Skip to main content

The Molecular and Biochemical Basis of Axenfeld-Rieger Syndrome

  • Chapter

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

Mutations in the PITX2 homeobox gene are associated with Axenfeld-Rieger syndrome (ARS) and provided the first link of this transcription factor to tooth, eye, heart, and pituitary development. We are investigating the molecular basis of developmental anomalies associated with human PITX2 mutations. PITX2 mutant proteins exhibit a variety of transcriptional defects including, instability, decreased DNA binding activity, DNA binding without transcriptional activation, phosphorylation defects, increased transcriptional and dominant negative activities. ARS is a haploinsufficiency disorder and because PITX2 proteins can dimerize the effects of the PITX2 mutations can cause heterogeneous developmental anomalies in these patients. FOXC1 is a member of the Forkhead Box transcription factor family that play key roles in development, including morphogenesis and cell fate specification. FOXC1 mutations are associated with ARS and Axenfeld-Rieger Anomaly (ARA) that result in a spectrum of glaucoma phenotypes in humans. Missence mutations in the FOXC1 forkhead domain result in impaired DNA binding and reduced transactivation of target genes. Pax6 is a paired-like homeobox gene and recently a mutation in this transcription factor has been linked to Rieger syndrome. This report will summarize the molecular/biochemical mechanism of these developmental transcription factors and how they correlate with the clinical manifestations of ARS and ARA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Semina EV, Reiter R, Leysens NJ et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in rieger syndrome. Nature Genet 1996; 14:392–399.

    Article  PubMed  CAS  Google Scholar 

  2. Galliot B, de Vargas C, Miller D. Evolution of homeobox genes: Q50 Paired-like genes founded the paired class. Dev Genes Evol 1999; 209:186–197.

    Article  PubMed  CAS  Google Scholar 

  3. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell 1992; 68:283–302.

    Article  PubMed  CAS  Google Scholar 

  4. Gehring WJ, Qian YQ, Billeter M et al. Homeodomain-DNA Recognition. Cell 1994; 78:211–223.

    Article  PubMed  CAS  Google Scholar 

  5. Kumar J, Moses K. Transcription factors in eye development: A gorgeous mosaic? Genes Dev 1997; 11:2023–2028.

    PubMed  CAS  Google Scholar 

  6. Lamonerie T, Tremblay JJ, Lanctot C et al. Ptxl, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 1996; 10:1284–1295.

    PubMed  CAS  Google Scholar 

  7. Szeto DP, Ryan AK, O’Connell SM et al. P-OTX: A PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development. Proc Natl Acad Sci USA 1996; 93:7706–7710.

    Article  PubMed  CAS  Google Scholar 

  8. Semina EV, Reiter RS, Murray JC. Isolation of a new homeobox gene belonging to the Pitx/Rieg family: Expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet 1997; 6:2109–2116.

    Article  PubMed  CAS  Google Scholar 

  9. Hanes SD, Brent R. DNA specificity of the bicoid activator protein is determined by Homeodomain recognition Helix Residue 9. Cell 1989; 57:1275–1283.

    Article  PubMed  CAS  Google Scholar 

  10. Jin Y, Hoskins R, Horvitz HR. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 1994; 372:780–783.

    Article  PubMed  CAS  Google Scholar 

  11. Simeone A, Acampora D, Mallamaci A et al. A vertebrate gene related to orthodentide contains a homeodomain of the bicoid class and demarcates anterior neurectoderm in the gastrulating mouse embryo. EMBO J 1993; 12:2735–2747.

    PubMed  CAS  Google Scholar 

  12. Wilson DS, Sheng G, Jun S et al. Conservation and diversification in homeodomain-DNA interactions: A comperative genetic analysis. Proc Natl Acad Sci 1996; 93:6886–6891.

    Article  PubMed  CAS  Google Scholar 

  13. Amendt BA, Sutherland LB, Semina E et al. The molecular basis of rieger syndrome: Analysis of Pitx2 Homeodomain protein activities. J Biol Chem 1998; 273:20066–20072.

