Skip to main content

Epithelial-Extracellular Matrix (Cell-ECM) Interactions in Hydra

  • Chapter
Rise and Fall of Epithelial Phenotype

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 679 Accesses

Abstract

As a member of the Phylum, Cnidaria, hydra is organized a simple gastric tube with a head and foot pole. The entire body wall of hydra is organized as a epithelial bilayer with an intervening extracellular matrix (ECM). The major components of hydra ECM are highly conserved and reflect those seen in vertebrate systems. These components include laminin, collagen type IV, and a fibrillar collagen that is similar to a vertebrate type I/II class. The supramolecular organization of hydra ECM is seen as two basal lamina containing laminin and collagen type IV (one associated with the basal plasma membrane of the ectoderm and endoderm) with a central interstitial-like matrix containing fibrillar collagens. Because of the unique biophysical properties of hydra ECM, decapitation of hydra (or any wound to the bilayer) results in retraction of the matrix from the wound site. While the epithelial bilayer will seal within one hour, the matrix remains retracted resulting in a bilayer lacking an intervening ECM. This triggers an upregulation of matrix component mRNA within 3 hours of wounding and de novo biogenesis of hydra ECM that is completed within 24–72 hours from the initial time of decapitation or wounding. While the ECM of hydra is symmetrical (two basal laminin to the periphery of the central interstitial matrix), the synthesis of matrix components from the epithelium is asymmetrical. For example, laminin is secreted from the endoderm while collagen type IV and hydra fibrillar collagen (Hcol-I) are both secreted from the ectoderm. The timing of matrix component secretion is also irregular in that laminin and collagen type IV are secreted and integrated within the newly forming basal lamina within 6–12 hours of decapitation or wounding while fibrillar collagen is not secreted until at least 24 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sandblom P. Creativity and Disease. How illness affects literature, art, and music. New York: Marion Boyars, 1995.

    Google Scholar 

  2. Deutzmann R, Fowler S, Zhang X et al. Molecular, biochemical and functional analysis of a novel and developmental important fibrillar collagen (Hcol-I) in hydra. Development 2000; 127:4669–4680.

    PubMed  CAS  Google Scholar 

  3. Hess A. Observations on the structure of Hydra as seen with the electron and light microscope. Quart J Micr Sci 1957;98:315–326.

    Google Scholar 

  4. Wood RL. The fine structure of intracellular and mesoglea attachments of epithelial cells in Hydra. In: Lenhoff HLW, ed. The biology of Hydra. Coral Gables, FL: Miami Press University, 1961.

    Google Scholar 

  5. Gauthier GF. Cytological studies on the gastroderm of Hydra. J Exp Zool 1963;152:13–40.

    Google Scholar 

  6. Zhang X, Fei K, Yan L et al. Structural and functional analysis of an early divergent form of laminin in the Cnidarian, Hydra. Dev Genes E 2002;212:159–172.

    CAS  Google Scholar 

  7. Shimizu H, Zhang XM, Zhang JS et al. Epithelial morphogenesis in hydra requires de novo expression of extracellular matrix components and matrix metalloproteinases. Development 2002;129:1521–1532.

    PubMed  CAS  Google Scholar 

  8. Haynes JF, Burnett AL, Davis LE. Histological and ultrastructural study of the muscular and nervous systems in Hydra. I. The muscular system and the mesoglea. J Exp Zool 1968;167:283–293.

    PubMed  CAS  Google Scholar 

  9. Davis LE, Haynes JF. An ultrastructural examination of the mesoglea of Hydra. Z Zellforsch Mikrosk Anat 1968; 92:149–158.

    PubMed  CAS  Google Scholar 

  10. Barzansky B, Lenhoff HM. On the chemical composition and developmental role of the mesogelea of Hydra. Amer Zool 1974;14:575–581.

    CAS  Google Scholar 

  11. Barzansky B, Lenhoff HM, Bode H. Hydra mesoglea: Similarity of its amino acid and neutral sugar composition to that of vertebrate basal lamina. Comp Biochem Physiol [B] 1975;50:419–424.

    CAS  Google Scholar 

  12. Shostak S, Patel NG, Burnett AL. The role of mesoglea in mass cell movement in Hydra. Dev Biol 1965;12:434–450.

    PubMed  CAS  Google Scholar 

  13. Fujisawa T. Hydra regeneration and epitheliopeptides. Dev Dyn 2003;226:182–189.

    PubMed  CAS  Google Scholar 

  14. Bode H. Head regeneration in Hydra. Developmental Dynamics 2003;226:225–236.

    PubMed  Google Scholar 

  15. Sarras Jr MP, Zhang X, Huff JK et al. Extracellular matrix (mesoglea) of Hydra vulgaris III. Formation and function during morphogenesis of hydra cell aggregates. Dev Biol 1993;157:383–398.

    PubMed  Google Scholar 

  16. Sarras Jr MP, Madden ME, Zhang XM et al. Extracellular matrix (mesoglea) of Hydra vulgaris. I. Isolation and characterization. Dev Biol 1991;148:481–494.

    PubMed  CAS  Google Scholar 

  17. Sarras Jr MP, Meador D, Zhang XM. Extracellular matrix (mesoglea) of Hydra vulgaris. II. Influence of collagen and proteoglycan components on head regeneration. Dev Biol 1991;148:495–500.

    PubMed  CAS  Google Scholar 

  18. Sarras Jr MP, Yan L, Grens A et al. Cloning and biological function of laminin in Hydra vulgaris. Dev Biol 1994;164:312–324.

    PubMed  CAS  Google Scholar 

  19. Fowler SJ, Jose S, Zhang X et al. Characterization of Hydra Type IV Collagen. Type IV collagen is essential for head regeneration and it expression is up-regulated upon exposure to glucose. J Biol Chem 2000;275:39589–39599.

    PubMed  CAS  Google Scholar 

  20. Burgeson RE, Chiquet M, Deutzmann R et al. A new nomenclature for the laminins. Matrix Biol 1994;14:209–211.

    PubMed  CAS  Google Scholar 

  21. Champliaud MF, Lunstrum GP, Rousselle P et al. Human amnion contains a novel laminin vari ant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J Cell Biol 1996;132:1189–1198.

    PubMed  CAS  Google Scholar 

  22. Livanainen A, Sainio K, Sariola H et al. Primary structure and expression of a novel human laminin alpha 4 chain. FEBS Lett 1995;365(2–3):183–188.

    Google Scholar 

  23. Martin PT, Ettinger AJ, Sanes JR. A synaptic localization domain in the synaptic cleft protein laminin beta-2 (s-laminin). Science 1995;269(5222):413–416.

    PubMed  CAS  Google Scholar 

  24. Miner JH, Lewis RM, Sanes JR. Molecular cloning of a novel laminin chain, alpha 5, and widespread expression in adult mouse tissues. J Biol Chem 1995;270:28523–28526.

    PubMed  CAS  Google Scholar 

  25. Richards AJ, al Imara L, Carter NP et al. Localization of the gene (LAMA4) to chromosome 6q21 and isolation of a partial cDNA encoding a variant laminin A chain. Genomics 1994;22:237–239.

    PubMed  CAS  Google Scholar 

  26. Hutter H, Vogel BE, Plenefisch JD et al. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 2000;287:989–994.

    PubMed  CAS  Google Scholar 

  27. Benson S, Page L, Ingersoll E et al. Developmental characterization of the gene for laminin alpha-chain in sea urchin embryos. Mech Dev 1999;81:37–49.

    PubMed  CAS  Google Scholar 

  28. Timpl R, Brown JC. Supramolecular assembly of basement membranes. Bioessays 1996;18:123–132.

    PubMed  CAS  Google Scholar 

  29. Yurchenco PD, O’Rear JJ. Basal lamina assembly. Curr Opin Cell Biol 1994;6:674–681.

    PubMed  CAS  Google Scholar 

  30. Yurchenco PD, Cheng YS. Laminin self-assembly: A three-arm interaction hypothesis for the formation of a network in basement membranes. Contrib Nephrol 1994;107:47–56.

    PubMed  CAS  Google Scholar 

  31. Gallinano MF, Aberdam D, Aguzzi A et al. Cloning and complete primary structure of teh mouse laminin alpha 3 chain. Distinct expression pattern of the laminin alpha 3A and alpha 3B chain isoforms. Journal of Biological Chemistry 1995;270[37]:21820–21826.

    Google Scholar 

  32. Kallunki P, Sainio K, Eddy R et al. A truncated laminin chain homologous to the B2 chain: Structure, spatial expression, and chromosomal assignment. J Cell Biol 1992;119:679–693.

    PubMed  CAS  Google Scholar 

  33. Schönherr E, O’Connell BC, Schittny J et al. Paracrine or virus-mediated induction of decorin expression by endothelial cells contributes to tube formation and prevention of apoptosis in collagen lattices. Eur J Cell Biol 1999;78:44–55.

    PubMed  Google Scholar 

  34. Colognato H, Yurchenco PD. Form and function: The laminin family of heterotrimers. Dev Dyn 2000;218:213–234.

    PubMed  CAS  Google Scholar 

  35. Colognato H, Winkelmann DA, Yurchenco PD. Laminin polymerization induces a receptor-cytoskeleton network. J Cell Biol 1999;145:619–631.

    PubMed  CAS  Google Scholar 

  36. Darribere T, Skalski M, Cousin HL et al. Integrins: Regulators of embryogenesis. Biol Cell 2000;92:5–25.

    PubMed  CAS  Google Scholar 

  37. Zhang X, Hudson BG, Sarras Jr MP. Hydra cell aggregate development is blocked by selective fragments of fibronectin and type IV collagen. Dev Biol 1994;164:10–23.

    PubMed  CAS  Google Scholar 

  38. Agbas A, Sarras Jr MP. Evidence for cell surface extracellular matrix binding proteins in Hydra vulgaris. Cell Adhes Commun 1994;2:59–73.

    PubMed  CAS  Google Scholar 

  39. Yoshida N, Ishii E, Nomizu M et al. The laminin-derived peptide YIGSR (Tyr-Ile-Gly-Ser-Arg) inhibits human preB leukaemic cell growth and dissemination to organs in SCID mice. Br J Cancer 1999;80:1898–1904.

    PubMed  CAS  Google Scholar 

  40. Hopker VH, Shewan D, Tessier-Lavigne M et al. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 1999;401:69–73.

    PubMed  CAS  Google Scholar 

  41. Prockop DJ, Kivirikko KI. Collagens: Molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 1995;64:403–434.

    PubMed  CAS  Google Scholar 

  42. Olsen BR, Ninomiya Y. Collagens. In: Kreis T, Vale R, eds. Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins. Oxford: Oxford University Press, 1999:380–408.

    Google Scholar 

  43. Kurz EM, Holstein TW, Petri BM et al. Mini-collagens in hydra nematocytes. J Cell Biol 1991;115:1159–1169.

    PubMed  CAS  Google Scholar 

  44. Kramer JM. Structures and functions of collagens in Caenorhabditis elegans. FASEB J 1994;8:329–336.

    PubMed  CAS  Google Scholar 

  45. Hausman RE, Burnett AL. The mesoglea of Hydra: IV. A quantitative radiographic study of teh protein component. J Exp Zool 1971;177:435–446.

    CAS  Google Scholar 

  46. Hudson BG, Kalluri R, Gunwar S et al. Structure and organization of type IV collagen of renal glomerular basement membrane. Contrib Nephrol 1994;107:163–167.

    PubMed  CAS  Google Scholar 

  47. Borza DB, Miner JH, Hudson BG. Basement membrane and cellular components of the nephron. In: Massry SG, Glassock RJ, eds. Massry and Glassock’s Textbook of Nephrology. New York: Lippincott Williams and Wilkins Publishers, 2000:37–42.

    Google Scholar 

  48. Blumberg B, MacKrell AJ, Fessler JH. Drosophila basement membrane procollagen alpha 1(IV). II. Complete cDNA sequence, genomic structure, and general implications for supramolecular as semblies. J Biol Chem 1988;263:18328–18337.

    PubMed  CAS  Google Scholar 

  49. Guo XD, Johnson JJ, Kramer JM. Embryonic lethality caused by mutations in basement membrane collagen of C. elegans. Nature 1991; 349:707–709.

    PubMed  CAS  Google Scholar 

  50. Kuehn K. Basement membrane (type IV) collagen. Matrix Biol 1994; 14:439–445.

    Google Scholar 

  51. Noelken ME, Wisdom Jr BJ, Dean DC et al. Intestinal basement membrane of Ascaris suum. Molecular organization and properties of the collagen molecules. J Biol Chem 1986; 261:4706–4714.

    PubMed  CAS  Google Scholar 

  52. Exposito JY, Garrone R. Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc Natl Acad Sci USA 1990; 87:6669–6673.

    PubMed  CAS  Google Scholar 

  53. Exposito JY, D’Alessio M, Solursh M et al. Sea urchin collagen evolutionarily homologous to vertebrate pro-alpha 2(I) collagen. J Biol Chem 1992; 267:15559–15562.

