Skip to main content

Comparative Genomics

  • Chapter
Book cover Computational Genome Analysis
  • 3988 Accesses

Abstract

Computational biology provides insights into the nature of genomes and organisms, and provides tools for understanding how an organism’s characters or phenotypes are determined by its genome sequence. In prior chapters, we presented a number of computational methods addressing a variety of specific biological questions. In this concluding chapter, we indicate in more detail how these tools can be employed in the context of complete genomes. Computational analysis of genome sequence data has transformed the approach to answering biological questions because now they can be formulated in the context of all genes operating as a coordinated system. This more integrated approach complements the reductionist approach of traditional molecular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MD et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195.

    Article  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815.

    Article  Google Scholar 

  • Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers EW, Li PW, Eichler EE (2002) Recent segmental duplications in the human genome. Science 297:1003–1007.

    Article  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282:2012–2021.

    Article  Google Scholar 

  • Chervitz SA, Aravind L, Sherlock G, Ball CA, Koonin EV, Dwight SS, Harris MA, Dolin-ski K, Mohr S, Smith T, Weng S, Cherry JM, Botstein D (1998) Comparison of the complete protein sets of worm and yeast: Orthology and divergence. Science 282:2022–2028.

    Article  Google Scholar 

  • Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnson M (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76.

    Article  Google Scholar 

  • Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: A fingerprint of proteins that physically interact. Trends in Biochemical Sciences 23: 324–328.

    Article  Google Scholar 

  • Deutsch M, Long M (1999) Intron-exon structures of eukaryotic model organisms. Nucleic Acids Research 27:3219–3228.

    Article  Google Scholar 

  • Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pohlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philipsen P (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307.

    Article  Google Scholar 

  • Durand D, Sankoff D (2003) Tests for gene clustering. Journal of Computational Biology 10:453–482.

    Article  Google Scholar 

  • Enright AJ, Illopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402:86–90.

    Article  Google Scholar 

  • Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman JL, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb J-F, Dougherty BA, Bott KF, Hu PJ, Lucier TS, Peterson SN, Smith HO, Hutchison CA III, Venter JC (1995) The minimal gene complement of Mycoplasma. Science 270:397–403.

    Article  Google Scholar 

  • Fraser CM, Casjens S, Huang W-M, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb J-F, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586.

    Article  Google Scholar 

  • Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research 32:D258–D261.

    Article  Google Scholar 

  • Giaever G et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391.

    Article  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakamai Y, Philippsen P, Tettelin H, Oliver SG. (1996) Life with 6000 genes. Science 274:546–567.

    Article  Google Scholar 

  • Graham DE, Overbeek R, Olsen GJ, and Woese CR (2000) An archaeal genomic signature. Proceedings of the National Academy of Sciences USA 97:3304–3308.

    Article  Google Scholar 

  • Gregory SG et al. (2002) A physical map of the mouse genome. Nature 418:743–750.

    Article  Google Scholar 

  • Gumucio DL, Heilstedt-Williamson H, Gray TA, Tarle SA, Shelton DA, Tagle DA, Slightom JL, Goodman M, Collins FS (1992) Phylogenetic footprinting reveals a nuclear protein which binds to silencer sequences in the human gamma and epsilon globin genes. Molecular and Cell Biology 12:4919–4929.

    Google Scholar 

  • International Human Genome Sequencing Consortium (IHGSC) (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921.

    Article  Google Scholar 

  • International Human Genome Sequencing Consortium (IHGSC) (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945.

    Article  Google Scholar 

  • Karlin S, Campbell AM, Mrázek J (1998) Comparative DNA analysis across diverse genomes. Annual Review of Genetics 32:185–225.

    Article  Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624.

    Article  Google Scholar 

  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254.

    Article  Google Scholar 

  • McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nature Genetics 31:200–204.

    Article  Google Scholar 

  • Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285:751–753.

    Article  Google Scholar 

  • Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562.

    Article  Google Scholar 

  • Mural RJ et al. (2002) A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296:1661–1671.

    Article  Google Scholar 

  • Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proceedings of the National Academy of Sciences USA 96:2896–2901.

    Article  Google Scholar 

  • Parkhill J, Wren BW, Thompson NR, Titball RW, Holden MTG, Prentice MB, Sebaihia M, James KD, Churcher C, Mungail KL, Baker S, Basham D, Bently SD, Brooks K, Cerdeno-Tárrage AM, Chillingworth T, Cronin A, Davies RM, Davis P, Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev AV, Leather S, Moule S, Oyston PCF, Quall M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2003) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527.

    Article  Google Scholar 

  • Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proceedings of the National Academy of Sciences USA 96:4285–4288.

    Article  Google Scholar 

  • Reese MG, Hartzell G, Harris NL, Ohler U, Abril JF, Lewis SE (2000) Genome annotation assessment in Drosophila melanogaster. Genome Research 10:483–501.

    Article  Google Scholar 

  • Rogic S, Mackworth AK, Ouellette FBF (2001) Evaluation of gene-finding programs on mammalian sequences. Genome Research 11:817–832.

    Article  Google Scholar 

  • Rubin GM et al. (2000) Comparative genomics of eukaryotes. Science 287:2204–2215.

    Article  Google Scholar 

  • Salem A-H, Ray DA, Xing J, Callinan PA, Myers JS, Hedges DJ, Garber RK, Witherspoon DJ, Jorde LB, Batzer MA (2003) Alu elements and hominid phylogenetics. Proceedings of the National Academy of Sciences USA 100:12787–12791.

    Article  Google Scholar 

  • Simillion C, Vandepoele K, Van Montagu MCE, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA 99:13627–13632.

    Article  Google Scholar 

  • Smith NGC, Knight R, Hurst LD (1999) Vertebrate genome evolution: a slow shuffle or a big bang? BioEssays 21:697–703.

    Article  Google Scholar 

  • Stormo GD (2000) Gene-finding approaches for eukaryotes. Bioinformatics 10:394–397.

    Google Scholar 

  • Strachan T, Read AP (2003) Human Molecular Genetics (3rd edition). New York: Wiley-Liss.

    Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–677.

    Article  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research 28:33–36.

    Article  Google Scholar 

  • Thanaraj TA, Clark F (2001) Human GC-AG alternative intron isoforms with weak donor sites show enriched consensus at acceptor exon positions. Nucleic Acids Research 29:2581–2593.

    Article  Google Scholar 

  • Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nature Reviews Genetics 5:752–763.

    Article  Google Scholar 

  • Wong S, Butler G, Wolfe KH (2002) Gene order evolution and paleopoly-ploidy in hemiascomycete yeasts. Proceedings of the National Academy of Sciences USA 99:9272–9277.

    Article  Google Scholar 

  • Zhang MQ (1998) Statistical features of human exons and their flanking regions. Human Molecular Genetics 7:919–932.

    Article  Google Scholar 

  • Zhang Z, Gerstein M (2003) Of mice and men: Phylogenetic footprinting aids the discovery of regulatory elements. Journal of Biology 2:11.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Comparative Genomics. In: Computational Genome Analysis. Springer, New York, NY. https://doi.org/10.1007/0-387-28807-4_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-28807-4_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98785-9

  • Online ISBN: 978-0-387-28807-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics