Google Scholar 

  • Renner, E. 1988. Storage stability and some nutritional aspects of milk powders and ultra high temperature product at high ambient temperatures. J. Dairy Res. 55, 125–142.

    CAS  Google Scholar 

  • Rerkrai, S., Jeon, I.J., Bassette, R. 1987. Effect of various direct ultra high temperature heat treatments on flavor of commercially prepared milk. J. Dairy Sci. 70, 2046.

    CAS  Google Scholar 

  • Richardson, G.H., Nelson, J.H. 1967. Assay and characterization of pregastric esterase. J. Dairy Sci. 50, 1061–1065.

    CAS  CrossRef  Google Scholar 

  • Ro, H.-S., Hong, H.-P., Kho, B.-H., Kim, S., Chung, B.-H. 2004. Genome-wide cloning and characterization of microbial esterases. FEMS Microbiol. Letts 233, 97–105.

    CAS  CrossRef  Google Scholar 

  • Rowe, M.T., Johnston, D.E., Kilpatrick, D.J., Dunstall, G., Murphy, R.J. 1990. Growth and extracellular enzyme production by psychrotrophic bacteria in raw milk stored at a low temperature. Milchwissenschaft 45, 495–499.

    CAS  Google Scholar 

  • Safari, M., Kermasha, S. 1994. Interesterification of butterfat by commercial microbial lipases in a cosurfactant-free microemulsion system. J. Am. Oil Chem. Soc. 71, 969–973.

    CAS  CrossRef  Google Scholar 

  • Saito, Z. 1983. Lipolysis in cow’s milk. Proc. 5th World Conf. on Animal Prod. 2, 647–648.

    Google Scholar 

  • Saito, Z. 1992. Effects of lactation stage on lipolysis in individual cow’s milk. Jap. J. Dairy Food Sci. 41, 59–64.

    Google Scholar 

  • Saito, Z., Kim, G.Y. 1995. Effects of lactation stage on temperature-activated lipolysis and lipase activity in cow’s milk. Jap. J. Dairy Food Sci. 44, A139–A145.

    CAS  Google Scholar 

  • Salih, A.M.A., Anderson, M. 1978. Milk free fatty acids and high cell counts. Proc. 20th Int. Dairy Cong. (Paris) E, 32–33.

    Google Scholar 

  • Salih, A.M.A., Anderson, M. 1979. Observations on the influence of high cell count on lipolysis in bovine milk. J. Dairy Res. 46, 453–462.

    CAS  Google Scholar 

  • Salih, A.M.A., Anderson, M., Tuckley, B. 1977. The determination of short-and long-chain free fatty acids in milk. J. Dairy Res. 44, 601–605.

    CAS  Google Scholar 

  • Sbarra, V., Bruneau, N., Mas, E., Hamosh, M., Lombardo, D., Hamosh, P. 1998. Molecular cloning of the bile salt-dependent lipase of ferret lactating mammary gland: An overview of functional residues. Biochim. Biophy. Acta 1393, 80–89.

    CAS  Google Scholar 

  • Sammanwar, R.D., Ganguli, N.C. 1974. Lipase in buffaloes’ milk. Proc. 19th Int. Dairy Cong. (New Delhi) 1E, 349–350.

    Google Scholar 

  • Scanlan, R.A., Sather, L.A., Day, E.A. 1965. Contribution of free fatty acids to flavor of rancid milk. J. Dairy Sci. 48, 1582–1584.

    CAS  CrossRef  Google Scholar 

  • Scow, R.D., Egelrud, T. 1976. Hydrolysis of chylomicron phosphatidyl choline in vitro by lipoprotein lipase, phospholipase A2 and phospholipase C. Biochim. Biophys. Acta 431, 538–549.

    CAS  Google Scholar 

  • Selselet-Attou, G., Chilliard, Y., Bas, P., Morand-Fehr, P. 1984. Comparaison de deux méthodes de dosage des acides gras libres totaux du lait de chèvre. Lait 64, 72–84.

    CAS  CrossRef  Google Scholar 

  • Senda, M., Oka, K., Brown, W.V., Qasba, P.K. 1987. Molecular cloning and sequence of a cDNA coding for bovine lipoprotein lipase. Proc. Nat. Acad. Sci. USA 84, 4369–4373.