    PubMed  CAS  Google Scholar 

  54. Boot-Handford RP, Tuckwell DS. Fibrillar collagen: The key to vertebrate evolution? Bioessays 2003; 25:142–151.

    PubMed  CAS  Google Scholar 

  55. Sarras Jr MP, Deutzmann R. Hydra and Niccolo Paganini (1782–1840)-two peas in a pod? The molecular basis of extracellular matrix structure in the invertebrate, Hydra. Bioessays 2001; 23:716–724.

    PubMed  CAS  Google Scholar 

  56. Campbell RD. Tissue dynamics of steady state growth in Hydra littoralis. II. Patterns of tissue movement. J Morphol 1967; 121:19–28.

    PubMed  CAS  Google Scholar 

  57. Dike LE, Chen CS, Mrksich M et al. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev Biol Anim 1999; 35:441–448.

    PubMed  CAS  Google Scholar 

  58. Chen CS, Ingber DE. Tensegrity and mechanoregulation: From skeleton to cytoskeleton. Osteoarthritis Cartilage 1999; 7:81–94.

    PubMed  CAS  Google Scholar 

  59. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260:1124–1127.

    PubMed  CAS  Google Scholar 

  60. Ingber DE. Tensegrity: The architectural basis of cellular mechanotransduction. Annu Rev Physiol 1997; 59:575–599.

    PubMed  CAS  Google Scholar 

  61. Madden ME, Sarras Jr MP. A morphological and biochemical characterization of a human pancreatic ductal cell line (PANC-1). Pancreas 1988; 3:512–528.

    PubMed  CAS  Google Scholar 

  62. Nedelec B, Ghahary A, Scott PG et al. Control of wound contraction. Basic and clinical features. Hand Clin 2000; 16:289–302.

    PubMed  CAS  Google Scholar 

  63. Shimizu H, Sawada Y, Sugiyama T. Minimum tissue size required for hydra regeneration. Dev Biol 1993; 155:287–296.

    PubMed  CAS  Google Scholar 

  64. Leontovich A, Zhang JS, Shimokawa K et al. A novel hydra matrix metalloproteinase (HMMP) functions in extracellular matrix degradation, morphogenesis and the maintenance of differentiated cells in the foot process. Development 2000; 127:907–920.

    PubMed  CAS  Google Scholar 

  65. Relan NK, Schuger L. Basement membranes in development. Pediatr Dev Pathol 1999; 2:103–118.

    PubMed  CAS  Google Scholar 

  66. Yan L, Pollock GH, Nagase H et al. 25.7 × 10(3) M(r) hydra metalloproteinase (HMP1), a member of the astacin family, localizes to the extracellular matrix of Hydra vulgaris in a head-specific manner and has a developmental function. Development 1995; 121:1591–1602.

    PubMed  CAS  Google Scholar 

  67. Yan L, Leontovich A, Fei KY et al. Hydra metalloproteinase 1: A secreted astacin metalloproteinase whose apical axis expression is differentially regulated during head regeneration. Dev Biol 2000; 219:115–128.

    PubMed  CAS  Google Scholar 

  68. Woessner JF, Nagase H. Matrix metalloproteinases and TIMPs. Oxford, UK: Oxford University Press, 2000.

    Google Scholar 

  69. McCawley LJ, Matrisian LM. Matrix metalloproteinases: They’re not just for matrix anymore! Curr Opin Cell Biol 2001; 13:534–540.

    PubMed  CAS  Google Scholar 

  70. Zhang J, Leontovich A, Sarras Jr MP. Molecular and functional evidence for early divergence of an endothelin-like system during metazoan evolution: Analysis of teh Cnidarian, Hydra. Development 2001; 1607–1615.

    Google Scholar 

  71. Bond JS, Beynon RJ. The astacin family of metalloendopeptidases. Protein Sci 1995; 4:1247–1261.

    Article  PubMed  CAS  Google Scholar 

  72. Pan T, Groger H, Schmid V. A toxin homology domain in an astacin-like metalloproteinase of teh jellyfish Podocoryne carnea with a dual role in digestion and development. Dev Genes E 1998; 208:259–266.

    CAS  Google Scholar 

  73. Shimell MJ, Ferguson EL, Childs SR et al. The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1. Cell 1991; 67:469–481.

    PubMed  CAS  Google Scholar 

  74. Ferguson EL, Anderson KV. Dorsal-ventral pattern formation in the Drosophila embryo: The role of zygotically active genes. Curr Top Dev Biol 1991; 25:17–43.

    Article  PubMed  CAS  Google Scholar 

  75. Ferguson EL, Anderson KV. Localized enhauncement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development 1992; 114:583–597.

    PubMed  CAS  Google Scholar 

  76. Finelli AL, Bossie CA, Xie T et al. Mutational analysis of the Drosophila tolloid gene, a human BMP-1 homolog. Development 1994; 120:861–870.

    PubMed  CAS  Google Scholar 

  77. Sarras Jr MP. BMP-1 and the astacin family of metalloproteinases: A potential link between the extracellular matrix, growth factors and pattern formation. Bioessays 1996; 18:439–442.

    PubMed  CAS  Google Scholar 

  78. Marques EJ, Weiss J, Stand M. Molecular characteristrics of a fucosyltransferase encoded by Schistosoma mansoni. Mol Biochem Parasitol 1998; 93:237–250.

    PubMed  CAS  Google Scholar 

  79. Blader P, Rastegar S, Fischer N et al. Cleavage of the BMP-4 antagonist chordin by zebrafish tolloid. Science 1997; 278:1937–1940.

    PubMed  CAS  Google Scholar 

  80. Piccolo S, Agius E, Lu B et al. Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 1997; 91:407–416.

    PubMed  CAS  Google Scholar 

  81. Ware JL, Angerer LM, Angerer RC et al. Regulation of BMP signaling by the BMP1/TLD-related metalloprotease, SpAN. Developmental Biology 1999; 206:63–72.

    Google Scholar 

  82. Grens A, Shimizu H, Hoffmeister SA et al. The novel signal peptides, Pedibin and Hym-346, lower positional value thereby enhancing foot formation in hydra. Development 1999; 126:517–524.

    PubMed  CAS  Google Scholar 

  83. Mitgutsch C, Hauser F, Grimmelikhuijzen CJ. Expression and developmental regulation of teh Hydra-RFamide and Hydra-LWamide proprohormone genes in Hydra: Evidence for transient phases of head formation. Developmental Biology 2003; 207:189–203.

    Google Scholar 

  84. Dumpfmuller G, Rybakin V, Takahashi T et al. Identification of an astacin matrix metalloprotease as target gene for Hydra foot activator peptides. Dev Genes Evol 1999; 209:601–607.

    Google Scholar 

  85. Uzel MI, Scott IC, Babakhaniou-Chase H et al. Multiple bone morphogenetic protein 1-related mammalian metalloproteinases process pro-lysyl oxidase at the correct physiological site and control lysyl oxidase activation in mouse embryo fibroblast cultures. J Biol Chem 2001; 276:22537–22543.

    PubMed  CAS  Google Scholar 

  86. Chicurel ME, Chen C, Ingber DE. Cellular control lies in the balance of forces. Curr Opin Cell Biol 1998; 10:232–239.

    PubMed  CAS  Google Scholar 

  87. Zhang X, Sarras Jr MP. Cell-extracellular matrix interactions under in vivo conditions during interstitial cell migration in Hydra vulgaris. Development 1994; 120:425–432.

    PubMed  CAS  Google Scholar 

  88. Werb Z. ECM and cell surface proteolysis: Regulating cellular ecology. Cell 1997; 91:439–442.

    PubMed  CAS  Google Scholar 

  89. Nagase H, Woessner Jr JF. Matrix metalloproteinases. J Biol Chem 1999; 274:21491–21494.

    PubMed  CAS  Google Scholar 

  90. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17:463–516.

    PubMed  CAS  Google Scholar 

  91. Lohi J, Wilson CL, Roby JD et al. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and iin response to injury. Journal of Biological Chemistry 2003; 276:10134–10144.

    Google Scholar 

  92. Lepage T, Gache C. Early expression of a collagenase-like hatching enyzme gene in the sea urchin embryo. Embo J 1990; 9:3003–3012.

    PubMed  CAS  Google Scholar 

  93. Nomura K, Tanaka H, Kikkawa Y et al. The specificity of sea urchin hatchiing enzyme (envelysin) places it in the mammalian matrix metalloproteinase family. Biochemistry 1991; 30:6115–6123.

    PubMed  CAS  Google Scholar 

  94. Nomura K, Shimizu T, Kinoh H et al. Sea urchiin hatching enzyme (envelysin): cDNA cloning and deprivation of protein substrate specificity by autolytic degradation. Biochemistry 1997; 36:7225–7238.

    PubMed  CAS  Google Scholar 

  95. Llano E, Pendás AM, Aza-Blanc P et al. Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem 2000; 275:35978–35985.

    PubMed  CAS  Google Scholar 

  96. Page-McCaw A, Serano J, Sante JM et al. Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell 2003; 4:95–106.

    PubMed  CAS  Google Scholar 

  97. Wada K, Sato H, Kinoh H et al. Cloning of three Caenorhabditis elegans genes potentially encoding novel matrix metalloproteinases. Gene 1998; 211:57–62.

