Skip to main content

Encapsidation of the Segmented Double-Stranded RNA Genome of Bacteriophage φ6

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Bacteriophage φ6 has a segmented double-stranded RNA genome that is incorporated into a preformed capsid during viral assembly. The three viral genomic segments are packaged as single-stranded precursors, which are later replicated into the mature double-stranded genome inside the capsid by the viral polymerase. The packaging efficiency of φ6 is high; virtually all particles released from φ6-infected cells are infectious and carry one copy of each of the genome segments. This feature makes φ6 an appropriate model to analyze the principles of packaging of a multi-segmented genome. In vitro analyses have revealed that the packaging of φ6 involves sequential uptake of the three genome segments. The initiation of RNA replication is a checkpoint for correct genome packaging and is dependent on a specific interaction between the viral RNA and the preassembled polymerase complex, the procapsid. During the maturation the polymerase complex undergoes structural changes which lead to the expansion of the particle. The packaging NTPase of φ6 is a ring-like hexamer that is located at each of the five-fold vertices in the procapsid. However, it appears that only one vertex is adequate to carry out efficient packaging, while the others are required when the newly synthesized message RNAs exits from the capsid. φ6 packaging and replication shares features with bacterial double-stranded DNA viruses as well as with eukaryotic double-stranded RNA viruses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vidaver AK, Koski RK, Van Etten JL. Bacteriophage φ6: A lipid-containing virus of Pseudomonas phaseolicola. J Virol 1973; 11:799–805.

    PubMed  CAS  Google Scholar 

  2. Mindich L, Qiao X, Qiao J et al. Isolation of additional bacteriophages with genomes of segmented double-stranded RNA. J Bacteriol 1999; 181(15):4505–8.

    PubMed  CAS  Google Scholar 

  3. Hendrix RW. Evolution: The long evolutionary reach of viruses. Curr Biol 1999; 9(24):R914–7.

    Article  PubMed  CAS  Google Scholar 

  4. Bamford DH. Do viruses form lineages across different domains of life? Res Microbiol 2003; 154(4):231–6.

    Article  PubMed  CAS  Google Scholar 

  5. Bamford DH. Virus structures: Those magnificent molecular machines. Curr Biol 2000; 10(15):R558–61.

    Article  PubMed  CAS  Google Scholar 

  6. Grimes JM, Burroughs JN, Gouet P et al. The atomic structure of the bluetongue virus core. Nature 1998; 395(6701):470–8.

    Article  PubMed  CAS  Google Scholar 

  7. Reinisch KM, Nibert ML, Harrison SC. Structure of the reovirus core at 3.6 Å resolution. Nature 2000; 404(6781):960–7.

    Article  PubMed  CAS  Google Scholar 

  8. Patton JT, Spencer E. Genome replication and packaging of segmented double-stranded RNA viruses. Virology 2000; 277(2):217–25.

    Article  PubMed  CAS  Google Scholar 

  9. Van Etten JV, Lane L, Gonzalez C et al. Comparative properties of bacteriophage φ6 and φ6 nucleocapsid. J Virol 1976; 18(2):652–8.

    PubMed  CAS  Google Scholar 

  10. Olkkonen VM, Ojala PM, Bamford DH. Generation of infectious nucleocapsids by in vitro assembly of the shell protein on to the polymerase complex of the dsRNA bacteriophage φ6. J Mol Biol 1991; 218(3):569–81.

    Article  PubMed  CAS  Google Scholar 

  11. Laurinavicius S, Käkelä R, Bamford DH et al. The origin of phospholipids of the enveloped bacteriophage φ6. Virology 2004; in press.

    Google Scholar 

  12. Butcher SJ, Dokland T, Ojala PM et al. Intermediates in the assembly pathway of the double-stranded RNA virus φ6. EMBO J 1997; 16(14):4477–87.

    Article  PubMed  CAS  Google Scholar 

  13. Metcalf P, Cyrklaff M, Adrian M. The three-dimensional structure of reovirus obtained by cryo-electron microscopy. EMBO J 1991; 10(11):3129–36.

    PubMed  CAS  Google Scholar 

  14. Bamford DH, Romantschuk M, Somerharju PJ. Membrane fusion in prokaryotes: Bacteriophage φ6 membrane fuses with the Pseudomonas syringae outer membrane. EMBO J 1987; 6(5):1467–73.

    PubMed  CAS  Google Scholar 

  15. Romantschuk M, Olkkonen VM, Bamford DH. The nucleocapsid of bacteriophage φ6 penetrates the host cytoplasmic membrane. EMBO J 1988; 7(6):1821–9.

    PubMed  CAS  Google Scholar 

  16. Poranen MM, Daugelavicius R, Ojala PM et al. A novel virus-host cell membrane interaction. Membrane voltage-dependent endocytic-like entry of bacteriophage φ6 nucleocapsid. J Cell Biol 1999; 147(3):671–82.

    Article  PubMed  CAS  Google Scholar 

  17. Mindich L, Davidoff-Abelson R. The characterization of a 120 S particle formed during φ6 infection. Virology 1980; 103(2):386–91.

    Article  PubMed  CAS  Google Scholar 

  18. Bamford DH, Mindich L. Electron microscopy of cells infected with nonsense mutants of bacteriophage φ6. Virology 1980; 107(1):222–8.

    Article  PubMed  CAS  Google Scholar 

  19. Ewen ME, Revel HR. In vitro replication and transcription of the segmented double-stranded RNA bacteriophage φ6. Virology 1988; 165(2):489–98.

    Article  PubMed  CAS  Google Scholar 

  20. Mindich L, Bamford DH. Lipid-containing bacteriophages. In: Calendar R, ed. The Bacteriophages. New York: Plenum Publishing Corporation, 1988:475–519.

    Google Scholar 

  21. Day LA, Mindich L. The molecular weight of bacteriophage φ6 and its nucleocapsid. Virology 1980; 103(2):376–85.

    Article  PubMed  CAS  Google Scholar 

  22. Van Etten JL, Vidaver AK, Koski RK et al. RNA polymerase activity associated with bacteriophage φ6. J Virol 1973; 12(3):464–71.

    PubMed  Google Scholar 

  23. Emori Y, Iba H, Okada Y. Transcriptional regulation of three double-stranded RNA segments of bacteriophage φ6 in vitro. J Virol 1983; 46(1):196–203.

    PubMed  CAS  Google Scholar 

  24. Ojala PM, Bamford DH. In vitro transcription of the double-stranded RNA bacteriophage φ6 is influenced by purine NTPs and calcium. Virology 1995; 207(2):400–8.

    Article  PubMed  CAS  Google Scholar 

  25. Gottlieb P, Strassman J, Bamford DH et al. Production of a polyhedral particle in Escherichia coli from a cDNA copy of the large genomic segment of bacteriophage φ6. J Virol 1988; 62(1):181–7.

    PubMed  CAS  Google Scholar 

  26. Gottlieb P, Strassman J, Qiao XY et al. In vitro replication, packaging, and transcription of the segmented double-stranded RNA genome of bacteriophage φ6: Studies with procapsids assembled from plasmid-encoded proteins. J Bacteriol 1990; 172(10):5774–82.

    PubMed  CAS  Google Scholar 

  27. Ojalsa PM, Romantschuk M, Bamford DH. Purified φ6 nucleocapsids are capable of productive infection of host cells with partially disrupted outer membranes. Virology 1990; 178(2):364–72.

    Article  Google Scholar 

  28. Olkkonen VM, Gottlieb P, Strassman J et al. In vitro assembly of infectious nucleocapsids of bacteriophage φ6: Formation of a recombinant double-stranded RNA virus. Proc Natl Acad Sci USA 1990; 87(23):9173–7.

    Article  PubMed  CAS  Google Scholar 

  29. Poranen MM, Paatero AO, Tuma R et al. Self-assembly of a viral molecular machine from purified protein and RNA constituents. Mol Cell 2001; 7(4):845–54.

    Article  PubMed  CAS  Google Scholar 

  30. Gottlieb P, Strassman J, Qiao X et al. In vitro packaging and replication of individual genomic segments of bacteriophage φ6 RNA. J Virol 1992; 66(5):2611–16.

    PubMed  CAS  Google Scholar 

  31. Frilander M, Gottlieb P, Strassman J et al. Dependence of minus-strand synthesis on complete genomic packaging in the double-stranded RNA bacteriophage φ6. J Virol 1992; 66(8):5013–7.

    PubMed  CAS  Google Scholar 

  32. Gottlieb P, Qiao X, Strassman J et al. Identification of the packaging regions within the genomic RNA segments of bacteriophage φ6. Virology 1994; 200(1):42–7.

    Article  PubMed  CAS  Google Scholar 

  33. Qiao X, Casini G, Qiao J et al. In vitro packaging of individual genomic segments of bacteriophage φ6 RNA: Serial dependence relationships. J Virol 1995; 69(5):2926–31.

    PubMed  CAS  Google Scholar 

  34. Qiao X, Qiao J, Mindich L. Stoichiometric packaging of the three genomic segments of double-stranded RNA bacteriophage φ6. Proc Natl Acad Sci USA 1997; 94(8):4074–9.

    Article  PubMed  CAS  Google Scholar 

  35. Pirttimaa MJ, Bamford DH. RNA secondary structures of the bacteriophage φ6 packaging regions. RNA 2000; 6(6):880–9.

    Article  PubMed  CAS  Google Scholar 

  36. Mindich L, Qiao X, Onodera S et al. Heterologous recombination in the double-stranded RNA bacteriophage φ6. J Virol 1992; 66(5):2605–10.

    PubMed  CAS  Google Scholar 

  37. Paatero AO, Mindich L, Bamford DH. Mutational analysis of the role of nucleoside triphosphatase P4 in the assembly of the RNA polymerase complex of bacteriophage φ6. J Virol 1998; 72(12):10058–65.

    PubMed  CAS  Google Scholar 

  38. Juuti JT, Bamford DH. Protein P7 of phage φ6 RNA polymerase complex, acquiring of RNA packaging activity by in vitro assembly of the purified protein onto deficient particles. J Mol Biol 1997; 266(5):891–900.

    Article  PubMed  CAS  Google Scholar 

  39. Juuti JT, Bamford DH, Tuma R et al. Structure and NTPase activity of the RNA-translocating protein (P4) of bacteriophage φ6. J Mol Biol 1998; 279(2):347–59.

    Article  PubMed  CAS  Google Scholar 

  40. Makeyev EV, Bamford DH. Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage φ6. EMBO J 2000; 19(1):124–33.

    Article  PubMed  CAS  Google Scholar 

  41. Ktistakis NT, Lang D. The dodecahedral framework of the bacteriophage φ6 nucleocapsid is composed of protein P1. J Virol 1987; 61(8):2621–3.

    PubMed  CAS  Google Scholar 

  42. Olkkonen VM, Bamford DH. The nucleocapsid of the lipid-containing double-stranded RNA bacteriophage φ6 contains a protein skeleton consisting of a single polypeptide species. J Virol 1987; 61(8):2362–7.

    PubMed  CAS  Google Scholar 

  43. Onodera S, Qiao X, Qiao J et al. Isolation of a mutant that changes genomic packaging specificity in φ6. Virology 1998; 252(2):438–42.

    Article  PubMed  CAS  Google Scholar 

  44. Casini G, Qiao X, Mindich L. Reconstitution of active replicase in procapsids of the segmented dsRNA bacteriophage φ6. Virology 1994; 204(1):251–3.

    Article  PubMed  CAS  Google Scholar 

  45. Koonin EV, Gorbalenya AE, Chumakov KM. Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive-strand RNA viral polymerases. FEBS Lett 1989; 252(1–2):42–6.

    Article  PubMed  CAS  Google Scholar 

  46. Juuti JT, Bamford DH. RNA binding, packaging and polymerase activities of the different incomplete polymerase complex particles of dsRNA bacteriophage φ6. J Mol Biol 1995; 249(3):545–54.

    Article  PubMed  CAS  Google Scholar 

  47. Mindich L, Nemhauser I, Gottlieb P et al. Nucleotide sequence of the large double-stranded RNA segment of bacteriophage φ6: Genes specifying the viral replicase and transcriptase. J Virol 1988; 62(4):1180–5.

    PubMed  CAS  Google Scholar 

  48. Paatero AO, Syvaoja JE, Bamford DH. Double-stranded RNA bacteriophage φ6 protein P4 is an unspecific nucleoside triphosphatase activated by calcium ions. J Virol 1995; 69(11):6729–34.

    PubMed  CAS  Google Scholar 

  49. Pirttimaa M, Paatero AO, Frilander M et al. Nonspecific nucleoside triphosphatase P4 of double-stranded RNA bacteriophage φ6 is required for single-stranded RNA packaging and transcription. J Virol 2002; 76(20):10122–7.

    Article  PubMed  CAS  Google Scholar 

  50. Gottlieb P, Strassman J, Frucht A et al. In vitro packaging of the bacteriophage φ6 ssRNA genomic precursors. Virology 1991; 181(2):589–94.

    Article  PubMed  CAS  Google Scholar 

  51. Frilander M, Bamford DH. In vitro packaging of the single-stranded RNA genomic precursors of the segmented double-stranded RNA bacteriophage φ6: The three segments modulate each other’s packaging efficiency. J Mol Biol 1995; 246(3):418–28.

    Article  PubMed  CAS  Google Scholar 

  52. van Dijk AA, Frilander M, Bamford DH. Differentiation between minus-and plus-strand synthesis: Polymerase activity of dsRNA bacteriophage φ6 in an in vitro packaging and replication system. Virology 1995; 211(1):320–3.

    Article  PubMed  Google Scholar 

  53. Ewen ME, Revel HR. RNA-protein complexes responsible for replication and transcription of the double-stranded RNA bacteriophage φ6. Virology 1990; 178(2):509–19.

    Article  PubMed  CAS  Google Scholar 

  54. Qiao X, Qiao J, Mindich L. Interference with bacteriophage φ6 genomic RNA packaging by hairpin structures. J Virol 1995; 69(9):5502–5.

    PubMed  CAS  Google Scholar 

  55. Mindich L, Qiao X, Qiao J. Packaging of multiple copies of reduced-size genomic segments by bacteriophage φ6. Virology 1995; 212(1):213–7.

    Article  PubMed  CAS  Google Scholar 

  56. Frilander M, Poranen M, Bamford DH. The large genome segment of dsRNA bacteriophage φ6 is the key regulator in the in vitro minus and plus strand synthesis. RNA 1995; 1(5):510–8.

    PubMed  CAS  Google Scholar 

  57. Mindich L. Precise packaging of the three genomic segments of the double-stranded RNA bacteriophage φ6. Microbiol Mol Biol Rev 1999; 63(1):149–60.

    PubMed  CAS  Google Scholar 

  58. Poranen MM, Bamford DH. Packaging and replication regulation revealed by chimeric genome segments of double-stranded RNA bacteriophage φ6. RNA 1999; 5(3):446–54.

    Article  PubMed  CAS  Google Scholar 

  59. Pagratis N, Revel HR. Minus-strand RNA synthesis by the segmented double-stranded RNA bacteriophage φ6 requires continuous protein synthesis. Virology 1990; 177(1):281–8.

    Article  PubMed  CAS  Google Scholar 

  60. de Haas F, Paatero AO, Mindich L et al. A symmetry mismatch at the site of RNA packaging in the polymerase complex of dsRNA bacteriophage φ6. J Mol Biol 1999; 294(2):357–72.

    Article  PubMed  Google Scholar 

  61. King J, Chiu W. The procapsid-to-capsid transition in double-stranded DNA bacteriophages. In: Chiu W, Burnett RM, Garcca RL, eds. Structural biology of viruses. New York: Oxford University Press, 1997:288–311.

    Google Scholar 

  62. Lata R, Conway JF, Cheng N et al. Maturation dynamics of a viral capsid: Visualization of transitional intermediate states. Cell 2000; 100(2):253–63.

    Article  PubMed  CAS  Google Scholar 

  63. Hendrix RW. Symmetry mismatch and DNA packaging in large bacteriophages. Proc Nad Acad Sci USA 1978; 75(10):4779–83.

    Article  CAS  Google Scholar 

  64. Lawton JA, Estes MK, Prasad BV. Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nat Struct Biol 1997; 4(2):118–21.

    Article  PubMed  CAS  Google Scholar 

  65. Taraporewala Z, Chen D, Patton JT. Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J Virol 1999; 73(12):9934–43.

    PubMed  CAS  Google Scholar 

  66. Taraporewala ZF, Patton JT. Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J Virol 2001; 75(10):4519–27.

    Article  PubMed  CAS  Google Scholar 

  67. Usala SJ, Brownstein BH, Haselkorn R. Displacement of parental RNA strands during in vitro transcription by bacteriophage φ6 nucleocapsids. Cell 1980; 19(4):855–62.

    Article  PubMed  CAS  Google Scholar 

  68. Råde L, Westergren B. Mathematics handbook for Science and Engineering. 3rd ed. Lund: Studentlitteratur, 1995.

    Google Scholar 

  69. Gouet P, Diprose JM, Grimes JM et al. The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 1999; 97(4):481–90.

    Article  PubMed  CAS  Google Scholar 

  70. Casjens S. Principles of virion structure, function, and assembly. In: Chiu W, Burnett RM, Garcea RL, eds. Structural biology of viruses. New York: Oxford University Press, 1997:3–37.

    Google Scholar 

  71. Kainov DE, Pirttimaa M, Tuma R et al. RNA packaging device of double-stranded RNA bacteriophages, possibly as simple as hexamer of P4 protein. J Biol Chem 2003; 278(48):48084–48091.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Poranen, M.M., Pirttimaa, M.J., Bamford, D.H. (2005). Encapsidation of the Segmented Double-Stranded RNA Genome of Bacteriophage φ6. In: Viral Genome Packaging Machines: Genetics, Structure, and Mechanism. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28521-0_8

Download citation

Publish with us

Policies and ethics