    Article  PubMed  CAS  Google Scholar 

  14. Driever W, Nusslein-Volhard C. The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 1989; 337:138–143.

    Article  PubMed  CAS  Google Scholar 

  15. Gage PJ, Camper SA. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet 1997; 6:457–464.

    Article  PubMed  CAS  Google Scholar 

  16. Larsson C, Hellqvist M, Pierrou S et al. Chromosomal localization of six human forkhead genes, freac-1 (FKHL5),-3 (FKHL7),-4 (FKHL8),-5 (FKHL9),-6 (FKHL10), and-8 (FKHL12). Genomics 1995; 30:464–469.

    Article  PubMed  CAS  Google Scholar 

  17. Weigel D, Jackie H. The fork head domain: A novel DNA binding motif of eukaryotic transcription factors? Cell 1990; 63:455–456.

    Article  PubMed  CAS  Google Scholar 

  18. Mears AJ, Jordan T, Mirzayans F et al. Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am J Hum Genet 1998; 63:1316–1328.

    Article  PubMed  CAS  Google Scholar 

  19. Nishimura DY, Swiderski RE, Alward WL et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat Genet 1998; 19:140–147.

    Article  PubMed  CAS  Google Scholar 

  20. Mirzayans F, Gould DB, Heon E et al. Axenfeld-Rieger syndrome resulting from mutation of the FKHL7 gene on chromosome 6p25. Eur J Hum Genet 2000; 8:71–74.

    Article  PubMed  CAS  Google Scholar 

  21. Nishimura DY, Searby CC, Alward WL et al. A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am J Hum Genet 2001; 68:364–372.

    Article  PubMed  CAS  Google Scholar 

  22. Saleem RA, Banerjee-Basu S, Berry FB et al. Analyses of the effects that disease-causing missense mutations have on the structure and function of the winged-helix protein FOXC1. Am J Hum Genet 2001; 68:627–641.

    Article  PubMed  CAS  Google Scholar 

  23. Mansouri A, Goudreau G, Gruss P. Pax genes and their role in organogenesis. Cancer Res 1999; 59:1707–1710.

    Google Scholar 

  24. van Raamsdonk CD, Tilghman SM. Dosage requirement and allelic expression of PAX6 during lens placode formation. Development 2000; 127:5439–5448.

    PubMed  Google Scholar 

  25. Hill RE, Favor J, Hogan BL et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 1991; 354:522–525.

    Article  PubMed  CAS  Google Scholar 

  26. Ton CC, Hirvonen H, Miwa H et al. Postional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region. Cell 1991; 67:1059–1074.

    Article  PubMed  CAS  Google Scholar 

  27. Hanson IM, Fletcher JM, Jordan T et al. Mutations at the PAX6 locus are found in heterogenous anterior segment malformations including peters’ anomaly. Nat Genet 1994; 6:168–173.

    Article  PubMed  CAS  Google Scholar 

  28. Grindley JC, Davidson DR, Hill RE. The role of Pax-6 in eye and nasal development. Development 1995; 121:1433–1442.

    PubMed  CAS  Google Scholar 

  29. Riise R, Storhaug K, Brondum-Nielsen K. Rieger syndrome is associated with PAX6 deletion. Acta Ophthalmol Scand 2001; 79:201–203.

    Article  PubMed  CAS  Google Scholar 

  30. St. Amand TR, Ra J, Zhang Y et al. Cloning and expression pattern of chicken Pitx2: A new component in the SHH signaling pathway controlling embryonic heart looping. Biochem Biophys Res Comm 1998; 247:100–105.

    Article  PubMed  CAS  Google Scholar 

  31. Saadi I, Semina EV, Amendt BA et al. Identification of a dominant negative homeodomain mutation in rieger syndrome. J Biol Chem 2001; 276:23034–23041.

    Article  PubMed  CAS  Google Scholar 

  32. Kozlowski K, Walter MA. Variation in residual PITX2 activity underlies the phenotypic spectrum of anterior segment developmental disorders. Hum Mol Genet 2000; 9:2131–2139.

    Article  PubMed  CAS  Google Scholar 

  33. Amendt BA, Semina EV, Alward WLM. Rieger syndrome: A clinical, molecular and biochemical analysis. Cell Mol Life Sci 2000; 57:1652–1666.

    Article  PubMed  CAS  Google Scholar 

  34. Cox CJ, Espinoza HM, McWilliams B et al. Differential regulation of gene expression by PITX2 isoforms. J Biol Chem 2002; 277:25001–25010.

    Article  PubMed  CAS  Google Scholar 

  35. Espinoza HM, Cox CJ, Semina EV et al. A molecular basis for differential developmental anomalies in Axenfeld-Rieger syndrome. Hum Mol Genet 2002; 11:743–753.

    Article  PubMed  CAS  Google Scholar 

  36. Gage PJ, Suh H, Camper SA. Genetic analysis of the bicoid-related Homeobox gene Pitx2. Dev Biol 1999; 210:234 Abstract.

    Google Scholar 

  37. Arakawa H, Nakamura T, Zhadanov AB et al. Identification and characterization of the ARP1 gene, a target for the human acute leukemia ALL1 gene. Proc Natl Acad Sci 1998; 95:4573–4578.

    Article  PubMed  CAS  Google Scholar 

  38. Kitamura K, Miura H, Miyagawa-Tomita S et al. Mouse Pitx2 defiency leads to anomalies of the ventral body wall, heart, extra-and periocular mesoderm and right pulmonary isomerism. Development 1999; 126:5749–5758.

    PubMed  CAS  Google Scholar 

  39. Amendt BA, Sutherland LB, Russo AF. Multifunctional role of the Pitx2 homeodomain protein C-terminal tail. Mol Cell Biol 1999; 19:7001–7010.

    PubMed  CAS  Google Scholar 

  40. Hjalt TA, Semina EV, Amendt BA et al. The Pitx2 protein in mouse development. Dev Dyn 2000; 218:195–200.

    Article  PubMed  CAS  Google Scholar 

  41. Green PD, Hjalt TA, Kirk DE et al. Antagonistic regulation of Dlx2 expression by PITX2 and Msx2: Implications for tooth development. Gene Expr 2001; 9:265–281.

    PubMed  CAS  Google Scholar 

  42. Ryan AK, Rosenfeld MG. POU domain family values: Flexibility, partnerships, and developmental codes. Genes Dev 1997; 11:1207–1225.

    PubMed  CAS  Google Scholar 

  43. Tremblay JJ, Goodyear CG, Drouin J. Transcriptional properties of Ptxl and Ptx2 isoforms. Neuroendocrinology 2000; 71:277–286.

    Article  PubMed  CAS  Google Scholar 

  44. Liu C, Liu W, Lu M et al. Regulation of left-right asymmetry by thresholds of Pitx2c activity. Development 2001; 128:2039–2048.

    PubMed  CAS  Google Scholar 

  45. Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development 1999; 126:4643–4651.

    PubMed  CAS  Google Scholar 

  46. Hjalt TA, Amendt BA, Murray JC. PITX2 regulates procollagen lysyl hydroxylase (PLOD) gene expression: Implications for the pathology of Rieger Syndrome. J Cell Biol 2001; 152:545–552.

    Article  PubMed  CAS  Google Scholar 

  47. Qiu M, Bulfone A, Martinez S et al. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev 1995; 9:2523–2538.

    PubMed  CAS  Google Scholar 

  48. Thomas BL, Liu JK, Rubenstein JLR et al. Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch. Development 2000; 127:217–224.

    PubMed  CAS  Google Scholar 

  49. Liu JK, Ghattas I, Liu S et al. Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev Dyn 1997; 210:498–512.

    Article  PubMed  CAS  Google Scholar 

  50. Harvey RP. NK-2 homeobox genes and heart development. Dev Biol 1996; 178:203–216.

    Article  PubMed  CAS  Google Scholar 

  51. Essner JJ, Branford W, Zhang J et al. Mesendoderm and left-right brain, heart and gut development are differentially regulated by Pitx2 isoforms. Development 2000; 127:1081–1093.

    PubMed  CAS  Google Scholar 

  52. Schweickert A, Campione M, Steinbeisser H et al. Pitx2 isoforms: Involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left-right asymmetry. Mech Dev 2000; 90:41–51.

    Article  PubMed  CAS  Google Scholar 

  53. Yu X, St. Amand TR, Wang S et al. Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick. Development 2001; 128:1005–1013.

    PubMed  CAS  Google Scholar 

  54. Cripps RM, Olson EN. Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 2002; 246:14–28.

    Article  PubMed  CAS  Google Scholar 

  55. Jamali M, Rogerson PJ, Wilton S et al. Nkx2-5 activity is essential for cardiomyogenesis. J Biol Chem 2001; 276:42252–42258.

    Article  PubMed  CAS  Google Scholar 

  56. Toko H, Zhu W, Takimoto E et al. Csx/Nkx2-5 is required for homeostasis and survival of cardiac myocytes in the adult heart. J Biol Chem 2002; 277:24735–24743.

    Article  PubMed  CAS  Google Scholar 

  57. Schott J-J, Benson DW, Basson CT et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998; 281:108–111.

    Article  PubMed  CAS  Google Scholar 

  58. Goldmuntz E, Geiger E, Benson DW. NKX2-5 mutations in patients with tetralogy of fallot. Circulation 2001; 104:2565–2568.

    PubMed  CAS  Google Scholar 

  59. Kasahara H, Wakimoto H, Liu M et al. Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2-5 homeoprotein. J Clin Invest 2001; 108:189–201.

    Article  PubMed  CAS  Google Scholar 

  60. Hanks SK, Quinn AM. Protein kinase catalytic domain sequence database: Identification of conserved features of primary structure and classification of family members. Methods Enzymology. Academic Press, 1991:200:38–81.

    Article  CAS  Google Scholar 

  61. Kasahara H, Izumo S. Identification of the In vivo casein kinase II phosphorylation site within the homeodomain of the cardiac tissue-specifying homeobox gene product Csx/Nkx2-5. Mol Cell Biol 1999; 19:526–536.

    PubMed  CAS  Google Scholar 

  62. Damante G, Fabbro D, Pellizzari L et al. Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. Nucl Acids Res 1994; 22:3075–3083.

    Article  PubMed  CAS  Google Scholar 

  63. Percival-Smith A, Muller M, Affolter M et al. The interaction with DNA of wild-type and mutant fushi tarazu homeodomains. EMBO J 1990; 9:3967–3974.

    PubMed  CAS  Google Scholar 

  64. Treisman J, Gonczy P, Vashishtha M et al. A single amino acid can determine the DNA binding specificity of homeodomain proteins. Cell 1989; 59:553–562.

    Article  PubMed  CAS  Google Scholar 

  65. Treisman J, Harris E, Wilson D et al. The homeodomain: A new face for the helix-turn-helix? BioEssays 1992; 14:145–150.

    Article  PubMed  CAS  Google Scholar 

  66. Priston M, Kozlowski K, Gill D et al. Functional analyses of two newly identified PITX2 mutants reveal a novel molecular mechanism for Axenfeld-Rieger syndrome. Hum Mol Genet 2001; 10:1631–1638.

    Article  PubMed  CAS  Google Scholar 

  67. Banerjee-Basu S, Baxevanis AD. Threading analysis of the Pitx2 homeodomain: Predicted structural effects of mutations causing rieger syndrome and iridogoniodysgenesis. Hum Mutation 1999; 14:312–319.

    Article  CAS  Google Scholar 

  68. Quentien M, Pitoia F, Gunz G et al. Regulation of prolactin, GH, and Pit-1 gene expression in anterior pituitary by Pitx2: An approach using Pitx2 mutants. Endrocrinology 2002; 143:2839–2851.

    Article  CAS  Google Scholar 

  69. Ma L, Golden S, Wu L et al. The molecular basis of Boston-type craniosynostosis: The Pro148-His mutation in the N-terminal arm of the MSX2 homeodomain stabilizes DNA binding without altering nucleotide sequence preferences. Hum Mol Gen 1996; 5:1915–1920.

    Article  PubMed  CAS  Google Scholar 

  70. Pierrou S, Hellqvist M, Samuelsson L et al. Cloning and characterization of seven human forkhead proteins: Binding site specificity and DNA bending. EMBO J 1994; 13:5002–5012.

