Skip to main content

Identification of the Gene Involved in 4q25-Linked Axenfeld-Rieger Syndrome, PITX2

  • Chapter
The Molecular Mechanisms of Axenfeld-Rieger Syndrome

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 376 Accesses

Abstract

Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder. ARS is considered to be fully penetrant, but variable expressivity was reported in families. The three cardinal features of ARS include specific ocular anomalies of the anterior segment, dental anomalies and redundant periumbilical skin. A variety of other abnormalities have been reported in ARS patients such as pituitary, hearing, heart and limb defects that may represent coincidental findings in some cases and be associated with specific mutations in others. Identification of genes and chromosomal regions associated with ARS demonstrated extreme genetic heterogeneity of this condition and allowed genotype-phenotype correlation studies. In this chapter, we describe identification of a gene, PITX2, which to-date represents a major gene for Axenfeld-Rieger syndrome accounting for approximately 40% of mutations in classic ARS patients. The PITX2 gene was discovered by positional cloning approach and is located at 4q25 in humans. The PITX2 gene appears to play an important role in development of many different systems and its involvement in human disorders needs to be further elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vossius A. Kongenitale anomalien der iris. Klin Mbl Augenheilk 1883; 21:233–237.

    Google Scholar 

  2. Darwin C. Animals and plants under domestication 1. New York: D Appleton & Co., 1893:434–461, Chapter 12.

    Google Scholar 

  3. Axenfeld T. Embryotoxon corneae posteris. Ber Dtsch Ophthalmol Ges 1920; 42:381–382.

    Google Scholar 

  4. Rieger H. Dysgenesis mesodermalis coreneal et iridis. Z Augenheilk 1935; 86:333.

    Google Scholar 

  5. Shields MB, Buckley E, Klintworth GK et al. Axenfeld-Rieger syndrome. A spectrum of developmental disorders. Surv Ophthalmol 1985; 29(6):387–409.

    Article  PubMed  CAS  Google Scholar 

  6. Alward WL. Axenfeld-Rieger syndrome in the age of molecular genetics. Am J Ophthalmol 2000; 130(1):107–115.

    Article  PubMed  CAS  Google Scholar 

  7. Fitch N, Kaback M. The Axenfeld syndrome and the Rieger syndrome. J Med Genet 1978; 15(1):30–34.

    Article  PubMed  CAS  Google Scholar 

  8. Amendt BA, Semina EV, Alward WL. Rieger syndrome: A clinical, molecular, and biochemical analysis. Cell Mol Life Sci 2000; 57(11):1652–1666.

    Article  PubMed  CAS  Google Scholar 

  9. Lines MA, Kozlowski K, Walter MA. Molecular genetics of Axenfeld-Rieger malformations. Hum Mol Genet 2002; 11(10):1177–1187.

    Article  PubMed  CAS  Google Scholar 

  10. Murray JC, Bennett SR, Kwitek AE et al. Linkage of Rieger syndrome to the region of the epidermal growth factor gene on chromosome 4. Nat Genet 1992; 2(1):46–49.

    Article  PubMed  CAS  Google Scholar 

  11. Semina EV, Datson NA, Leysens NJ et al. Exclusion of epidermal growth factor and high-resolution physical mapping across the Rieger syndrome locus. Am J Hum Genet 1996; 59(6):1288–1296.

    PubMed  CAS  Google Scholar 

  12. Semina EV, Reiter R, Leysens NJ et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 1996; 14(4):392–399.

    Article  PubMed  CAS  Google Scholar 

  13. Datson NA, Semina E, van Staalduinen AA et al. Closing in on the Rieger syndrome gene on 4q25: Mapping translocation breakpoints within a 50-kb region. Am J Hum Genet 1996; 59(6):1297–1305.

    PubMed  CAS  Google Scholar 

  14. Amendt BA, Sutherland LB, Semina EV et al. The molecular basis of Rieger syndrome: Analysis of Pitx2 homeodomain protein activities. J Biol Chem 1998; 273(32):20066–20072.

    Article  PubMed  CAS  Google Scholar 

  15. Amendt BA, Sutherland LB, Russo AF. Multifunctional role of the Pitx2 homeodomain protein C-terminal tail. Mol Cell Biol 1999; 19(10):7001–7010.

    PubMed  CAS  Google Scholar 

  16. Saadi I, Semina EV, Amendt BA et al. Identification of a dominant negative homeodomain mutation in Rieger syndrome. J Biol Chem 2001; 276(25):23034–23041.

    Article  PubMed  CAS  Google Scholar 

  17. Vershon AK. Protein interactions of homeodomain proteins. Curr Opin Biotechnol 1996; 7(4):392–396.

    Article  PubMed  CAS  Google Scholar 

  18. Pesole G, Mignone F, Gissi C et al. Structural and functional features of eukaryotic mRNA untranslated regions. Gene 2001; 276(1–2):73–81.

    Article  PubMed  CAS  Google Scholar 

  19. Grzybowska EA, Wilczynska A, Siedlecki JA. Regulatory functions of 3′UTRs. Biochem Biophys Res Comm 2001; 288(2):291–295.

    Article  PubMed  CAS  Google Scholar 

  20. Kleinjan DJ, van Heyningen V. Position effect in human genetic disease. Hum Mol Genet 1998; 7(10):1611–1618.

    Article  PubMed  CAS  Google Scholar 

  21. Alward WL, Semina EV, Kalenak JW et al. Autosomal dominant iris hypoplasia is caused by a mutation in the Rieger syndrome (RIEG/PITX2) gene. Am J Ophthalmol 1998; 125(1):98–100.

    Article  PubMed  CAS  Google Scholar 

  22. Kulak SC, Kozlowski K, Semina EV et al. Mutation in the RIEG1 gene in patients with iridogoniodysgenesis syndrome. Hum Mol Genet 1998; 7(7):1113–1117.

    Article  PubMed  CAS  Google Scholar 

  23. Kozlowski K, Walter MA. Variation in residual PITX2 activity underlies the phenotypic spectrum of anterior segment developmental disorders. Hum Mol Genet 2000; 9(14):2131–2139.

    Article  PubMed  CAS  Google Scholar 

  24. Perveen R, Lloyd IC, Clayton-Smith J et al. Phenotypic variability and asymmetry of Rieger syndrome associated with PITX2 mutations. Invest Ophthalmol Vis Sci 2000; 41(9):2456–2460.

    PubMed  CAS  Google Scholar 

  25. Priston M, Kozlowski K, Gill D et al. Functional analyses of two newly identified PITX2 mutants reveal a novel molecular mechanism for Axenfeld-Rieger syndrome. Hum Mol Genet 2001; 10(16):1631–1638.

    Article  PubMed  CAS  Google Scholar 

  26. Borges AS, Susanna Jr R, Carani JC et al. Genetic analysis of PITX2 and FOXC1 in Rieger Syndrome patients from Brazil. J Glaucoma 2002; 11(1):51–56.

    Article  PubMed  Google Scholar 

  27. Flomen RH, Vatcheva R, Gorman PA et al. Construction and analysis of a sequence-ready map in 4q25: Rieger syndrome can be caused by haploinsufficiency of RIEG, but also by chromosome breaks approximately 90 kb upstream of this gene. Genomics 1998; 47(3):409–413.

    Article  PubMed  CAS  Google Scholar 

  28. Espinoza HM, Cox CJ, Semina EV et al. A molecular basis for differential developmental anomalies in Axenfeld-Rieger syndrome. Hum Mol Genet 2002; 11(7):743–753.

    Article  PubMed  CAS  Google Scholar 

  29. Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development 1999; 126(20):4643–4651.

    PubMed  CAS  Google Scholar 

  30. Lin CR, Kioussi C, O’Connell S et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 1999; 401(6750):279–282.

    Article  PubMed  CAS  Google Scholar 

  31. Lu MF, Pressman C, Dyer R et al. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 1999; 401(6750):276–278.

    Article  PubMed  CAS  Google Scholar 

  32. Kitamura K, Miura H, Miyagawa-Tomita S et al. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra-and periocular mesoderm and right pulmonary isomerism. Develop ment 1999; 126(24):5749–5758.

    CAS  Google Scholar 

  33. Martin DM, Probst FJ, Fox SE et al. Exclusion of PITX2 mutations as a major cause of CHARGE association. Am J Med Genet 2002; 111(1):27–30.

    Article  PubMed  Google Scholar 

  34. Cox CJ, Espinoza HM, McWilliams B et al. Differential regulation of gene expression by PITX2 isoforms. J Biol Chem 2002; 277(28):25001–25010.

    Article  PubMed  CAS  Google Scholar 

  35. Arakawa H, Nakamura T, Zhadanov AB et al. Identification and characterization of the ARP1 gene, a target for the human acute leukemia ALL1 gene. Proc Natl Acad Sci USA 1998; 95(8):4573–4578.

    Article  PubMed  CAS  Google Scholar 

  36. Gage PJ, Camper SA. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet 1997; 6(3):457–464.

    Article  PubMed  CAS  Google Scholar 

  37. Gage PJ, Suh H, Camper SA. The bicoid-related Pitx gene family in development. Mamm Genome 1999; 10(2):197–200.

    Article  PubMed  CAS  Google Scholar 

  38. Essner JJ, Branford W, Zhang J et al. Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 2000; 127(5):1081–1093.

    PubMed  CAS  Google Scholar 

  39. Schweickert A, Campione M, Steinbeisser H et al. Pitx2 isoforms: Involvement of Pitx2c but not Pitx2a or Pitx2b sin vertebrate left-right asymmetry. Mech Dev 2000; 90(1):41–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Semina, E.V. (2005). Identification of the Gene Involved in 4q25-Linked Axenfeld-Rieger Syndrome, PITX2 . In: The Molecular Mechanisms of Axenfeld-Rieger Syndrome. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28672-1_1

Download citation

Publish with us

Policies and ethics