Encapsidation of the Segmented Double-Stranded RNA Genome of Bacteriophage φ6

  • Minna M. Poranen
  • Markus J. Pirttimaa
  • Dennis H. Bamford
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Bacteriophage φ6 has a segmented double-stranded RNA genome that is incorporated into a preformed capsid during viral assembly. The three viral genomic segments are packaged as single-stranded precursors, which are later replicated into the mature double-stranded genome inside the capsid by the viral polymerase. The packaging efficiency of φ6 is high; virtually all particles released from φ6-infected cells are infectious and carry one copy of each of the genome segments. This feature makes φ6 an appropriate model to analyze the principles of packaging of a multi-segmented genome. In vitro analyses have revealed that the packaging of φ6 involves sequential uptake of the three genome segments. The initiation of RNA replication is a checkpoint for correct genome packaging and is dependent on a specific interaction between the viral RNA and the preassembled polymerase complex, the procapsid. During the maturation the polymerase complex undergoes structural changes which lead to the expansion of the particle. The packaging NTPase of φ6 is a ring-like hexamer that is located at each of the five-fold vertices in the procapsid. However, it appears that only one vertex is adequate to carry out efficient packaging, while the others are required when the newly synthesized message RNAs exits from the capsid. φ6 packaging and replication shares features with bacterial double-stranded DNA viruses as well as with eukaryotic double-stranded RNA viruses.


dsRNA Virus Bluetongue Virus Polymerase Complex Special Vertex dsRNA Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vidaver AK, Koski RK, Van Etten JL. Bacteriophage φ6: A lipid-containing virus of Pseudomonas phaseolicola. J Virol 1973; 11:799–805.PubMedGoogle Scholar
  2. 2.
    Mindich L, Qiao X, Qiao J et al. Isolation of additional bacteriophages with genomes of segmented double-stranded RNA. J Bacteriol 1999; 181(15):4505–8.PubMedGoogle Scholar
  3. 3.
    Hendrix RW. Evolution: The long evolutionary reach of viruses. Curr Biol 1999; 9(24):R914–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Bamford DH. Do viruses form lineages across different domains of life? Res Microbiol 2003; 154(4):231–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Bamford DH. Virus structures: Those magnificent molecular machines. Curr Biol 2000; 10(15):R558–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Grimes JM, Burroughs JN, Gouet P et al. The atomic structure of the bluetongue virus core. Nature 1998; 395(6701):470–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Reinisch KM, Nibert ML, Harrison SC. Structure of the reovirus core at 3.6 Å resolution. Nature 2000; 404(6781):960–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Patton JT, Spencer E. Genome replication and packaging of segmented double-stranded RNA viruses. Virology 2000; 277(2):217–25.PubMedCrossRefGoogle Scholar
  9. 9.
    Van Etten JV, Lane L, Gonzalez C et al. Comparative properties of bacteriophage φ6 and φ6 nucleocapsid. J Virol 1976; 18(2):652–8.PubMedGoogle Scholar
  10. 10.
    Olkkonen VM, Ojala PM, Bamford DH. Generation of infectious nucleocapsids by in vitro assembly of the shell protein on to the polymerase complex of the dsRNA bacteriophage φ6. J Mol Biol 1991; 218(3):569–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Laurinavicius S, Käkelä R, Bamford DH et al. The origin of phospholipids of the enveloped bacteriophage φ6. Virology 2004; in press.Google Scholar
  12. 12.
    Butcher SJ, Dokland T, Ojala PM et al. Intermediates in the assembly pathway of the double-stranded RNA virus φ6. EMBO J 1997; 16(14):4477–87.PubMedCrossRefGoogle Scholar
  13. 13.
    Metcalf P, Cyrklaff M, Adrian M. The three-dimensional structure of reovirus obtained by cryo-electron microscopy. EMBO J 1991; 10(11):3129–36.PubMedGoogle Scholar
  14. 14.
    Bamford DH, Romantschuk M, Somerharju PJ. Membrane fusion in prokaryotes: Bacteriophage φ6 membrane fuses with the Pseudomonas syringae outer membrane. EMBO J 1987; 6(5):1467–73.PubMedGoogle Scholar
  15. 15.
    Romantschuk M, Olkkonen VM, Bamford DH. The nucleocapsid of bacteriophage φ6 penetrates the host cytoplasmic membrane. EMBO J 1988; 7(6):1821–9.PubMedGoogle Scholar
  16. 16.
    Poranen MM, Daugelavicius R, Ojala PM et al. A novel virus-host cell membrane interaction. Membrane voltage-dependent endocytic-like entry of bacteriophage φ6 nucleocapsid. J Cell Biol 1999; 147(3):671–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Mindich L, Davidoff-Abelson R. The characterization of a 120 S particle formed during φ6 infection. Virology 1980; 103(2):386–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Bamford DH, Mindich L. Electron microscopy of cells infected with nonsense mutants of bacteriophage φ6. Virology 1980; 107(1):222–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Ewen ME, Revel HR. In vitro replication and transcription of the segmented double-stranded RNA bacteriophage φ6. Virology 1988; 165(2):489–98.PubMedCrossRefGoogle Scholar
  20. 20.
    Mindich L, Bamford DH. Lipid-containing bacteriophages. In: Calendar R, ed. The Bacteriophages. New York: Plenum Publishing Corporation, 1988:475–519.Google Scholar
  21. 21.
    Day LA, Mindich L. The molecular weight of bacteriophage φ6 and its nucleocapsid. Virology 1980; 103(2):376–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Van Etten JL, Vidaver AK, Koski RK et al. RNA polymerase activity associated with bacteriophage φ6. J Virol 1973; 12(3):464–71.PubMedGoogle Scholar
  23. 23.
    Emori Y, Iba H, Okada Y. Transcriptional regulation of three double-stranded RNA segments of bacteriophage φ6 in vitro. J Virol 1983; 46(1):196–203.PubMedGoogle Scholar
  24. 24.
    Ojala PM, Bamford DH. In vitro transcription of the double-stranded RNA bacteriophage φ6 is influenced by purine NTPs and calcium. Virology 1995; 207(2):400–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Gottlieb P, Strassman J, Bamford DH et al. Production of a polyhedral particle in Escherichia coli from a cDNA copy of the large genomic segment of bacteriophage φ6. J Virol 1988; 62(1):181–7.PubMedGoogle Scholar
  26. 26.
    Gottlieb P, Strassman J, Qiao XY et al. In vitro replication, packaging, and transcription of the segmented double-stranded RNA genome of bacteriophage φ6: Studies with procapsids assembled from plasmid-encoded proteins. J Bacteriol 1990; 172(10):5774–82.PubMedGoogle Scholar
  27. 27.
    Ojalsa PM, Romantschuk M, Bamford DH. Purified φ6 nucleocapsids are capable of productive infection of host cells with partially disrupted outer membranes. Virology 1990; 178(2):364–72.CrossRefGoogle Scholar
  28. 28.
    Olkkonen VM, Gottlieb P, Strassman J et al. In vitro assembly of infectious nucleocapsids of bacteriophage φ6: Formation of a recombinant double-stranded RNA virus. Proc Natl Acad Sci USA 1990; 87(23):9173–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Poranen MM, Paatero AO, Tuma R et al. Self-assembly of a viral molecular machine from purified protein and RNA constituents. Mol Cell 2001; 7(4):845–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Gottlieb P, Strassman J, Qiao X et al. In vitro packaging and replication of individual genomic segments of bacteriophage φ6 RNA. J Virol 1992; 66(5):2611–16.PubMedGoogle Scholar
  31. 31.
    Frilander M, Gottlieb P, Strassman J et al. Dependence of minus-strand synthesis on complete genomic packaging in the double-stranded RNA bacteriophage φ6. J Virol 1992; 66(8):5013–7.PubMedGoogle Scholar
  32. 32.
    Gottlieb P, Qiao X, Strassman J et al. Identification of the packaging regions within the genomic RNA segments of bacteriophage φ6. Virology 1994; 200(1):42–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Qiao X, Casini G, Qiao J et al. In vitro packaging of individual genomic segments of bacteriophage φ6 RNA: Serial dependence relationships. J Virol 1995; 69(5):2926–31.PubMedGoogle Scholar
  34. 34.
    Qiao X, Qiao J, Mindich L. Stoichiometric packaging of the three genomic segments of double-stranded RNA bacteriophage φ6. Proc Natl Acad Sci USA 1997; 94(8):4074–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Pirttimaa MJ, Bamford DH. RNA secondary structures of the bacteriophage φ6 packaging regions. RNA 2000; 6(6):880–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Mindich L, Qiao X, Onodera S et al. Heterologous recombination in the double-stranded RNA bacteriophage φ6. J Virol 1992; 66(5):2605–10.PubMedGoogle Scholar
  37. 37.
    Paatero AO, Mindich L, Bamford DH. Mutational analysis of the role of nucleoside triphosphatase P4 in the assembly of the RNA polymerase complex of bacteriophage φ6. J Virol 1998; 72(12):10058–65.PubMedGoogle Scholar
  38. 38.
    Juuti JT, Bamford DH. Protein P7 of phage φ6 RNA polymerase complex, acquiring of RNA packaging activity by in vitro assembly of the purified protein onto deficient particles. J Mol Biol 1997; 266(5):891–900.PubMedCrossRefGoogle Scholar
  39. 39.
    Juuti JT, Bamford DH, Tuma R et al. Structure and NTPase activity of the RNA-translocating protein (P4) of bacteriophage φ6. J Mol Biol 1998; 279(2):347–59.PubMedCrossRefGoogle Scholar
  40. 40.
    Makeyev EV, Bamford DH. Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage φ6. EMBO J 2000; 19(1):124–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Ktistakis NT, Lang D. The dodecahedral framework of the bacteriophage φ6 nucleocapsid is composed of protein P1. J Virol 1987; 61(8):2621–3.PubMedGoogle Scholar
  42. 42.
    Olkkonen VM, Bamford DH. The nucleocapsid of the lipid-containing double-stranded RNA bacteriophage φ6 contains a protein skeleton consisting of a single polypeptide species. J Virol 1987; 61(8):2362–7.PubMedGoogle Scholar
  43. 43.
    Onodera S, Qiao X, Qiao J et al. Isolation of a mutant that changes genomic packaging specificity in φ6. Virology 1998; 252(2):438–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Casini G, Qiao X, Mindich L. Reconstitution of active replicase in procapsids of the segmented dsRNA bacteriophage φ6. Virology 1994; 204(1):251–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Koonin EV, Gorbalenya AE, Chumakov KM. Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive-strand RNA viral polymerases. FEBS Lett 1989; 252(1–2):42–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Juuti JT, Bamford DH. RNA binding, packaging and polymerase activities of the different incomplete polymerase complex particles of dsRNA bacteriophage φ6. J Mol Biol 1995; 249(3):545–54.PubMedCrossRefGoogle Scholar
  47. 47.
    Mindich L, Nemhauser I, Gottlieb P et al. Nucleotide sequence of the large double-stranded RNA segment of bacteriophage φ6: Genes specifying the viral replicase and transcriptase. J Virol 1988; 62(4):1180–5.PubMedGoogle Scholar
  48. 48.
    Paatero AO, Syvaoja JE, Bamford DH. Double-stranded RNA bacteriophage φ6 protein P4 is an unspecific nucleoside triphosphatase activated by calcium ions. J Virol 1995; 69(11):6729–34.PubMedGoogle Scholar
  49. 49.
    Pirttimaa M, Paatero AO, Frilander M et al. Nonspecific nucleoside triphosphatase P4 of double-stranded RNA bacteriophage φ6 is required for single-stranded RNA packaging and transcription. J Virol 2002; 76(20):10122–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Gottlieb P, Strassman J, Frucht A et al. In vitro packaging of the bacteriophage φ6 ssRNA genomic precursors. Virology 1991; 181(2):589–94.PubMedCrossRefGoogle Scholar
  51. 51.
    Frilander M, Bamford DH. In vitro packaging of the single-stranded RNA genomic precursors of the segmented double-stranded RNA bacteriophage φ6: The three segments modulate each other’s packaging efficiency. J Mol Biol 1995; 246(3):418–28.PubMedCrossRefGoogle Scholar
  52. 52.
    van Dijk AA, Frilander M, Bamford DH. Differentiation between minus-and plus-strand synthesis: Polymerase activity of dsRNA bacteriophage φ6 in an in vitro packaging and replication system. Virology 1995; 211(1):320–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Ewen ME, Revel HR. RNA-protein complexes responsible for replication and transcription of the double-stranded RNA bacteriophage φ6. Virology 1990; 178(2):509–19.PubMedCrossRefGoogle Scholar
  54. 54.
    Qiao X, Qiao J, Mindich L. Interference with bacteriophage φ6 genomic RNA packaging by hairpin structures. J Virol 1995; 69(9):5502–5.PubMedGoogle Scholar
  55. 55.
    Mindich L, Qiao X, Qiao J. Packaging of multiple copies of reduced-size genomic segments by bacteriophage φ6. Virology 1995; 212(1):213–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Frilander M, Poranen M, Bamford DH. The large genome segment of dsRNA bacteriophage φ6 is the key regulator in the in vitro minus and plus strand synthesis. RNA 1995; 1(5):510–8.PubMedGoogle Scholar
  57. 57.
    Mindich L. Precise packaging of the three genomic segments of the double-stranded RNA bacteriophage φ6. Microbiol Mol Biol Rev 1999; 63(1):149–60.PubMedGoogle Scholar
  58. 58.
    Poranen MM, Bamford DH. Packaging and replication regulation revealed by chimeric genome segments of double-stranded RNA bacteriophage φ6. RNA 1999; 5(3):446–54.PubMedCrossRefGoogle Scholar
  59. 59.
    Pagratis N, Revel HR. Minus-strand RNA synthesis by the segmented double-stranded RNA bacteriophage φ6 requires continuous protein synthesis. Virology 1990; 177(1):281–8.PubMedCrossRefGoogle Scholar
  60. 60.
    de Haas F, Paatero AO, Mindich L et al. A symmetry mismatch at the site of RNA packaging in the polymerase complex of dsRNA bacteriophage φ6. J Mol Biol 1999; 294(2):357–72.PubMedCrossRefGoogle Scholar
  61. 61.
    King J, Chiu W. The procapsid-to-capsid transition in double-stranded DNA bacteriophages. In: Chiu W, Burnett RM, Garcca RL, eds. Structural biology of viruses. New York: Oxford University Press, 1997:288–311.Google Scholar
  62. 62.
    Lata R, Conway JF, Cheng N et al. Maturation dynamics of a viral capsid: Visualization of transitional intermediate states. Cell 2000; 100(2):253–63.PubMedCrossRefGoogle Scholar
  63. 63.
    Hendrix RW. Symmetry mismatch and DNA packaging in large bacteriophages. Proc Nad Acad Sci USA 1978; 75(10):4779–83.CrossRefGoogle Scholar
  64. 64.
    Lawton JA, Estes MK, Prasad BV. Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nat Struct Biol 1997; 4(2):118–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Taraporewala Z, Chen D, Patton JT. Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J Virol 1999; 73(12):9934–43.PubMedGoogle Scholar
  66. 66.
    Taraporewala ZF, Patton JT. Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J Virol 2001; 75(10):4519–27.PubMedCrossRefGoogle Scholar
  67. 67.
    Usala SJ, Brownstein BH, Haselkorn R. Displacement of parental RNA strands during in vitro transcription by bacteriophage φ6 nucleocapsids. Cell 1980; 19(4):855–62.PubMedCrossRefGoogle Scholar
  68. 68.
    Råde L, Westergren B. Mathematics handbook for Science and Engineering. 3rd ed. Lund: Studentlitteratur, 1995.Google Scholar
  69. 69.
    Gouet P, Diprose JM, Grimes JM et al. The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 1999; 97(4):481–90.PubMedCrossRefGoogle Scholar
  70. 70.
    Casjens S. Principles of virion structure, function, and assembly. In: Chiu W, Burnett RM, Garcea RL, eds. Structural biology of viruses. New York: Oxford University Press, 1997:3–37.Google Scholar
  71. 71.
    Kainov DE, Pirttimaa M, Tuma R et al. RNA packaging device of double-stranded RNA bacteriophages, possibly as simple as hexamer of P4 protein. J Biol Chem 2003; 278(48):48084–48091.PubMedCrossRefGoogle Scholar

Copyright information

© and Kluwer Academic/Plenum Publishers 2005

Authors and Affiliations

  • Minna M. Poranen
    • 1
  • Markus J. Pirttimaa
    • 1
  • Dennis H. Bamford
    • 1
  1. 1.Department of Biosciences and Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations