Bacteriophage Lambda Terminase and the Mechanism of Viral DNA Packaging

  • Michael Feiss
  • Carlos Enrique Catalano
Part of the Molecular Biology Intelligence Unit book series (MBIU)


The developmental pathways of many double-stranded DNA (dsDNA) viruses, both prokaryotic and eukaryotic, are remarkably similar. In viruses as diverse as bacteriophage λ and the herpesviruses, DNA replication proceeds through a rolling circle mechanism where the circular genome serves as a template for the synthesis of linear concatemers multiple genomes in length. Concurrently, viral gene expression produces structural proteins, which self-assemble into procapsids and, in the case of the bacteriophage, tails necessary to assemble an infectious virion. Virus assembly requires that monomeric virion DNA molecules be produced from concatemers during packaging of the DNA into a procapsid. Thus, packaging represents the convergence of the DNA replication and capsid shell assembly pathways. Genome packaging in bacteriophage λ has been extensively studied and this system has been used as a paradigm for virus assembly. Here we summarize current knowledge, present a working model, and indicate issues worthy of further investigation.


Bacteriophage Lambda Integration Host Factor Strand Separation Terminase Subunit Portal Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katsura I. Tail assembly and injection. In: Hendrix RW, Roberts JW, Stahl FW et al, eds. Lambda II. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1983:331–346.Google Scholar
  2. 2.
    Hendrix RW, Roberts JW, Stahl FW et al. Lambda II. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1983.Google Scholar
  3. 3.
    Herskowitz I, Hagen D. The lysis-lysogeny decision of phage lambda: Explicit programming and responsiveness. Ann Rev Genetics 1980; 14:399–445.CrossRefGoogle Scholar
  4. 4.
    Ptashne M, Gann A. Genes & Signals. Cold Spring Harbor: Cold Spring Harbor Press, 2001.Google Scholar
  5. 5.
    Friedman D, Gottesman M. Lytic mode of lambda development. In: Hendrix RW, Roberts JW, Stahl FW et al, eds. “Lambda IT”. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1983:21–51.Google Scholar
  6. 6.
    Higgins RR, Lucko HJ, Becker A. Mechanism of cos DNA cleavage by bacteriophage lambda terminase: Multiple roles of ATP. Cell 1988; 54(6):765–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Rubinchik S, Parris W, Gold M. The in vitro ATPases of bacteriophage lambda terminase and its large subunit, gene product A. The relationship with their DNA helicase and packaging activities. J Biol Chem 1994; 269(18):13586–93.PubMedGoogle Scholar
  8. 8.
    Rubinchik S, Parris W, Gold M. The in vitro translocase activity of lambda terminase and its subunits. Kinetic and biochemical analysis. J Biol Chem 1995; 270(34):20059–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Woods L, Catalano C. Kinetic characterization of the GTPase activity of phage lambda terminase: Evidence for communication between the two “NTPase” catalytic sites of the enzyme. Biochemistry 1999; 38:4624–4630.CrossRefGoogle Scholar
  10. 10.
    Woods L, Terpening C, Catalano CE. Kinetic analysis of the endonuclease activity of phage lambda terminase: Assembly of a catalytically competent nicking complex is rate-limiting. Biochemistry 1997; 36(19):5777–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Cue D, Feiss M. Bacteriophage λ DNA packaging: DNA site requirements for termination and processivity. J Mol Biol 2001; 311:233–240.PubMedCrossRefGoogle Scholar
  12. 12.
    Feiss M, Kobayashi I, Widner W. Separate sites for binding and nicking of bacteriophage lambda DNA by terminase. Proc Natl Acad Sci USA 1983; 80(4):955–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Feiss M, Widner W, Miller G et al. Structure of the bacteriophage lambda cohesive end site: Location of the sites of terminase binding (cosB) and nicking (cosN). Gene 1983; 24(2–3):207–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Hohn B. DNA sequences necessary for packaging of bacteriophage λ DNA. Proc Nat Acad Sci USA 1983; 80:7456–7460.PubMedCrossRefGoogle Scholar
  15. 15.
    Miwa T, Matsubara K. Lambda phage DNA sequences affecting the packaging process. Gene 1983; 24:199–206.PubMedCrossRefGoogle Scholar
  16. 16.
    Cue D, Feiss M. A site required for termination of packaging of the phage lambda chromosome. Proc Natl Acad Sci USA 1993b; 90(20):9290–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Davidson A, Gold M. Mutations abolishing the endonuclease activity of bacteriophage λ terminase lie in two distinct regions of the A gene, one of which may encode a leucine zipper DNA binding domain. Virology 1992; 161:305–315.CrossRefGoogle Scholar
  18. 18.
    Cue D, Feiss M. The role of cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda, in the nicking reaction. J Mol Biol 1993a; 234(3):594–609.PubMedCrossRefGoogle Scholar
  19. 19.
    Higgins RR, Becker A. Chromosome end formation in phage lambda, catalyzed by terminase, is controlled by two DNA elements of cos, cosN and R3, and by ATP. EMBO J 1994a; 13(24):6152–61.PubMedGoogle Scholar
  20. 20.
    Xin W, Feiss M. Function of IHF in λ DNA packaging. I. Identification of the strong binding site for integration host factor and the locus for intrinsic bending in cosB. J Mol Biol 1993; 230:492–504.PubMedCrossRefGoogle Scholar
  21. 21.
    Yeo A, Feiss M. Specific interaction of terminase, the DNA packaging enzyme of bacteriophage lambda, with the portal protein of the prohead. J Mol Biol 1995; 245(2):141–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Cue D, Feiss M. Genetic evidence that recognition of cosQ, the signal for termination of phage λ DNA packaging, depends on the extent of head filling. Genetics 1997; 147:7–17.PubMedGoogle Scholar
  23. 23.
    Wieczorek D, Didion L, Feiss M. Alterations of the portal protein of bacteriophage λ suppress mutations in cosQ, the site required for termination of DNA packaging. Submitted Genetics 2002; 161:21–31.Google Scholar
  24. 24.
    Wieczorek D, Feiss M. Defining cosQ, the site required for termination of bacteriophage lambda DNA packaging. Genetics 2001; 158:495–506.PubMedGoogle Scholar
  25. 25.
    Wieczorek D, Feiss M. Genetics of cosQ, the DNA packaging termination site of phage λ: A study of local suppression and methylation effects. Genetics 2003; In press.Google Scholar
  26. 26.
    Cue D, Feiss M. Termination of packaging of the bacteriophage lambda chromosome: cosQ is required for nicking the bottom strand of cosN. J Mol Biol 1998; 280(1):11–29.PubMedCrossRefGoogle Scholar
  27. 27.
    Miller G, Feiss M. The bacteriophage lambda cohesive end site: Isolation of spacing/substitution mutations that result in dependence on Escherichia coli integration host factor. Mol Gen Genet 1988; 212(1):157–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Goodrich JA, Schwartz ML, McClure WR. Searching for and predicting the activity of sites for DNA binding proteins: Compilation and analysis of the binding sites for Escherichia coli integration host factor (IHF). Nucleic Acids Res 1990; 18:4993–5000.PubMedCrossRefGoogle Scholar
  29. 29.
    Mendelson I, Gottesman M, Oppenheim AB. HU and integration host factor function as auxiliary proteins in cleavage of phage lambda cohesive ends by terminase. J Bact 1991; 173:1670–1676.PubMedGoogle Scholar
  30. 30.
    Higgins RR, Becker A. The lambda terminase enzyme measures the point of its endonucleolytic attack 47 +/− 2 bp away from its site of specific DNA binding, the R site. EMBO J 1994b; 13(24):6162–71.PubMedGoogle Scholar
  31. 31.
    Tomka MA, Catalano CE. Physical and kinetic characterization of the DNA packaging enzyme from bacteriophage lambda. J Biol Chem 1993b; 268(5):3056–65.PubMedGoogle Scholar
  32. 32.
    Yang Q, Hanagan A, Catalano CE. Assembly of a nucleoprotein complex required for DNA packaging by bacteriophage lambda. Biochemistry 1997; 36(10):2744–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Shinder G, Gold M. The Nu1 subunit of bacteriophage lambda terminase binds to specific sites in cos DNA. J Virology 1988; 62:387–392.PubMedGoogle Scholar
  34. 34.
    Parris W, Rubinchik S, Yang YC et al. A new procedure for the purification of the bacteriophage lambda terminase enzyme and its subunits. Properties of gene product A, the large subunit. J Biol Chem 1994; 269(18):13564–74.PubMedGoogle Scholar
  35. 35.
    Smith MP, Feiss M. Sequence analysis of the phage 21 genes for prohead assembly and head completion. Gene 1993a; 126(1): 1–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Smith MP, Feiss M. Sites and gene products involved in lambdoid phage DNA packaging. J Bacteriol 1993b; 175(8):2393–9.PubMedGoogle Scholar
  37. 37.
    Siegele DA, Frackman S, Sippy J et al. The head genes of bacteriophage 21. Virology 1983; 129(2):484–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Frackman S, Siegele DA, Feiss M. A functional domain of bacteriophage lambda terminase for prohead binding. J Mol Biol 1984; 180(2):283–300.PubMedCrossRefGoogle Scholar
  39. 39.
    Frackman S, Siegele DA, Feiss M. The terminase of bacteriophage lambda. Functional domains for cosB binding and multimer assembly. J Mol Biol 1985; 183(2):225–38.PubMedCrossRefGoogle Scholar
  40. 40.
    Wu WF, Christiansen S, Feiss M. Domains for protein-protein interactions at the N and C termini of the large subunit of bacteriophage lambda terminase. Genetics 1988; 119(3):477–84.PubMedGoogle Scholar
  41. 41.
    Yang Q, Beer TD, Woods L et al. Cloning, expression, and characterization of a DNA binding domain of gpNu1, a phage lambda DNA packaging protein. Biocemistry 1999a; 38:465–477.Google Scholar
  42. 42.
    Yang Q, Berton N, Manning M et al. Domain structure of gpNu1, a phage lambda DNA packaging protein. Biochemistry 1999b; 38:14238–14447.PubMedCrossRefGoogle Scholar
  43. 43.
    de Beer T, Meyer J, Ortega M et al. Insights into specific DNA recognition during assembly of a viral genome packaging machine; structure and genetics of the DNA binding domain of gpNu1. Molecular Cell 2002; 9:981–991.PubMedCrossRefGoogle Scholar
  44. 44.
    Bain D, Berton N, Ortega M et al. Biophysical characterization of the DNA binding domain of gpNu1, a viral DNA packaging protein. J Biol Chem 2001; 276:20175–20181.PubMedCrossRefGoogle Scholar
  45. 45.
    Becker A. (cited in Feiss, M). Terminase and the recognition, cutting and packaging of λ chromosomes. Trends Genet 1986; 2:100–104.CrossRefGoogle Scholar
  46. 46.
    Feiss M. Terminase and the recognition, cutting and packaging of λ chromosomes. Trends Genet 1986; 2:100–104.CrossRefGoogle Scholar
  47. 47.
    Kypr J, Mrazek J. Lambda phage protein Nu1 contains the conserved DNA binding fold of repressors. J Mol Biol 1986; 91:139–140.CrossRefGoogle Scholar
  48. 48.
    Clark K, Halay E, Lai E et al. Cocrystal structure of HNF-3/forkhead DNA-recognition motif resembles histone H5. Nature 1993; 364:412–420.PubMedCrossRefGoogle Scholar
  49. 49.
    Weigel D, Jackie H. The fork head domain: A novel DNA binding motif of eukaryotic transcription factors. Cell 1990; 63:455–456.PubMedCrossRefGoogle Scholar
  50. 50.
    Martinez-Hackert E, Stock A. Structural relationshiip in the OmpR family of winged-helix transcription factors. J Mol Biol 1997; 269:301–312.PubMedCrossRefGoogle Scholar
  51. 51.
    Clubb R, Omichinski J, Savilahti H et al. A novel class of winged helix-turn-helix protein: The DNA-binding domain of Mu transposase. Structure 1994; 2:1041–1048.PubMedCrossRefGoogle Scholar
  52. 52.
    Ilangovan U, Wojciak J, Connolly K et al. NMR structure and functional studies of the Mu repressor DNA binding domain. Biochemistry 1999; 38:8367–8376.PubMedCrossRefGoogle Scholar
  53. 53.
    Wintjens R, Rooman M. Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J Mol Biol 1996; 262:294–313.PubMedCrossRefGoogle Scholar
  54. 54.
    Gussin G, Johnson A, Pabo C et al. Repressor and cro protein: Structure, function, and role in Lysogenization. In: Hendrix RW, Roberts JW, Stahl FW et al, eds. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1983:93–120.Google Scholar
  55. 55.
    Bear S, Court D, Friedman D. An accessory role for Escherichia coli integration host factor: Characterization of a lambda mutant dependent upon integration host factor for DNA packaging. J Virol 1984; 52:966–972.PubMedGoogle Scholar
  56. 56.
    Kosturko L, Daub E, Murialdo H. The interaction of E. coli intergration host factor and lambda cos DNA multicomplex formation and protein-induced bending. Nucleic Acids Res 1989; 17:329–334.CrossRefGoogle Scholar
  57. 57.
    Rice PA, Yang S, Mizuuchi K et al. Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn. Cell 1996; 87(7):1295–306.PubMedCrossRefGoogle Scholar
  58. 58.
    Friedman D. Integration host factor: A protein for all reasons. Cell 1988; 55:545–549.PubMedCrossRefGoogle Scholar
  59. 59.
    Xin W, Cai Z-H, Feiss M. Function of IHF in λ DNA packaging. II. Effects of mutations altering the IHF binding site and the intrinsic bend in cosB on λ development. J Mol Biol 1993; 230:505–515.PubMedCrossRefGoogle Scholar
  60. 60.
    Hwang Y, Feiss M. A defined system for in vitro lambda DNA packaging. Virology 1995; 211(2):367–76.PubMedCrossRefGoogle Scholar
  61. 61.
    Yang Q, Catalano C. Biochemical characterization of bacteriophage lambda genome packaging in vitro. Virology 2003; 305:276–287.PubMedCrossRefGoogle Scholar
  62. 62.
    Cue D, Feiss M. Genetic analysis of cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda. J Mol Biol 1992a; 228(1):58–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Cue D, Feiss M. Genetic analysis of mutations affecting terminase, the bacteriophage lambda DNA packaging enzyme, that suppress mutations in cosB, the terminase binding site. J Mol Biol 1992b; 228(1):72–87.PubMedCrossRefGoogle Scholar
  64. 64.
    Granston AE, Alessi DM, Eades L et al. A point mutation in the Nu1 gene of bacteriophage λ facilitates phage growth in Escherichia coli with himA and gyrB mutations. Mol Gen Genet 1988; 212:149–156.PubMedCrossRefGoogle Scholar
  65. 65.
    Yeo A, Kosturko LD, Feiss M. Structure of the bacteriophage lambda cohesive end site: Bent DNA on both sides of the site, cosN, at which terminase introduces nicks during chromosome maturation. Virology 1990; 174(1):329–34.PubMedCrossRefGoogle Scholar
  66. 66.
    Sippy J, Feiss M. Analysis of a mutation affecting the specificity domain for prohead binding of the bacteriophage lambda terminase. J Bacteriol 1992; 174(3):850–6.PubMedGoogle Scholar
  67. 67.
    Hwang Y, Catalano CE, Feiss M. Kinetic and mutational dissection of the two ATPase activities of terminase, the DNA packaging enzyme of bacteriophage λ. Biochemistry 1996; 35(8):2796–803.PubMedCrossRefGoogle Scholar
  68. 68.
    Saraste M, Sibbald P, Wittinghofer A. The P-loop — A common motif in ATP and GTP-binding proteins. Trends in Biochemical Sciences 1990; 15:430–434.PubMedCrossRefGoogle Scholar
  69. 69.
    Walker JE, Saraste M, Runswick MJ et al. Distantly related sequences in the α-and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982b; 8:945–951.Google Scholar
  70. 70.
    Tomka MA, Catalano CE. Kinetic characterization of the ATPase activity of the DNA packaging enzyme from bacteriophage lambda. Biochemistry 1993a; 32(45):11992–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Guo P, Peterson C, Anderson D. Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage Ф29. J Mol Biol 1987; 197:229–236.PubMedCrossRefGoogle Scholar
  72. 72.
    Hwang Y, Feiss M. Mutations affecting the high affinity ATPase center of gpA, the large subunit of bacteriophage lambda terminase, inactivate the endonuclease activity of terminase. J Mol Biol 1996; 261(4):524–35.PubMedCrossRefGoogle Scholar
  73. 73.
    Hwang Y, Feiss M. The endonuclease and helicase activities of Bacteriophage λ? terminase: Changing nearby residue 515 restores activity to the gpA K497D mutant enzyme. Virology 2000; 277:204–214.PubMedCrossRefGoogle Scholar
  74. 74.