    PubMed  CAS  Google Scholar 

  71. Bach I, Carriere C, Ostendorff HP et al. A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes Dev 1997; 11:1370–1380.

    PubMed  CAS  Google Scholar 

  72. Bradford AP, Wasylyk C, Wasylyk B et al. Interaction of Ets-1 and the POU-Homeodomain protein GHF-l/Pit-1 reconstitutes pituitary-specific gene expression. Mol Cell Biol 1997; 17:1065–1074.

    PubMed  CAS  Google Scholar 

  73. Durocher D, Charron F, Warren R et al. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 1997; 16:5687–5696.

    Article  PubMed  CAS  Google Scholar 

  74. Tremblay JJ, Lanctot C, Drouin J. The pan-pituitary activator of transcription, Ptx1 (Pituitary Homeobox 1), acts in synergy with SF-1 and Pitl and is an upstream regulator of the lim-homeodomain gene Lim3/Lhx3. Mol Endo 1998; 12:428–441.

    Article  CAS  Google Scholar 

  75. Budhram-Mahadeo V, Parker M, Latchman DS. POU transcription factors Brn-3a and Brn-3b interact with the estrogen receptor and differentially regulate transcriptional activity via an estrogen response element. Mol Cell Biol 1998; 18:1029–1041.

    PubMed  CAS  Google Scholar 

  76. Hassan B, Li L, Bremer KA et al. Prospero is a panneural transcription factor that modulates homeodomain protein activity. Proc Nad Acad Sci 1997; 94:10991–10996.

    Article  CAS  Google Scholar 

  77. Stark MR, Johnson AD. Interaction between two homeodomain proteins is specified by a short C-terminal tail. Nature 1994; 371:429–432.

    Article  PubMed  CAS  Google Scholar 

  78. Tolkunova EN, Fujioka M, Kobayashi M et al. Two distinct types of repression domain in engrailed: One interacts with the groucho corepressor and is preferentially active on integrated target genes. Mol Cell Biol 1998; 18:2804–2814.

    PubMed  CAS  Google Scholar 

  79. Zhang H, Hu G, Wang H et al. Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol Cell Biol 1997; 17:2920–2932.

    PubMed  CAS  Google Scholar 

  80. Guichet A, Copeland JWR, Erdelyl M et al. The nuclear receptor homologue Ftz-Fl and the homeodomain protein Ftz are mutually dependent cofactors. Nature 1997; 385:548–552.

    Article  PubMed  CAS  Google Scholar 

  81. Yu Y, Li W, Su K et al. The nuclear hormone receptor Ftz-Fl is a cofactor for the Drosophila homeodomain protein Ftz. Nature 1997; 385:552–555.

    Article  PubMed  CAS  Google Scholar 

  82. Neuteboom STC, Murre C. Pbx raises the DNA binding specificity but not the selectivity of antennapedia hox proteins. Mol Cell Biol 1997; 17:4696–4706.

    PubMed  CAS  Google Scholar 

  83. Peltenburg LTC, Murre C. Specific residues in the Pbx homeodomain differentially modulate the DNA-binding activity of Hox and Engrailed proteins. Development 1997; 124:1089–1098.

    PubMed  CAS  Google Scholar 

  84. Duboule D. Guidebook to the Homeobox Genes. New York: Oxford University Press, 1994.

    Google Scholar 

  85. Lehmann OJ, Ebenezer ND, Jordan T et al. Chromosomal duplication involving the forkhead transcription factor gene FOXC1 causes iris hypoplasia and glaucoma. Am J Hum Genet 2000; 67:1129–1135.

    PubMed  CAS  Google Scholar 

  86. Kume T, Deng KY, Winfrey V et al. The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 1998; 93:985–996.

    Article  PubMed  CAS  Google Scholar 

  87. Kume T, Deng K, Hogan BL. Murine forkhead/winged helix genes Foxcl (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 2000; 127:1387–1395.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Amendt, B.A. (2005). The Molecular and Biochemical Basis of Axenfeld-Rieger Syndrome. In: The Molecular Mechanisms of Axenfeld-Rieger Syndrome. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28672-1_4

Download citation

Publish with us

Policies and ethics