    CAS  CrossRef  Google Scholar 

  • Severina, L.O., Bashkatova, N.A. 1979. Isolation and properties of lipase from Pseudomonas fluorescens. Biochemistry (USSR) 44, 96–102.

    Google Scholar 

  • Shamsuzzaman, K., Modler, W., McKellar, R.C. 1987. Survival of lipase during manufacture of nonfat dry milk. J. Dairy Sci. 70, 746–751.

    CAS  Google Scholar 

  • Sharma, D., Bindal, M.P. 1987. GLC analysis of free fatty acids of cow and buffalo ghee without their prior isolation. Indian J. Dairy Sci. 40, 238–242.

    CAS  Google Scholar 

  • Shelley, A.W., Deeth, H.C., MacRae, I.C. 1986. Growth of lipolytic pschrotrophic pseudomonads in raw and ultra-heat-treated milk. J. Appl. Bacteriol. 61, 395–400.

    CAS  Google Scholar 

  • Shelley, A.W., Deeth, H.C., MacRae, I.C. 1987. A numerical taxonomic study of psychrotrophic bacteria associated with lipolytic spoilage of raw milk. J. Appl. Bacteriol. 62, 197–207.

    CAS  Google Scholar 

  • Shimada, K., Lanzillo, J.J., Douglas, W.H.J., Fanburg, B.L. 1982. Stabilization of lipoprotein lipase by endothelial cells. Biochim. Biophys. Acta 710, 117–21.

    CAS  Google Scholar 

  • Shimizu, M., Miyaji, H., Yamauchi, K. 1982. Inhibition of lipolysis by milk fat globule membrane materials in model milk fat emulsion. Agric. Biol. Chem. 46, 795–99.

    CAS  Google Scholar 

  • Shimizu, M., Yamauchi, K. 1983 Inhibition of lipolysis by milk fat globule membrane materials in model milk fat emulsion. Proc. Vth World Conf. Animal Prod. 2, 649–650.

    Google Scholar 

  • Shimizu, M., Yamauchi, K., Kanno, C. 1980. Effect of proteolytic digestion of the milk fat globule membrane proteins on stability of the globules. Milchwissenschaft 35, 9–12.

    CAS  Google Scholar 

  • Shipe, W.F., Senyk, G.F. 1981. Effects of processing conditions on lipolysis in milk. J. Dairy Sci. 64, 2146–2149.

    CAS  Google Scholar 

  • Shipe, W.F., Senyk, G.F., Boor, K.J. 1982. Inhibition of milk lipolysis by lambda carrageenan. J. Dairy Sci. 65, 24–27.

    CAS  Google Scholar 

  • Shipe, W.F., Senyk, G.F., Fountain, K.B. 1980. Modified copper soap solvent extraction method for measuring free fatty acids in milk. J. Dairy Sci. 63, 193–198.

    CAS  Google Scholar 

  • Shirai, K., Jackson, R.L. 1982. Lipoprotein lipase-catalyzed hydrolysis of p-nitrophenyl butyrate. J. Biol. Chem. 257, 1253–1258.

    CAS  Google Scholar 

  • Shukla, T.P., Tobias, J. 1970. Presence of phosphatidic acid and phospholipase-D in milk. J. Dairy Sci. 53, 637.

    Google Scholar 

  • Sjöström, G. 1959. Lipase problems in milk and dairy products. A review. Rep. Milk Dairy Res. Alnarp. 58.

    Google Scholar 

  • Slack, P. 1987. Analytical Methods Manual, 2nd edn, Leatherhead Food Research Association, Leatherhead, UK.

    Google Scholar 

  • Smeltzer, M.S., Hart, M.E., Indalo, J.J. 1992 Quantitative spectrophotometric assay for staphylococcal lipase. Appl. Environ, Microbiol. 58, 2815–2819.

    CAS  Google Scholar 

  • Somerharju, P., Kuusi, T., Paltauf, F., Kinnunen, P.K.J. 1978. Stereospecificity of lipoprotein lipase is an intrinsic property of the active site of the enzyme protein. FEBS Letts 96, 170–172.

    CAS  CrossRef  Google Scholar 

  • Sonoki, S., Ikezawa, H. 1975. Studies on phospholipase C from Pseudomonas aureofascens. I. Purification and some properties of phospholipase C. Biochim. Biophys. Acta 403, 412–424.