    PubMed  CAS  Google Scholar 

  98. Pak JH, Liu CY, Huangpu J et al. Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins. FEBS Lett 1997; 404:283–266.

    PubMed  CAS  Google Scholar 

  99. Massova I, Kotra LP, Fridman R et al. Matrix metalloproteinases: Structures, evolution, and diversification. FASEB J 1998; 12:1075–1095.

    PubMed  CAS  Google Scholar 

  100. Maidment JM, Moore D, Murphy GP et al. Matrix metalloproteinase homologues from Arabidopsis thaliana-Expression and activity. J Biol Chem 1999; 274:34706–34710.

    PubMed  CAS  Google Scholar 

  101. Kinoshita T, Fukuzaw H, Shimada T et al. Primary structure and expression of a gamete lytic enzyme in Chiamydomonas reinhardtii: Similarity of functional domains to matrix metalloproteinases. Proc Natl Acad Sci USA 1992; 89:4693–4697.

    PubMed  CAS  Google Scholar 

  102. Sedlacek R, Mauch S, Kolb B et al. Matrix metalloproteinase MMP-19 (RASI 1) is expressed on the surface of activated peripheral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology 1998; 198:408–423.

    PubMed  CAS  Google Scholar 

  103. Ghiglione C, Lhomond G, Lepage T et al. Structure of teh sea urchin hatchiing enzyme gene. Eur J Biochem 1994; 219:845–854.

    PubMed  CAS  Google Scholar 

  104. Nagase H. Human stromelysins 1 and 2. In: Barrett AJ, ed. Methods of Enzymology. London, UK: Academic Press, 1995:449–470.

    Google Scholar 

  105. Itoh Y, Ito A, Iwata K et al. Plasma membrane-bound tissue inhibitor of metalloproteinases (TIMP)-2 specifically inhibits matrix metalloproteinase 2 (Gelatinase A) activated on the cell surface. J Biol Chem 1998; 273:24360–24367.

    PubMed  CAS  Google Scholar 

  106. Grobelny D, Poncz L, Galardy RE. Inhibition of human skin fibroblasts collagenase, thermolysin, and Pseudomonas aeruginosa elastase by peptide hydroxamic acids. Biochemistry 1992; 31:7152–7154.

    PubMed  CAS  Google Scholar 

  107. Clark IM, Cawston TE. Fragments of human fibroblast collagenase. Purification and characterization. Biochem J 2000; 263:210–206.

    Google Scholar 

  108. Knauper V, Wilhelm SM, Seperack PK et al. Direct activation of human neutophil procollagenase by recombinant stromelysin. Biochemical Journal 1993; 295(Pt 2):581–586.

    PubMed  Google Scholar 

  109. Knauper V, Lopez-Otin C, Smith B et al. Biochemical characterization of human collagenase-3. Journal of Biological Chemistry 1996; 271:1544–1550.

    PubMed  CAS  Google Scholar 

  110. Stidwill RP, Christen M. Alteration of fibronectin affinity during differentiation modulates the in vitro migration velocities of Hydra nematocytes. Cell Motil Cytoskeleton 1998; 41:68–73.

    PubMed  CAS  Google Scholar 

  111. Ziegler U, Stidwill RP. The attachment of nematocytes from the primitive invertebrate Hydra to fibronectin is specific and RGD-dependent. Exp Cell Res 1992; 202:281–286.

    PubMed  CAS  Google Scholar 

  112. Gonzalez Agosti C, Stidwill R. In vitro migration of Hydra nematocytes: The influence of teh natural extracellular matrix (the mesoglea, of collagen type IV and type, laminin, and fibronectin) on cell attachment, migration parameters and patterns of cytoskeletal proteins. Cell Motil Cytoskeleton 1991; 20:215–227.

    CAS  Google Scholar 

  113. Yan L, Fei KY, Zhang JS et al. Identification and characterization of hydra metalloproteinase 2 (HMP2): A meprin-like astacin metalloproteinase that functions in foot morphogenesis. Develop ment 2000; 127:129–141.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Sarras, M.P. (2005). Epithelial-Extracellular Matrix (Cell-ECM) Interactions in Hydra. In: Rise and Fall of Epithelial Phenotype. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28671-3_5

Download citation

Publish with us

Policies and ethics