Advertisement

Composition and Structure of Bovine Milk Lipids

  • A. K. H. MacGibbon
  • M. W. Taylor

Keywords

Fatty Acid Composition Conjugated Linoleic Acid Human Milk Bovine Milk Milk Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Alston-Mills, B.P. 1995. Comparative analysis of non-human milks. C. Comparative analysis of milks used for human consumption. In: Handbook of Milk Composition (R.G. Jensen, ed.), pp. 828–855, Academic Press, San Diego, CA.Google Scholar
  2. Andreotti, G., Lamanna, R., Trivellone, E., Motta, A. 2002. 13C NMR spectra of TAG: An easy way to distinguish milks from different animal species. J. Am. Chem. Soc., 79, 123–127.CrossRefGoogle Scholar
  3. Auldist, M.J., Walsh, B.J., Thomson, N.A. 1998. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res., 65, 401–411.CrossRefGoogle Scholar
  4. Barron, L.J.R., Hierro, M.T.G., Santa-Maria, G. 1990. HPLC and GC analysis of the triglyceride composition of bovine, ovine and caprine milk fat. J. Dairy Res., 57, 517–526.Google Scholar
  5. Bauman, D.E., Baumgard, L.H., Corl, B.A., Griinari, J.M. 1999. Biosynthesis of conjugated linoleic acid in ruminants. Proc. Am. Soc. Anim. Sci., 1999. Avaliable at http://www.asas.org/jas/symposia/proceedings/0937.pdfGoogle Scholar
  6. Beaulieu, A.D., Palmquist, D.L. 1995. Differential effects of high fat diets on fatty acid composition in milk of Jersey and Holstein cows. J. Dairy Sci., 78, 1336–1344.Google Scholar
  7. Bendall, J.G. 2001. Aroma compounds of fresh milk from New Zealand cows fed different diets. J. Agric. Food. Chem., 49, 4825–4832.CrossRefGoogle Scholar
  8. Bernassi, R., 1963. Sulla composizione del grasso de lette di Pecora. II. Latte, 36, 468–470.Google Scholar
  9. Bitman, J., Wood, D.L. 1990. Changes in milk phospholipids during lactation. J. Dairy Sci., 73, 1208–1216.Google Scholar
  10. Bode, L., Beermann, C., Mank, M., Kohn, G., Boehm, G. 2004. Human and bovine gangliosides differ in their fatty acid composition. J. Nutr., 134, 3016–3020.Google Scholar
  11. Brechany, E.Y., Christie, W.W. 1992. Identification of the saturated oxo fatty acids in cheese. J. Dairy Res., 59, 57–64.Google Scholar
  12. Breckenridge, W.C., Kuksis, A. 1968. Structure of bovine milk fat triglycerides. I. Short and medium chain lengths. Lipids, 3, 291–300.CrossRefGoogle Scholar
  13. Breckenridge, W.C., Kuksis, A. 1969. Structure of bovine milk fat triglycerides. II. Long chain lengths. Lipids, 4, 197–204.CrossRefGoogle Scholar
  14. Breckenridge, W.C., Marai, L., Kuksis, A. 1969. Triglyceride structure of human milk fat. Can. J. Biochem., 47, 761–769.Google Scholar
  15. Buss, D.H., Jackson, P.A., Scuffam, D. 1984. Composition of butters on sale in Britain. J. Dairy. Res., 51, 637–641.Google Scholar
  16. Byrdwell, W.C. 2001. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids, 36, 327–345.CrossRefGoogle Scholar
  17. Chen, S., Bobe, G., Zimmerman, S., Hammond, E.G., Luhman, C.M., Boylston, T.D., Freeman, A.E., Beitz, D.C. 2004. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem., 52, 3422–3428.CrossRefGoogle Scholar
  18. Chen, Z.Y., Nawar, W.W. 1991. Prooxidation and antioxidative effects of phospholipids in milk fat. J. Am. Oil Chem. Soc., 68, 938–940.Google Scholar
  19. Christie, W.W. 1978. The composition, structure and function of lipids in the tissues of ruminant animals. Prog. Lipid Res., 17, 111–205.Google Scholar
  20. Christie, W.W. 1995. Composition and structure of milk lipids. In, Advanced Dairy Chemistry. 2: Lipids. 2nd edn, (P.F. Fox, ed.), pp. 1–36, Chapman and Hall, London.Google Scholar
  21. Christie, W.W., Clapperton, J.L. 1982. Structures of the triglycerides of cows’ milk, fortified milks (including infant formulae), and human milk. J. Soc. Dairy Technol., 35, 22–24.Google Scholar
  22. Christie, W.W., Moore, J.H. 1970. A comparison of the structures of triglycerides from various pig tissues. Biochim. Biophys. Acta, 210, 46–56.Google Scholar
  23. Christie, W.W., Noble, R.C., Davies, C. 1987. Phospholipids in milk and dairy products. J. Soc. Dairy Technol., 40, 10–12.Google Scholar
  24. Creamer, L.K., MacGibbon, A.K.H. 1996. Some recent advances in the basic chemistry of milk proteins and lipids. Int. Dairy J., 6, 539–568.CrossRefGoogle Scholar
  25. Currie, G.J., Kallio, H. 1993. Triacylglycerols of human milk: rapid analysis by ammonia negative ion tandem mass spectrometry. Lipids, 28, 217–221.CrossRefGoogle Scholar
  26. Deeth, H.C. 1997. The role of the phospholipids in the stability of milk fat globules. Aust. J. Dairy Technol., 52, 44–46.Google Scholar
  27. Elagamy, E.I. 2003. Properties of milk and milk fats from species other than cow. In, Oils and Fats Volume 3-Dairy Fats (B. Rossell, ed.), pp. 27–65, Leatherhead International Ltd, Leatherhead, UK.Google Scholar
  28. European Commission. 1999. Reference method for the detection of foreign fats in milk fat by gas chromatographic analysis of triglycerides — revision 1. Commission Regulation (EC) No 2771/1999 Annex II. Official Journal of the European Communities L 333/23.Google Scholar
  29. Fagan, P., Wijesundera, C. 2004. Liquid chromatographic analysis of milk phospholipids with on-line pre-concentration. J. Chrom. A, 1054, 241–249.CrossRefGoogle Scholar
  30. Fontecha, J. Diaz, V. Fraga, M.J., Juarez, M. 1998. Triglyceride analysis by gas chromatography in assessment of authentic goat milk fat. J. Am. Oil Chem. Soc., 75, 1893–1896.Google Scholar
  31. Glass, R.L., Troolin, H.A., Jenness, R. 1967. Comparative biochemical studies of milk — IV. Constituent fatty acids of milk fats. Comp. Biochem. Physiol., 22, 415–425.CrossRefGoogle Scholar
  32. Gnan, S.O., Sheriha, A.M. 1981. Composition of Libyan camel’s milk. Aust. J. Dairy Technol., 41, 33–35.Google Scholar
  33. Goudjil, H., Fontecha, J., Fraga, M.J., Jurez, M. 2003. TAG composition of ewe’s milk fat. Detection of foreign fats. J. Am. Oil Chem. Soc., 80, 219–222.CrossRefGoogle Scholar
  34. Gresti, J., Bugaut, M., Maniogui, C., Bezard, J. 1993. Composition of molecular species of triacylglycerols in bovine milk fat. J. Dairy Sci., 76, 1850–1869.CrossRefGoogle Scholar
  35. Grummer, R.R. 1991. Effect of feed on the composition of milk fat. J. Dairy Sci., 74, 3244–3257.Google Scholar
  36. Ha, Y.L., Grimm, N.K. Pariza, M.W. 1987. Anticarcinogens from fried ground beef: heat altered derivatives of linoleic acid. Carcinogenesis. 8, 1881–1887.CrossRefGoogle Scholar
  37. Haroon, Y., Shearer, M.J., Rahim, S., Gunn, W.G., McEnery, G., Barkhan, P. 1982. The content of phylloquinone (vitamin K1) in human milk, cow’s milk and infant formula foods determined by high-performance liquid chromatography. J. Nutr., 112, 1105–1117.Google Scholar
  38. Hawke, J.C., Taylor, M.W. 1995. Influence of nutritional factors on the yield, composition and physical properties of milk fat. In, Advanced Dairy Chemistry. 2: Lipids. 2nd edn (P.F. Fox, ed.), pp. 37–88, Chapman and Hall, London.Google Scholar
  39. Hebeisen, D.F., Hoeflin, F., Reusch, H.P., Junker, E., Lauterburg, B.H. 1993. Increased concentrations of omega-3 fatty acids in milk and platelet rich plasma of grass-fed cows. Int. J. Vitam. Nutr. Res., 63, 229–233.Google Scholar
  40. Huang, T.C., Kuksis, A. 1967. A comparative study of the lipids of globular membrane and fat core and of the milk serum of cows. Lipids, 2, 453–470.CrossRefGoogle Scholar
  41. Huyghebaert, A., Hendrickx, H. 1971. Studies on Belgian butterfat 3. The fatty acid composition. Milchwissenschaft, 26, 613–617.Google Scholar
  42. IDF 1986. Production and utilisation of ewe’s and goat’s milk. Bulletin No. 202/1986, International Dairy Federation, Brussels.Google Scholar
  43. IDF 1996. Production and utilisation of ewe’s and goat’s milk. Proceedings of the IDF/CIRVAL seminar, Crete (Greece) October 1995, International Dairy Federation, Brussels.Google Scholar
  44. IDF 2002. Milk fat — determination of the fatty acid composition by gas-liquid chromatography. Standard 184 (ISO 15885), International Dairy Federation, Brussels.Google Scholar
  45. Iverson, J.L., Sheppard, A.J. 1986. Determination of fatty acids in butterfat using temperature programmed gas chromatography of the butyl esters. Food Chem., 21, 223–234.CrossRefGoogle Scholar
  46. Iverson, S.J., Oftedal, O.T. 1995. Comparative analysis of non-human milks. A. Philogenetic and ecological variation in the fatty acid composition of milks, in, Handbook of Milk Composition (R.G. Jensen, ed.), pp. 789–827, Academic Press, San Diego, CA.Google Scholar
  47. Iverson, S.J., Arnould, J.P.Y., Boyd, I.L. 1997. Milk fatty acid signatures indicate both major and minor shifts in diet of lactating Antarctic fur seals. Can. J. Zool., 75, 188–197.Google Scholar
  48. Jenkins, T.C. 1993. Lipid metabolism in the rumen. J. Dairy Sci., 76, 3851–3863.CrossRefGoogle Scholar
  49. Jenness, R. 1974. The composition of milk. In, Lactation. III, (B.L. Larson, V.R. Smith, eds.), pp. 3–107, Academic Press, New York.Google Scholar
  50. Jenness, R., Sloan, R.E. 1970. The composition of milks of various species: a review. Dairy Sci Abstr., 32, 599–612.Google Scholar
  51. Jensen, R.G. 1988. The Lipids of Human Milk, CRC Press, Boca Raton, Florida.Google Scholar
  52. Jensen, R.G. 2000. Fatty acids in milk and dairy products. In, Fatty Acids in Foods and their Health Implications. 2nd edn (C.K. Chow, ed.), pp. 109–123, Marcel Dekker Inc., New York, NY.Google Scholar
  53. Jensen, R.G. 2002. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci., 85, 295–350.CrossRefGoogle Scholar
  54. Jensen, R.G., Clark, R.W. 1988. Lipid composition and properties. In, Fundamentals of Dairy Chemistry, 3rd edn (N.P. Wong, R. Jenness, M. Keeney, E.H. Marth, eds.), pp. 171–213, Van Nostrand, New York.Google Scholar
  55. Jensen, R.G., Newberg, D.S. 1995. Milk Lipids B. Bovine milk lipids. In, Handbook of Milk Composition (R.G. Jensen, ed.), pp. 543–575, Academic Press, San Diego, CA.Google Scholar
  56. Jensen, R.G., Bitman, J., Carlson, S.E., Couch, S.C., Hamosh, M., Newberg, D.S. 1995. Milk lipids A. Human milk lipids. In, Handbook of Milk Composition (R.G. Jensen, ed.), pp. 495–542, Academic Press, San Diego, CA.Google Scholar
  57. Jensen, S.K., Nielsen, K.N. 1996. Tocopherols, retinol, β-carotene, and fatty acids in the globule membrane and fat globule core in cows’ milk. J. Dairy Res., 63, 566–574.Google Scholar
  58. Kalo, P., Kemppinen, A., Ollilainen, V., Kuksis, A. 2004. Regiospecific determination of shortchain triacylglycerols in butterfat by normal-phase HPLC with on-line electrospray-tandem mass spectrometry. Lipids, 39, 915–928.CrossRefGoogle Scholar
  59. Karlsson, A.A., Mitchelsen, P., Odham, G. 1998. Molecular species of sphingomyelin: determination by HPLC/MS with electrospray and HPLC/MS/MS with atmospheric pressure chemical ionization. J. Mass Spectrom., 33, 1192–1198.CrossRefGoogle Scholar
  60. Kataoka, K., Nakae, T. 1973. Comparative studies of milk constituents of various mammals in Japan. VIII. Comparison in phospholipids composition of the milk from various mammals. Japan. J. Dairy Sci., 22, 137–142.Google Scholar
  61. Keenan, T.W., Dylewski, D.P. 1995. Intracellular origin of milk lipid globules and the nature and structure of the milk lipid globule membrane. In, Advanced Dairy Chemistry. 2: Lipids. 2nd edn (P.F. Fox, ed.), pp. 89–130, Chapman and Hall, London.Google Scholar
  62. Kerwin, J.L., Tuininga, A.R., Ericsson, L.H. 1994. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J. Lipid Res., 35, 1102–1114.Google Scholar
  63. Kinsella, J.E., Houghton, G. 1975. Phospholipids and fat secreation by cows on normal and low fiber diets: lactational trends. J. Dairy Sci., 58, 1288–1293.CrossRefGoogle Scholar
  64. Kuksis, A., Marai, L., Myher, J.J. 1973. Triglyceride structure of milk fats. J. Am. Oil. Chem. Soc., 50, 193–201.Google Scholar
  65. Laakso, P., Kallio, H. 1993. Triacylglycerols of winter butterfat containing configurational isomers of monoenoic fatty acyl residues. I. Disaturated monoenoic triacylglycerols. J. Am. Oil Chem. Soc., 70, 1161–1171.CrossRefGoogle Scholar
  66. Laakso, P., Manninen, P. 1997. Identification of milk fat triacylglycerols by capillary supercritical fluid chromatography-atmospheric pressure chemical ionization mass spectrometry. Lipids, 32, 1285–1295.CrossRefGoogle Scholar
  67. Lindmark-Mansson, H., Fonden, R., Pettersson, H-E. 2003. Composition of Swedish dairy milk. Int. Dairy J., 13, 409–425.CrossRefGoogle Scholar
  68. Lok, C.M. 1979. Identification of chiral diacylglycerols in fresh milk fat. Receuil, J. Roy. Neth. Chem. Soc., 98, 92–95.Google Scholar
  69. MacGibbon, A.K.H. 1988. Thermal analysis of milkfat and butter. Chemistry in New Zealand. 52, 59Google Scholar
  70. MacGibbon, A.K.H., McLennan, W.D. 1987. Hardness of New Zealand patted butter: seasonal and regional variations. N.Z. J. Dairy Sci. Technol., 22, 143–156.Google Scholar
  71. MAFF 1999, Nutrient analysis of other milks and creams. In, Archive — food surveillance information sheets, Number 178 May 1999, U.K. Food Standards Agency. Available at http://archive.food.gov.uk/maff/archive/food/infsheet/1999/no178/178milk.htm Google Scholar
  72. Martin, M-J., Martin-Sosa, S., Hueso, P. 2001. Bovine milk gangliosides: Changes in ceramide moiety with stage of lacation. Lipids. 36, 291–298.CrossRefGoogle Scholar
  73. McBean, L.D., Speckmann, E.W. 1988. Nutritive value of dairy foods in, Fundamentals of Dairy Chemistry. 3rd edn (N.P. Wong, R. Jenness, M. Keeney, E.H. Marth, eds.), pp. 343–407, Van Nostrand, New York.Google Scholar
  74. Mellies, M.J., Ishikawa, T.T., Gartside, P., Burton, K., MacGee, J., Allen, K., Steiner, P.M., Brady, D., Glueck, C.J. 1978. Effects of varying maternal dietary cholesterol and phytosterol in lactating women and their infants. Am. J. Clin. Nutr., 31, 1347–1354.Google Scholar
  75. Mensink, R.P., Katan, M.B. 1993. Trans monounsaturated fatty acid in nutrition and their impact on serum lipoprotein levels. Prog. Lipid Res., 32, 111–122.CrossRefGoogle Scholar
  76. Mincione, B., Spagna Musso, S., De Franciscus, G. 1977. Studies on the different species. Sterol content of cow’s milk. Milchwissenschaft, 32, 599–603.Google Scholar