    CAS  Google Scholar 

  • Sørensen, E.S., Petersen, T.E. 1993 Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. J. Dairy Res. 60, 189–197.

    Google Scholar 

  • Sørhaug, T., Stepaniak, L. 1997. Psychrotrophs and their enzymes in milk and dairy products: quality aspects. Trends Food Sci. Technol. 8, 35–41.

    CrossRef  Google Scholar 

  • Spangelo, A., Karijord, Ø., Svensen, A., Abrahamsen, R.K. 1986. Determination of individual free fatty acids in milk by strong anion-exchange resin and gas chromatography. J. Dairy Sci. 69, 1787–1792.

    CAS  Google Scholar 

  • Speer, J.F., Watrous, G.H., Kesler, E.M. 1958. The relationship of certain factors affecting hydrolytic rancidity in milk. J. Milk Food Technol. 21, 33–37.

    Google Scholar 

  • Stadhouders, J. 1972. Technological aspects of the quality of raw milk. Neth. Milk Dairy J. 26, 68–90.

    CAS  Google Scholar 

  • Stadhouders, J., Veringa, H.A. 1973. Fat hydrolysis by lactic acid bacteria in cheese. Neth. Milk Dairy J. 27, 77–91.

    Google Scholar 

  • Stannard, D.J. 1975. The use of marker enzymes to assay the churning of milk. J. Dairy Res. 42, 241–246.

    CAS  Google Scholar 

  • Stark, W., Urbach, G., Hamilton J.S. 1976. Volatile compounds in butteroil. IV. Quantitative estimation of free fatty acids and free δ-lactones in butteroil by cold-finger molecular distillation. J. Dairy Res. 43, 469–477.

    CAS  Google Scholar 

  • Stead, D., 1983. A fluorimetric method for the determination of Pseudomonas fluorescens AR11 lipase in milk. J. Dairy Res. 50, 491–502.

    CAS  Google Scholar 

  • Stead, D. 1984. Evaluation of a fluorimetric assay on the lipases from strains of milk psychrotrophic bacteria. J. Dairy Res. 51, 123–130.

    CAS  Google Scholar 

  • Stead, D. 1986. Microbial lipases: their characteristics, role in food spoilage and industrial uses. J. Dairy Res. 53, 481–505.

    CAS  Google Scholar 

  • Stead, D. 1987. Production of extracellular lipases and proteinases during prolonged growth of strains of psychrotrophic bacteria in whole milk. J. Dairy Res. 54, 535–43.

    CAS  Google Scholar 

  • Stead, D. 1989. Assay methods for lipases and phospholipases. In: Enzymes of Psychrotrophs in Raw Food (R.C. McKellar, ed.), pp. 173–187, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Stepaniak, L., Birkeland, S.-E., Sørhaug, T., Vagias, G. 1987a. Isolation and partial characterization of heat stable proteinase, lipase and phospholipase C from Pseudomonas fluorescens P1. Milchwissenschaft 42, 75–79.

    CAS  Google Scholar 

  • Stepaniak, L., Birkeland, S.-E., Vagias, G., Sørhaug, T. 1987b. Enzyme-linked immunosorbant assay ELISA for monitoring the production of heat stable proteinases and lipase from Pseudomonas. Milchwissenschaft 42, 168–172.

    CAS  Google Scholar 

  • Stepaniak, L., Sørhaug, T. 1989. Biochemical classification. In: Enzymes of Psychrotrophs in Raw Food (R.C. McKellar, ed.), pp. 35–55, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Stepaniak, L., Sørhaug, T. 1995. Thermal denaturation of bacterial enzymes in milk. In: Heat Induced Changes in Milk (P.F. Fox, ed.), pp. 349–364, Special Issue 9501, International Dairy Federation, Brussels.

    Google Scholar 

  • Stern, K.K., Foegeding, E.A., Hansen, A.P. 1988. Inhibition of lipolytic activity in milk by polysaccharides. J. Dairy Sci. 71, 41–45.

    CAS  Google Scholar 

  • Stevenson, R.G., Rowe, M.T., Wisdom, G.B., Kilpatrick, D. 2003. Growth kinetics and hydrolytic enzyme production of Pseudomonas spp. isolated from pasteurized milk. J. Dairy Res. 70, 293–296.

    CAS  CrossRef  Google Scholar 

  • Stewart, D.B., Murray, J.G., Neill, S.D. 1975. Lipolytic activity of organisms isolated from refrigerated bulk milk. Document 86, International Dairy Federation, Brussels, pp. 38–50.

    Google Scholar 

  • Stobbs, T.H., Deeth, H.C., Fitz-Gerald, C.H. 1973. Effects of energy intake on spontaneous lipolysis in milk from cows in late lactation. Aust. J. Dairy Technol. 28, 170–172.

    CAS  Google Scholar 

  • Stocks, J., Galton, D.J. 1980. Activation of the phospholipase A1 activity of lipoprotein lipase by apoprotein C-II. Lipids 15, 186–190.

    CAS  CrossRef  Google Scholar 

  • Stone, M.J. 1952. The action of the lecithinase of Bacillus cereus on the globule membrane of milk fat. J. Dairy Res. 19, 311–315.

    CAS  Google Scholar 

  • Störgards, T., Magnusson, F. 1966. Die Eigenschaften des Butterungsrahms von Milch, die jeden zweiten Tag durch Tankwagen eingesammelt wird, and ihre Einwirkung auf die Güte der Butter. Proc. 17th Int. Dairy Cong. (Munich) C, 173–178.

    Google Scholar 

  • Sugiura, M., Isobe, M. 1975. Effects of temperature and state of substrate on rate of hydrolysis of glycerides by lipase. Chem. Pharm. Bull. 23, 681–683.

    CAS  Google Scholar 

  • Sugiura, M., Oikawa, T. 1977. Physicochemical properties of a lipase from Pseudomonas fluorescens. Biochim. Biophys. Acta 489, 262–268.

    CAS  Google Scholar 

  • Sugiura, M., Oikawa, T., Hirano, K., Inukai, T. 1977. Purification, crystallization and properties of triacylglycerol lipase from Pseudomonas fluorescens. Biochim. Biophys. Acta 488, 353–358.

    CAS  Google Scholar 

  • Suhren, G. 1983. Beziehungen zwischen den Ergibnissen der FFA-Bestimmung nach der Auto-Analyzer-und BLM-Methode. Deutsch. Milchwirtsch. 34, 214.

    Google Scholar 

  • Suhren, G., Reichmuth, J. 1990. Free fatty acid content in farm bulk milk-a field study. In: Proc. 23rd Int. Dairy Cong. (Montreal) Brief Commun. 1, 69 (abstr).

    Google Scholar 

  • Suhren, G., Heeschen, W., Tolle, A. 1977. Automated measurement of free fatty acids in continuous flow analysis. Milchwissenschaft 32, 641–643.

    CAS  Google Scholar 

  • Suhren, G., Hamann, J., Heeschen, W., Tolle, A. 1981. On the influence of animal individual factors, the udder fractions and the milking interval on the content of free fatty acids in raw milk. Milchwissenschaft 36, 150–153.

    CAS  Google Scholar 

  • Sundheim, G. 1988. Spontaneous lipolysis in bovine milk: combined effects of cream, skim milk, and lipoprotein lipase activity. J. Dairy Sci. 71, 620–626.

    CAS  Google Scholar 

  • Sundheim, G., Bengtsson-Olivecrona, G. 1985. Lipolysis in milk induced by cooling or by heparin: comparisons of amount of lipoprotein lipase in the cream fraction and degree of lipolysis. J. Dairy Sci. 68, 589–593.

    CAS  Google Scholar 

  • Sundheim, G., Bengtsson-Olivecrona, G. 1987a. Isolated milk fat globules as substrate for lipoprotein lipase: study of factors relevant to spontaneous lipolysis in milk. J. Dairy Sci. 70, 499–505.

    CAS  Google Scholar 

  • Sundheim, G., Bengtsson-Olivecrona, G. 1987b. Hydrolysis of bovine milk fat globules by lipoprotein lipase: inhibition by proteins extracted from milk fat globule membrane. J. Dairy Sci. 70, 1815–1821.

    CAS  Google Scholar 

  • Sundheim, G., Bengtsson-Olivecrona, G. 1987c. Methods to assess the propensity of milk fat globules toward lipolysis and the ability of skim milk to inhibit lipolysis. J. Dairy Sci. 70, 2040–2045.

    CAS  Google Scholar 

  • Sundheim, G., Bengtsson-Olivecrona, G. 1987d. Hydrolysis of bovine and caprine milk fat globules by lipoprotein lipase. Effects of heparin and of skim milk on lipase distribution and on lipolysis. J. Dairy Sci. 70, 2467–2475.

    CAS  Google Scholar 

  • Sundheim, G., Zimmer, T.-L., Astrup, H.N. 1983. Induction of milk lipolysis by lipoprotein components of bovine blood serum. J. Dairy Sci. 66, 400–406.

    CAS  Google Scholar 

  • Swaisgood, H.E., Bozoğlu, F. 1984. Heat inactivation of the extracellular lipase from Pseudomonas fluorescens MC50. J. Agric. Food Chem. 32, 7–10.

    CAS  CrossRef  Google Scholar 

  • Swan, J.S., Hoffman, M.M., Lord, M.L., Poechmann, J.L. 1992. Two forms of human milk bile-salt-stimulated lipase. Biochem. J. 283, 119–122.

    CAS  Google Scholar 

  • Takacs, F., Jeon, I.J., Ikins, W.G. 1989. Involvement of free fatty acids in the stale flavor development of UHT milk. J. Dairy Sci. 72, 167.

    Google Scholar 

  • Tallamy, P.T., Randolph, H.E. 1969. Influence of mastitis on properties of milk. IV. Hydrolytic rancidity. J. Dairy Sci. 52, 1569–1572.

    CAS  CrossRef  Google Scholar 

  • Tang, J.J.N., Wang, C.-S. 1989. Dietary compositions and methods using bile salt-activated lipase. Dairy Sci. 52, 45 (abstr).

    Google Scholar 

  • Tarassuk, N.P. 1940. The cause and control of rancid flavor in milk. Dairy Sci. 2, 183 (abstr).

    Google Scholar 

  • Tarassuk, N.P., Frankel, E.N. 1955. On the mechanism of activation of lipolysis and the stability of lipase systems of normal milk. J. Dairy Sci. 38, 438–439.

    CAS  CrossRef  Google Scholar 

  • Tarassuk, N.P., Frankel, E.N. 1957. The specificity of milk lipase. IV. Partition of the lipase system in milk. J. Dairy Sci. 40, 418–430.

    CAS  CrossRef  Google Scholar 

  • Tarassuk, N.P., Henderson, J.L. 1942. Prevention of development of hydrolytic rancidity in milk. J. Dairy Sci. 25, 801–806.

    CAS  CrossRef  Google Scholar 

  • Tarassuk, N.P., Laben, R.C., Yaguchi, M. 1962. Effect of feeding regime on susceptibility of milk to the development of hydrolytic rancidity. Proc. 16th Int. Dairy Cong. (Copenhagen) A, 609–615.

    Google Scholar 

  • Tarassuk, N.P., Regen, W.M. 1943. A study of the blood carotene in relation to lipolytic activity of milk. J. Dairy Sci. 26, 987–996.

    CAS  CrossRef  Google Scholar 

  • Tarassuk, N.P., Richardson, G.A. 1941. Inhibition of lipase activity in raw milk. Science 93, 310–311.

    CAS  CrossRef  Google Scholar 

  • Tarassuk, N.P., Smith, F.R. 1940. Relation of surface tension of rancid milk to its inhibitory effect on the growth and acid fermentation of Streptococcus lactis. J. Dairy Sci. 23, 1163–1170.

    CAS  CrossRef  Google Scholar 

  • Tarassuk, N.P., Yaguchi, M. 1958. Effect of mastitis on susceptibility of milk to lipolysis. J. Dairy Sci. 41, 1482.

    CrossRef  Google Scholar 

  • Te Whaiti, I.E., Fryer, T.F. 1976. The influence of free fat on lipolysis in milk. N.Z. J. Dairy Sci. Technol. 11, 273–274.

    Google Scholar 

  • Te Whaiti, I.E., Fryer, T.F. 1978. Production and heat stability in milk of proteinases and lipases of psychrotrophic pseudomonads. Proc. 20th Int. Dairy Cong. (Paris) E, 303–304.

    Google Scholar 

  • Thomas, S.B., Druce, R.G. 1971. Psychrotrophic micro-organisms in butter. A review. Dairy Ind. 36, 75–80, 145–50.

    Google Scholar 

  • Thomas, E.L., Nielsen, A.J., Olson, J.C. 1955. Hydrolytic rancidity in milk. A simplified method for estimating the extent of its development. Am. Milk Rev. 17(1), 50–52, 85.

    Google Scholar 

  • Thomas, S.B., Thomas, B.F. 1978. The bacterial content of milking machines and pipeline milking plants. Dairy Ind. Int. 43(10), 5, 7–8, 10.

    Google Scholar 

  • Thomson, C.A., Delaquis, P.J., Mazza, G. 1999. Detection and measurement of microbial lipase activity: a review. CRC Crit. Rev. Food Sci. Nutr. 39, 165–187.

    CAS  CrossRef  Google Scholar 

  • Tomasini, A., Bustillo, G., Lebeault, J.M. 1993, Fat lipolysed with a commercial lipase for the production of Blue cheese flavor. Int. Dairy J. 3, 117–127.

    CAS  CrossRef  Google Scholar 

  • Tuckey, S.L., Stadhouders, J. 1967. Increase in sensitivity of organoleptic detection of lipolysis in cow’s milk by culturing or direct acidification. Neth. Milk Dairy J. 21, 158–165.

    CAS  Google Scholar 

  • Trujillo, A.J., Royo, C., Guamis, B., Ferragut, V. 1999. Influence of pressurization on goat milk and cheese composition and yield. Milchwissenschaft 54, 197–199.

    CAS  Google Scholar 

  • Ukeda, H., Wagner, G., Bilitewski, U., Schmid, R.D. 1992. Flow injection analysis of short-chain fatty acids in milk based on a microbial electrode. J. Agric. Food Chem. 40, 2324–2327.

    CAS  CrossRef  Google Scholar 

  • Urbach, G. 1993. Relationships between cheese flavor and chemical composition. Int. Dairy J. 3, 389–422.

    CAS  CrossRef  Google Scholar 

  • Urquhart, A., Cadden, A.M., Jelen, P. 1984. Quality of milk and butter related to canola-based protected lipid feed supplement. Milchwissenschaft 39, 1–6.

    Google Scholar 

  • Van Crombrugge, J., Bossuyt, R., Van Renterghem, R. 1982. FrÉvaluation de quelques méthodes de détermination de la lipolyse dans le lait cru. Rev. Agric. 35, 3313–3325.

    Google Scholar 

  • van de Voort, F.R., Kermasha, S., Smith, J.P., Mills, B.L., Ng-Kwai-Hang, K.F. 1987. A study of the stability of record of performance milk samples for infrared milk analysis. J. Dairy Sci. 70, 1515–1523.

    Google Scholar 

  • Van den Heever, L.W., Kowalski, Z.E., Olivier, M. 1990. Initial and developed free fatty acid concentrations in milk from paired normal and septic subclinically mastitic udder quarters. J. S. Afr. Vet. Assoc. 61, 50–54.

    Google Scholar 

  • van Reusel, A. 1975. Influence of lipolysis on milko-tester analysis. Document 86, International Dairy Federation, Brussels, pp. 185–186.

    Google Scholar 

  • Veeraragavan, K. 1990. A simple and sensitive method for the estimation of microbial lipase activity. Anal. Biochem. 186, 301–305.

    CAS  CrossRef  Google Scholar 

  • Verhaeghe, D., Ferijn, H., Huyghebaert, A., de Moor, H. 1990. Controlled lipolysis of milk fat with Rhizopus arrhizus lipase. Milchwissenschaft 45, 275–278.

    CAS  Google Scholar 

  • Versaw, W.K., Cuppett, S.L., Winters, D.D., Williams, L.E. 1989. An improved colorimetric assay for bacterial lipase in nonfat dry milk. J. Food Sci. 54, 1557–1558.

    CAS  CrossRef  Google Scholar 

  • Vercet, A., Lopez, P., Burgos, J. 1997. Inactivation of heat-resistant lipase and protease from Pseudomonas fluorescens by manothermosonication. J. Dairy Sci. 80, 29–36.

    CAS  CrossRef  Google Scholar 

  • Vlaemynck, G. 1992. Study of lipolytic activity of the lipoprotein lipase in lunch cheese of the Gouda type. Milchwissenschaft 47, 164–167.

    CAS  Google Scholar 

  • Wallinder, L., Bengtsson, G., Olivecrona, T. 1982. Purification and properties of lipoprotein lipase in guinea pig milk. Biochim. Biophys. Acta 711, 107–113.

    CAS  Google Scholar 

  • Wang, C.-S., Kuksis, A., Manganaro, F., Myher, J.J., Downs, D., Bass, H.B. 1983. Studies on the substrate specificity of purified human milk bile salt-stimulated lipase. J. Biol. Chem. 258, 9197–9202.

    CAS  Google Scholar 

  • Wang, C.-S. 1991. Acyl-chain specificity of human milk bile-salt-activated lipase. Biochem. J. 279, 297–302.

    CAS  Google Scholar 

  • Wang, C.-S., Martindale, M.E., King., M.M., Tang, J. 1989. Bile-salt-activated lipase: effect on kitten growth rate. Am. J. Clin. Nutr. 49, 457–463.

    CAS  Google Scholar 

  • Wang, L., Jayarao, B.M. 2001. Phenotypic and genotypic characterization of Pseudomonas fluorescens isolated from bulk tank milk. J. Dairy Sci. 84, 1421–1429.

    CAS  Google Scholar 

  • Wang, L., Randolph, H.E. 1978. Activation of lipolysis. I. Distribution of lipase activity in temperature activated milk. J. Dairy Sci. 61, 874–880.

    CAS  Google Scholar 

  • Weltzien, H.U. 1979. Cytolytic and membrane-perturbing properties of lysophosphatidyl choline. Biochim. Biophys. Acta 559, 259–287.

    CAS  Google Scholar 

  • Whittlestone, W.G., Lascelles, A.K. 1962. Hydrolytic rancidity in milk and agitation in the milking machine. Aust. J. Dairy Technol. 17, 131–134.

    CAS  Google Scholar 

  • Willart, S., Sjöström, G. 1966. The effect of cooling and freezing on the lipolysis in raw milk. Proc. 17th Int. Dairy Cong. (Munich) A, 287–295.

    Google Scholar 

  • Williamson, S., Finucane, E., Ellis, H., Gamsu, H.R. 1978. Effect of treatment of human milk on absorption of nitrogen, fat, sodium, calcium and phosphorus by preterm infants. Arch. Dis. Child. 53, 555–563.

    CAS  CrossRef  Google Scholar 

  • Woo, A.H., Kollodge, S., Lindsay, R.C. 1984. Quantification of major free fatty acids in several cheese varieties. J. Dairy Sci. 67, 874–878.

    CAS  Google Scholar 

  • Woo, A.H., Lindsay, R.C. 1980. Method for the routine quantitative gas chromatographic analysis of major free fatty acids in butter and cream. J. Dairy Sci. 63, 1058–1064.

    CAS  Google Scholar 

  • Woo, A.H., Lindsay, R.C. 1983a. Statistical correlation of quantitative flavor intensity assessments and individual free fatty acid measurements for routine detection and prediction of hydrolytic rancidity off-flavors in butter. J. Food Sci. 48, 1761–1766.

    CAS  CrossRef  Google Scholar 

  • Woo, A.H., Lindsay, R.C. 1983b. Stepwise discriminant analysis of free fatty acid profiles for identifying sources of lipolytic enzymes in rancid butter. J. Dairy Sci. 66, 2070–2075.

    CAS  Google Scholar 

  • Woo, A.H., Lindsay, R.C. 1984. Concentration of major free fatty acids and flavor development in Italian cheese varieties. J. Dairy Sci. 67, 960–968.

    CAS  Google Scholar 

  • Yang, B., Harper, W.J., Parkin, K.L., Chen, J. 1994, Screening of commercial lipases for production of mono and diacylglycerols from butteroil by enzyme glycerolysis. Int. Dairy J. 4, 1–13.

    CrossRef  Google Scholar 

  • Zwaal, R.F.A., Roelofsen, B., Comfurius, P., Van Deenen, L.L.M. 1971. Complete purification and some properties of phospholipase C from Bacillus cereus. Biochim. Biophys. Acta 233, 474–479.

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Deeth, H.C., Fitz-Gerald, C.H. (2006). Lipolytic Enzymes and Hydrolytic Rancidity. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry Volume 2 Lipids. Springer, Boston, MA. https://doi.org/10.1007/0-387-28813-9_15

Download citation