    Duffy C, Feiss M. The large subunit of bacteriophage lambda’s terminase plays a role in DNA translocation and packaging termination. J Mol Biol 2002; 316:547–561.PubMedCrossRefGoogle Scholar
  75. 75.
    Hang Q, Tack B, Feiss M. An ATPase center of bacteriophage λ terminase involved in post-cleavage stages of DNA packaging: Identification of ATP-interactive amino acids. J Mol Biol 2000; 302:777–795.PubMedCrossRefGoogle Scholar
  76. 76.
    Pu W, Struhl K. The leucine zipper symmetrically positions the adjacent basic regions for specific DNA binding. Proc Nat Acad Sci USA 1991; 88:6901–6905.PubMedCrossRefGoogle Scholar
  77. 77.
    Dhar A, Feiss M. Mutations in the ATP reactive center of λ terminase and its effect on DNA packaging. Unpublished observations 2003.Google Scholar
  78. 78.
    Mitchell M, Matsuzaki S, Imai S et al. Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases. Nucleic Acids Res 2002; 30:4009–4021.PubMedCrossRefGoogle Scholar
  79. 79.
    Rao V, Mitchell M. The N-terminal ATPase site in the large terminase protein Gp17 is critically required for DNA packaging in bacteriophage T4. J Mol Biol 2001; 314:411–421.CrossRefGoogle Scholar
  80. 80.
    Gorbalenya A, Koonin E. Curr Opin Struct Biol 1993; 3:419–429.CrossRefGoogle Scholar
  81. 81.
    Story R, Li H, Abelson J. Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc Natl Acad Sci USA 2001; 98:14650–1470.CrossRefGoogle Scholar
  82. 82.
    Yang Q, Catalano C. A minimal kinetic model for a viral DNA packaging machine. Biochemistry 2004; 43:289–299.PubMedCrossRefGoogle Scholar
  83. 83.
    Hang J, Catalano C, Feiss M. The functional asymmetry of cosN, the nicking site for bacterioph age λ DNA packaging, is dependent on the terminase binding site, cosB. Biochemistry 2001; 40:13370–13377.PubMedCrossRefGoogle Scholar
  84. 84.
    Xu SY, Feiss M. Structure of the bacteriophage lambda cohesive end site. Genetic analysis of the site (cosN) at which nicks are introduced by terminase. J Mol Biol 1991; 220(2):281–92.PubMedCrossRefGoogle Scholar
  85. 85.
    Yang Q, Catalano CE. Kinetic characterization of the strand separation (“helicase”) activity of the DNA packaging enzyme from bacteriophage λ. Biochemistry 1997; 36:10638–10645.PubMedCrossRefGoogle Scholar
  86. 86.
    Delagoutte E, Hippel PV. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: Structures and properties of isolated helicases. Quart Rev Biophys 2002; 35:431–478.CrossRefGoogle Scholar
  87. 87.
    Lohman T. Helicase-catalyzed DNA unwinding. J Biol Chem 1993; 268:2269–2272.PubMedGoogle Scholar
  88. 88.
    Patel S, Picha K. Structure and function of hexameric helicases. Ann Rev Biochem 2000; 69:651–697.PubMedCrossRefGoogle Scholar
  89. 89.
    Becker A, Murialdo H, Gold M. Studies on an in vitro system for the packaging and maturation of phage λ DNA. Virology 1977; 78:277–290.PubMedCrossRefGoogle Scholar
  90. 90.
    Becker A, Gold M. Prediction of an ATP reactive center in the small subunit, gpNu1, of the phage lambda terminase enzyme. J Mol Biol 1988; 199(1):219–22.PubMedCrossRefGoogle Scholar
  91. 91.
    Babbar BK, Gold M. ATP-reactive sites in the bacteriophage λ packaging protein terminase lie in the N-termini of its subunits, gpA and gpNu1. Virology 1998; 247:251–264.PubMedCrossRefGoogle Scholar
  92. 92.
    Catalano C, Woods L. Kinetic characterization of the GTPase activity of phage lambda terminase: Evidence for communication between the two “NTPase” catalytic sites of the enzyme. Biochemistry 1999; 38:4624–4630.Google Scholar
  93. 93.
    Catalano C. The terminase enzyme from bacteriophage lambda: A DNA-packaging machine. Cell Mol Life Sci 2000; 57:128–148.PubMedCrossRefGoogle Scholar
  94. 94.
    Catalano CE, Cue D, Feiss M. Virus DNA packaging: The strategy used by phage lambda. Mol Microbiol 1995; 16(6):1075–86, [Review] [87 refs].PubMedCrossRefGoogle Scholar
  95. 95.
    Georgopoulos C, Tilly K, Casjens S. Lambdoid phage head assembly. In: Hendrix RW, Roberts JW, Stahl FW et al, eds. Lambda II. Cold Spring Harbor: Cold Spring Harbor Press, 1983:279–304.Google Scholar
  96. 96.
    Kochan J, Carrascosa JL, Murialdo H. Bacteriophage lambda preconnectors: Purification and structure. J Mol Biol 1984; 174:433–447.PubMedCrossRefGoogle Scholar
  97. 97.
    Walker JE, Aufferet AD, Carne A et al. Solid-phase sequence analysis of polypeptides eluted from polyacrylamide gels: An aid to interpretation of DNA sequences as exemplified by Escherichia coli unc operon and bacteriophage lambda. Eur J Biochem 1982a; 123:23–260.CrossRefGoogle Scholar
  98. 98.
    Hendrix R, Casjens S. Locations and amounts of major structural proteins in bacteriophage lambda. J Mol Biol 1974a; 88:535–545.PubMedCrossRefGoogle Scholar
  99. 99.
    Hohn B. DNA as substrate for packaging into phage lambda in vitro. J Mol Biol 1975; 98:93–106.PubMedCrossRefGoogle Scholar
  100. 100.
    Hendrix RW, Casjens SR. Protein fusion during the assembly of phage lambda heads. Journal of Supramolecular Structure 1974b; 2(2–4):329–36.PubMedCrossRefGoogle Scholar
  101. 101.
    Hendrix RW, Casjens SR. Protein fusion: A novel reaction in bacteriophage lambda head assembly. Proc Natl Acad Sci USA 1974c; 71(4): 1451–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Hohn T, Hohnl F. Petit lambda, a family of particles from coliphage lambda-infected cells. J Mol Biol 1975; 98:107–120.PubMedCrossRefGoogle Scholar
  103. 103.
    Baird L, Lipinska B, Raina S et al. Identification of the Escherichia coli sohB gene, a multicopy suppressor of the HtrA (DegP) null phenotype. J Bacteriol 1991; 173:5763–70.PubMedGoogle Scholar
  104. 104.
    Hendrix RW, Casjens SR. Assembly of bacteriophage lambda heads: Protein processing and its genetic control in petit lambda assembly. J Mol Biol 1975; 91(2): 187–99.PubMedCrossRefGoogle Scholar
  105. 105.
    Higgins RR, Becker A. Interaction of terminase, the DNA packaging enzyme of phage lambda, with its cos DNA substrate. J Mol Biol 1995; 252(1):31–46.PubMedCrossRefGoogle Scholar
  106. 106.
    Becker A, Murialdo H, Gold M. Early events in the in vitro packaging of bacteriophage DNA. Virology 1977; 78:291–305.PubMedCrossRefGoogle Scholar
  107. 107.
    Murialdo H, Fife W. The maturation of coliphage lambda DNA in the absence of its packaging. Gene 1984; 30:183–194.PubMedCrossRefGoogle Scholar
  108. 108.
    Sippy J, Feiss M. Initial cos cleavage of bacteriophage λ concatemers requires proheads and gpFI in vivo. Mol Microbiol 2004; In press.Google Scholar
  109. 109.
    Emmons SW. Bacteriophage lambda derivatives carrying two copies of the cohesive end site. J Mol Biol 1974; 83(4):511–25.PubMedCrossRefGoogle Scholar
  110. 110.
    Kuzminov A, Schabtach E, Stahl FW. Chi sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating the ExoV activity of RecBCD nuclease. EMBO J 1994; 13:2764–2776.PubMedGoogle Scholar
  111. 111.
    Borukhov S, Severinov K. Role of the RNA polymerase sigma subunit in transcription initiation. Res Microbiology 2002; 153:557–562.CrossRefGoogle Scholar
  112. 112.
    Murialdo H, Tzamtzis D. Mutations of the coat protein gene of bacteriophage λ that overcome the necessity for the FI gene. The EFi domain. Mol Microbiol 1997; 24:341–53.PubMedCrossRefGoogle Scholar
  113. 113.
    Murialdo H, Tzamtzis D, Berru M et al. Mutations in the terminase genes of bacteriophage λ that bypass the necessity for FI. Mol Microbiol 1997; 24:937–952.PubMedCrossRefGoogle Scholar
  114. 114.
    MacKinlay AG, Kaiser AD. DNA replication in head mutants of bacteriophage?λ. J Mol Biol 1969; 39:679–683.PubMedCrossRefGoogle Scholar
  115. 115.
    Wake R, Kaiser A, Inman R. Isolation and structure of phage lambda head-mutant DNA. J Mol Biol 1972; 64:519–540.PubMedCrossRefGoogle Scholar
  116. 116.
    Murialdo H, Fife WL. Synthesis of a trans-acting inhibitor of DNA maturation by prohead mutants of phage λ. Genetics 1987; 115:3–10.PubMedGoogle Scholar
  117. 117.
    Becker A, Murialdo H, Lucko H et al. Bacteriophage lambda DNA packaging. The product of the FI gene promotes the incorporation of the prohead to the DNA-terminase complex. J Mol Biol 1988; 199(4):597–607.PubMedCrossRefGoogle Scholar
  118. 118.
    Becker A, Gold A. Enzymatic breakage of the cohesive end site of phage lambda DNA: Terminase (ter) reaction. Proc Natl Acad Sci USA 1978; 4199–4203 (75).PubMedCrossRefGoogle Scholar
  119. 119.
    Chow S, Daub E, Murialdo H. The overproduction of DNA terminase of coliphage lambda. Gene 1987; 60:277–289.PubMedCrossRefGoogle Scholar
  120. 120.
    Catalano CE, Tomka MA. Role of gpFI protein in DNA packaging by bacteriophage lambda. Biochemistry 1995; 34(31):10036–42.PubMedCrossRefGoogle Scholar
  121. 121.
    Cai Z-H, Hwang Y, Cue D et al. Mutations in Nu1, the gene encoding the small subunit of bacteriophage? λ??terminase, suppress the postcleavage DNA packaging defect of cosB mutations. J Bacteriol 1997; 179:2479–2485.PubMedGoogle Scholar
  122. 122.
    Pruss G, Calendar R. Maturation of bacteriophage P2 DNA. Virology 1978; 86:454–467.PubMedCrossRefGoogle Scholar
  123. 123.
    Chai S, Bravo A, Luder G et al. Molecular analysis of the Bacillus subtilis bacteriophage SPP1 region encompassing genes 1 to 6. The products of gene 1 and gene 2 are required for pac cleavage. J Mol Biol 1992; 224:87–102.PubMedCrossRefGoogle Scholar
  124. 124.
    Laski F, Jackson E. Maturation cleavage of bacteriophage P22 DNA in the absence of DNA packaging. J Mol Biol 1982; 154:565–79.PubMedGoogle Scholar
  125. 125.
    Davidson A, Gold M. A novel in vitro DNA packaging system demonstrating a direct role for the bacteriophage λ FI gene product. Virology 1987; 161:305–315.PubMedCrossRefGoogle Scholar
  126. 126.
    Murialdo H, Fife W, Becker A et al. Bacteriophage lambda DNA maturation. The functional relationships among the products of genes Nu1, A and FI. J Mol Biol 1981; 145(2):375–404.PubMedCrossRefGoogle Scholar
  127. 127.
    Lin H, Simon M, Black L. Purification and characterization of the small subunit of phage T4 terminase, gp16, required for DNA packaging. J Biol Chem 1997; 272:3495–3501.PubMedCrossRefGoogle Scholar
  128. 128.
    Lurz R, Orlova E, Gunther D et al. Structural organisation of the head-to-tail interface of a bacterial virus. J Mol Biol 2001; 310:1027–1037.PubMedCrossRefGoogle Scholar
  129. 129.
    Fujisawa H, Shibata H, Kato H. Analysis of interactions among factors involved in the bacteriophage T3 DNA packaging reaction in a defined in vitro system. Virology 1991; 185:788–794.PubMedCrossRefGoogle Scholar
  130. 130.
    Fujisawa H, Morita M. Phage DNA packaging. Genes to Cells 1997; 2:537–545.PubMedCrossRefGoogle Scholar
  131. 131.
    Schliwa M, Woelke G. Molecular motors. Nature 2003; 422:759–765.PubMedCrossRefGoogle Scholar
  132. 132.
    Earnshaw WC, Casjens SR. DNA packaging by the double-stranded DNA bacteriophages. Cell 1980; 21(2):319–31.PubMedCrossRefGoogle Scholar
  133. 133.
    Hendrix R. Symmetry mismatch and DNA packaging in large bacteriophages. Proc Natl Acad Sci USA 1978; 75:4779–4793.PubMedCrossRefGoogle Scholar
  134. 134.
    Simpson A, Tao Y, Leiman P et al. Structure of the bacteriophage phi29 DNA packaging motor. Nature 2000; 408:745–750.PubMedCrossRefGoogle Scholar
  135. 134.
    Serwer P. Models of bacteriophage DNA packaging motors. J Struct Biol 2003; 141:179–188.PubMedCrossRefGoogle Scholar
  136. 135.
    Dokland T, Murialdo H. Structural transitions during maturation of bacteriophage lambda capsids. J Mol Biol 1993; 233(4):682–94.PubMedCrossRefGoogle Scholar
  137. 137.
    Murialdo H. Bacteriophage lambda DNA maturation and packaging. Ann Rev Biochem 1991; 60:125–153.PubMedCrossRefGoogle Scholar
  138. 138.
    Imber R, Tsugita A, Wurtz M et al. Outer surface protein of bacteriophage lambda. J Mol Biol 1980; 139(3):277–95.PubMedCrossRefGoogle Scholar
  139. 139.
    Perucchetti R, Parris W, Becker A et al. Late stages in bacteriophage lambda head morphogenesis: In vitro studies on the action of the bacteriophage lambda D-gene and W-gene products. Virology 1988; 165(1):103–14.PubMedCrossRefGoogle Scholar
  140. 140.
    Sternberg N, Weisberg R. Packaging of coliphage lambda DNA: II. the role of the gene D protein. J Mol Biol 1977; 117:733–759.PubMedCrossRefGoogle Scholar
  141. 141.
    Wendt J, Feiss M. A fragile lattice: Replacing bacteriophage?λ’s head stability gene D with the shp gene of phage 21 generates the Mg++-dependent virus, λ, shp. Virology 2004; 326:41–46.PubMedCrossRefGoogle Scholar
  142. 142.
    Smith D, Tans S, Smith S et al. The bacteriophage phi29 portal motor can package DNA against a large internal force. Nature 2001; 413:748–52.PubMedCrossRefGoogle Scholar
  143. 143.
    Casjens S, Wyckoff E, Hayden M et al. Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA. J Mol Biol 1992; 224(4): 1055–74.PubMedCrossRefGoogle Scholar
  144. 144.
    Tavares P, Santos MA, Lurz R et al. Identification of a gene in Bacillus subtilis bacteriophage SPP1 determining the amount of packaged DNA. J Mol Biol 1992; 225(1):81–92.PubMedCrossRefGoogle Scholar
  145. 145.
    Casjens S. Bacteriophage lambda FII gene protein: Role in head assembly. J Mol Biol 1974; 90:1–20.PubMedCrossRefGoogle Scholar
  146. 146.
    Maxwell K, Yee A, Booth V et al. The solution structure of bacteriophage lambda protein W, a small morphogenetic protein possessing a novel fold. J Mol Biol 2001; 308:9–14.PubMedCrossRefGoogle Scholar
  147. 147.
    Maxwell K, Yee A, Arrowsmith C et al. The solution structure of the bacteriophage lambda head-tail joining protein, gpFII. J Mol Biol 2002; 318:1395–1404.PubMedCrossRefGoogle Scholar

Copyright information

© and Kluwer Academic/Plenum Publishers 2005

Authors and Affiliations

  • Michael Feiss
    • 1
  • Carlos Enrique Catalano
    • 2
  1. 1.Department of MicrobiologyUniversity of IowaIowa CityUSA
  2. 2.Department of Pharmaceutical ChemistryThe University of Colorado School of PharmacyDenverUSA

Personalised recommendations