  77. Moore, J.H., Christie, W.W. 1979. Lipid metabolism in the mammary gland of ruminant animals. Prog. Lipid Res., 17, 347–395.Google Scholar
  78. Morrison, W.R. 1968. The distribution of phospholipids in some mammalian milks. Lipids, 3, 101–103.CrossRefGoogle Scholar
  79. Morrison, W.R. 1970. Milk lipids. In, Topics in Lipid Chemistry-I, (F.D. Gunstone, ed.), pp. 51–106, Logos Press, London.Google Scholar
  80. Morrison, W.R., Smith, L.M. 1967. Fatty acid composition of milk phospholipids. II. Sheep, Indian buffalo and human milks. Lipids, 2, 178–182.CrossRefGoogle Scholar
  81. Morrison, W.R., Jack, E.L., Smith, L.M. 1965. Fatty acids of bovine milk glycolipids and phospholipids and their specific distribution in the diacylglycero-phospholipids. J. Am. Oil Chem. Soc., 42, 1142–1147.Google Scholar
  82. Mottram, H.R., Evershed, R.P. 2001. Elucidation of the composition of bovine milk fat triacylglycerols using high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectroscopy. J. Chromatogr. A., 926, 239–253.CrossRefGoogle Scholar
  83. Mulder, H., Walstra, P. 1974. The Milk Fat Globule. Commonwealth Agriculture Bureaux. Farnham Royal, Bucks.Google Scholar
  84. Muuse, B.G., Werdmuller, G.A., Geerts, J.P., De Knegt, R.J. 1986. Fatty acid profile of Dutch butterfat. Neth. Milk Dairy J., 40, 189–201.Google Scholar
  85. Myher, J.J., Kuksis, A. 1995. Electrospray-MS for lipid identification. Inform., 6, 1068–1071.Google Scholar
  86. Myher, J.J., Kuksis, A., Marai, L., Sandra, P. 1988. Identification of the more complex triacylglycerols in bovine milk fat by GC-MS using polar capillary columns. J. Chromatogr., 452, 93–118.CrossRefGoogle Scholar
  87. Myher, J.J., Kuksis, A., Marai, L. 1993. Identification of the less common isologous short-chain triacylglycerols in the most volatile 2.5% molecular distillate of butter oil. J. Am. Oil Chem. Soc., 70, 1183–1191.CrossRefGoogle Scholar
  88. Noble, R.C. 1978. Digestion, absorption and transport of lipids in ruminant animals. Prog. Lipid Res., 17, 55–91.Google Scholar
  89. Norris, C.S., Fong, B.Y., de Bueger, N., MacGibbon, A.K.H. 2003. Phospholipids in dairy products: milkfat globule membrane from milk and colostrum. Aust. J. Dairy Technol., 58, 200.Google Scholar
  90. Nyberg, L. 1995. Sphingomyelin from bovine milk. In, Phospholipids: Characterization, Metabolism, and Novel Biological Applications. (G. Cevc and F. Paltauf, eds.), pp. 120–125, Am. Oil Chem. Soc. Press, Champaign, IL.Google Scholar
  91. O’Connor, T.P., O’Brien, N.M. 1995. Lipid oxidation. In, Advanced Dairy Chemistry. 2: Lipids. 2nd edn (P.F. Fox, ed.), pp. 309–347, Chapman and Hall, London.Google Scholar
  92. Oftedal O.T., Iverson, S.J. 1995. Comparative analysis of non-human milks. A. phytogenetic variation in gross composition of milks. In, Handbook of Milk Composition (R.G. Jensen, ed.), pp. 749–789, Academic Press, San Diego, CA.Google Scholar
  93. Pan, X.L., Izumi, T. 2000. variations in the ganglioside compositions of human milk, cow’s milk and infant formula. Early Hum. Dev., 57, 25–31.CrossRefGoogle Scholar
  94. Parodi, P.W. 1977. Conjugated octadecadienoic acids of milk fat. J. Dairy Sci., 60, 1150–1153.CrossRefGoogle Scholar
  95. Parodi, P.W. 1979. Stereospecific distribution of fatty acids in bovine milk fat triglycerides. J. Dairy Res., 46, 75–81.CrossRefGoogle Scholar
  96. Parodi, P.W. 1980. Separation of milk fat triglycerides into classes by silver ion adsorption thin-layer chromatography. Austr. J. Dairy Technol. 35, 17–22.Google Scholar
  97. Parodi, P.W. 1982. Positional distribution of fatty acids in the triglyceride classes of milk fat. J. Dairy Res., 49, 73–81.Google Scholar
  98. Parodi, P.W. 1999. Conjugated linoleic acid and other anticarcinogenic agents of milk fat. J. Dairy Sci., 82, 1339–1349.Google Scholar
  99. Parodi, P.W. 2004. Milk fat in human nutrition. Aust. J. Dairy Technol., 59, 3–59.Google Scholar
  100. Patton, S., Keenan, T.W. 1971. The relationship of milk phospholipids to membranes of the secretory cell. Lipids, 6, 58–61.CrossRefGoogle Scholar
  101. Patton, S., Jensen, R.G. 1976. Biomedical Aspects of Lactation. Pergamon, New York.Google Scholar
  102. Pitas, R.E., Sampugna, J., Jensen, R.G. 1967. Triglyceride structure of cows’ milk fat. I. Preliminary observations on the fatty acid composition of positions 1, 2 and 3. J. Dairy Sci., 50, 1332–1336.CrossRefGoogle Scholar
  103. Posati, L.P., Orr, M.L. 1976. Composition of foods. Dairy and Egg products. USDA-ARS, Consumer and Food Economics Inst., Agric. Handbook, Washington D.C. No. 8-1, pp. 77–109.Google Scholar
  104. Precht, D. 1992. Detection of foreign fat mixtures in milk fat. II. Quantitative evaluation of foreign fat mixtures. Z. Lebens. Unters. Forsch., 194, 107–114.CrossRefGoogle Scholar
  105. Precht, D., Frede, E. 1994. Determination of the solid fat content in milk fat by gas chromatographic triglyceride analysis. Fett Wiss. Technol., 96, 324–330.CrossRefGoogle Scholar
  106. Precht, D., Molkentin, J. 1996. Rapid analysis of the trans-octadecenoic acid in milk fat. Int. Dairy J., 6, 791–809.CrossRefGoogle Scholar
  107. Precht, D., Molkentin, J. 1997. Trans-geometrical and positional isomers of linoleic acid including conjugated linoleic acid (CLA) in German milk and vegetable fats. Fett/Lipid., 99, 319–326.CrossRefGoogle Scholar
  108. Precht, D., Molkentin, J. 2000. Trans unsaturated fatty acids in bovine milk fat and dairy products. Eur. J. Lipid Sci. Technol., 102, 635–639.CrossRefGoogle Scholar
  109. Precht, D., Molkentin, J., Wolff, R.L. 2001. Comparative studies on individual isomeric 18:1 acids in cow, goat, and ewe milk fats. Lipids, 36, 827–832.CrossRefGoogle Scholar
  110. Puente, R., Garcia-Pardo, L-A., Hueso, P. 1992. Gangliosides in bovine milk: Changes in content and distribution of individual ganglioside levels during lactation. Biol. Chem. Hoppe-Seyer., 373, 283–288.Google Scholar
  111. Ramos, M., Juarez, M. 1986. Chromatographic, electrophoretic and immunological methods for detecting mixtures of milks from different species. In, Production and Utilisation of Ewe’s and Goat’s Milk. International Dairy Federation Bulletin No. 202/1986, International Dairy Federation, Brussels. pp. 175–187.Google Scholar
  112. Ramstedt, B., Leppimaki, P., Axberg, M., Slotte, J.P. 1999. Analysis of natural and synthetic sphingomyelins using high-performance thin-layer chromatography. Eur. J. Biochem., 266, 997–1002.CrossRefGoogle Scholar
  113. Ratnayake, W.M.N., Pelletier, G. 1992. Positional and geometric isomers of linoleic acid in partially hydrogenated oils. J. Am. Oil Chem. Soc., 69, 95–105.CrossRefGoogle Scholar
  114. Robinson, N.P., MacGibbon, A.K.H. 1998. The composition of New Zealand milk fat triacylglycerols by reversed-phase high-performance liquid chromatography. J. Am. Oil Chem. Soc., 75, 993–999.Google Scholar
  115. Robinson, N.P., MacGibbon, A.K.H. 2000. Determination of the conjugated linoleic acid containing triacylglycerols in New Zealand milk fat. Lipids, 35, 789–796.CrossRefGoogle Scholar
  116. Rombault, R., Camp, J.V., Dewettinck, K. 2005. Analysis of phospho-and sphingolipids in dairy products by a new HPLC method. J. Dairy Sci., 88, 482–488.Google Scholar
  117. Ruiz-Sala, P., Hierro, M.T.G., Martinez-Castro, I., Santa-Maria, G. 1996. Triglyceride composition of ewe, cow and goat milk fat. J. Amer. Oil Chem. Soc., 73, 283–293.CrossRefGoogle Scholar
  118. Russell, C.E., Gray, I.K. 1979. The cholesterol content of dairy products. N.Z. J. Dairy Sci. Technol., 14, 281–289.Google Scholar
  119. Schieberle, P., Gassenmeier, K., Guth, H. Sen, A., Grosch, W. 1993. Character impact odour compounds of different kinds of butter. Lebensm.-Wiss. U. Technol., 26, 347–356.CrossRefGoogle Scholar
  120. Siek, T.J., Albin, J.A., Sather, L.A., Lindsay, R.C. 1969. Taste thresholds of butter volatiles in deodourized butter oil medium. J. Food Sci., 34, 265–267.CrossRefGoogle Scholar
  121. Spanos, G.A., Schwartz, S.J., van Breemen, R.B., Huang, C.-H. 1995. High-performance liquid chromatography with light-scattering detection and desorption chemical-ionization tandem mass spectrometry of milk fat triacylglycerols. Lipids, 30, 85–90.CrossRefGoogle Scholar
  122. Taylor, M.W., Hawke, J.C. 1975a. The triacylglycerol compositions of bovine milkfats. N.Z. J. Dairy Sci. Technol., 10, 40–48.Google Scholar
  123. Taylor, M.W., Hawke, J.C. 1975b. Structural analysis of the triacylglycerols of bovine milkfats. N.Z. J. Dairy Sci. Technol., 10, 49–57.Google Scholar
  124. Urbach, G. 1979. The flavour of milk fat. In, Proceedings of milk fat symposium, Dairy Research Laboratory, CSIRO, 10 October 1979, pp. 18–27. CSIRO, Australia.Google Scholar
  125. Vanhoutte, B. and Huyghebaert, A. 2003. Chemical properties of milk fat, in, Oils and Fats, Volume 3 — Dairy Fats, (B. Rossell, ed.), pp. 67–98, Leatherhead International Ltd, Leatherhead, UK.Google Scholar
  126. Vesper, H., Schmelz, E.-M., Nikolova-Karakashian, M.N., Dillehay, D.L., Lynch, D.V., Merrill, A.H. Jr. 1999. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J. Nutr., 129, 1239–1250.Google Scholar
  127. Walstra, P., Jenness, R. 1984. Dairy Chemistry and Physics, pp. 58–97, John Wiley, New York.Google Scholar
  128. Weihrauch, J.L. 1974. Trace constituents in milk fat. Lipids, 9, 883–890.CrossRefGoogle Scholar
  129. Widder, S., Sen, A., Grosch, W. 1991. Changes in the flavour of butter oil during storage — Identification of potent odorants. Z. Lebens. Unters. Forsch., 193, 32–35.CrossRefGoogle Scholar
  130. Winkelman, A.M., Johnson, D.L., MacGibbon, A.K.H. 1999. Estimation of heritabilities and correlations associated with milk color and traits. J. Dairy Sci., 82, 215–224.CrossRefGoogle Scholar
  131. Wolff, R.L., Bayard, C.C., Fabien, R.J. 1995. Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans-18:1 acids: Application to the study of seasonal variations in French butters. J. Am. Oil Chem. Soc., 72, 1471–1483.CrossRefGoogle Scholar
  132. Zegarska, Z. 2003. Milk Lipids, In, Chemical and Functional Properties of Food Lipids; (Z.E. Sikorski and A. Kolakowska, eds.), pp. 265–277, CRC Press, Boca Raton, FL.Google Scholar
  133. Zegarska, Z., Jaworski, J., Paszczyk, B., Charkiewicz, J., Borejszo, Z. 2001. Fatty acid composition with emphasis on trans C18:1 isomers of milk fat from lowland black-and-white and polish red cows. Pol. J. Food Nutr. Sci., 10/51, 41–44.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. K. H. MacGibbon
    • 1
  • M. W. Taylor
    • 2
  1. 1.Fonterra Co-Operative Group Ltd.Palmerston NorthNew Zealand
  2. 2.Institute of Food Nutrition and Human HealthMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations