Skip to main content

Extremal behavior of stochastic volatility models

  • Conference paper
Stochastic Finance

Summary

Empirical volatility changes in time and exhibits tails, which are heavier than normal. Moreover, empirical volatility has — sometimes quite substantial — upwards jumps and clusters on high levels. We investigate classical and non-classical stochastic volatility models with respect to their extreme behavior. We show that classical stochastic volatility models driven by Brownian motion can model heavy tails, but obviously they are not able to model volatility jumps. Such phenomena can be modelled by Lévy driven volatility processes as, for instance, by Lévy driven Ornstein-Uhlenbeck models. They can capture heavy tails and volatility jumps. Also volatility clusters can be found in such models, provided the driving Lévy process has regularly varying tails. This results then in a volatility model with similarly heavy tails. As the last class of stochastic volatility models, we investigate a continuous time GARCH(1,1) model. Driven by an arbitrary Lévy process it exhibits regularly varying tails, volatility upwards jumps and clusters on high levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, J. M. P., On extremes of infinitely divisible Ornstein-Uhlenbeck processes, Preprint, available at http://www.math.chalmers.se/~palbin/.

    Google Scholar 

  2. Barndorff-Nielsen, O. E., (1998), Processes of normal inverse Gaussian type, Finance Stoch., 2, 41–68.

    Article  MATH  MathSciNet  Google Scholar 

  3. Barndorff-Nielsen, O. E. and Shephard, N., (2001), Modelling by Lévy processes for financial econometrics. In: O. E. Bandorff-Nielsen, T. Mikosch and S. I. Resnick (Eds.), Lévy Processes: Theory and Applications, 283–318, Boston, Birkhäuser.

    Google Scholar 

  4. Barndorff-Nielsen, O. E. and Shephard, N., (2001), Non-Gaussian Ornstein-Uhlenbeck based models and some of their uses in financial economics (with discussion), J. Roy. Statist. Soc. Ser. B, 63(2), 167–241.

    Article  MathSciNet  MATH  Google Scholar 

  5. Barndorff-Nielsen, O. E. and Shephard, N., (2002), Econometric analysis of realised volatility and its use in estimating stochastic volatility models, J. Roy. Statist. Soc. Ser. B, 64, 253–280.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertoin, J., (1996), Lévy Processes, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  7. Bingham, N. H. and Goldie, C. M. and Teugels, J. L., (1987), Regular Variation, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  8. Borkovec, M. and Klüppelberg, C, (1998), Extremal behavior of diffusions models in finance, Extremes, 1(1), 47–80.

    Article  MathSciNet  MATH  Google Scholar 

  9. Braverman, M. and Samorodnitsky, G., (1995), Functional of infinitely divisible stochastic processes with exponential tails, Stochastic Process. Appl, 56(2), 207–231.

    Article  MathSciNet  MATH  Google Scholar 

  10. Breiman, L., (1965), On some limit theorems similar to the arc-sine law, Theory Probab. Appl., 10, 323–331.

    Article  MATH  MathSciNet  Google Scholar 

  11. Brockwell, P. J. and Chadraa, E. and Lindner, A. M., (2005), Continuous time GARCH processes of higher order, Preprint, available at http://www.ma.tum.de/stat/.

    Google Scholar 

  12. Buchmann, B. and Klüppelberg, C, (2004), Fractional integral equation and state space transforms, Bernoulli, to appear.

    Google Scholar 

  13. Buchmann, B. and Klüppelberg, C, (2004), Maxima of stochastic processes driven by fractional Brownian motion, Adv. Appl. Probab., to appear.

    Google Scholar 

  14. Cline, D. B. EL, (1987), Convolution of distributions with exponential and subexponential tails, J. Austral. Math. Soc. Ser. A, 43(3), 347–365.

    Article  MATH  MathSciNet  Google Scholar 

  15. Cont, Ft. and Tankov, P., (2004), Financial Modelling with Jump Processes, Chapman & Hall, Boca Raton.

    MATH  Google Scholar 

  16. Drost, F.C. and Werker, B. J. M., (1996), Closing the GARCH gap: continuous time GARCH modelling, J. Econometrics, 74, 31–57.

    Article  MathSciNet  MATH  Google Scholar 

  17. Embrechts, P. and Klüppelberg, C. and Mikosch, T., (1997), Modelling Extremal Events for Insurance and Finance, Springer, Berlin.

    MATH  Google Scholar 

  18. Fasen, V., (2004), Extremes of Lévy Driven MA Processes with Applications in Finance, Ph.D. thesis, Munich University of Technology.

    Google Scholar 

  19. Fasen, V., (2005), Extremes of regularly varying mixed moving average processes, Preprint, available at http://www.ma.tum.de/stat/.

    Google Scholar 

  20. Fasen, V., (2005), Extremes of subexponential Lévy driven moving average processes, Preprint, available at http://www.ma.tum.de/stat/.

    Google Scholar 

  21. Goldie, C. M., (1991), Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1(1), 126–166.

    MATH  MathSciNet  Google Scholar 

  22. Haan, L. de and Resnick, S. I. and Rootzén, H. and Vries, C. G., (1989), Extremal behavior of solutions to a stochastic difference equation with applications to ARCH processes, Stochastic Process. Appl. 32, 213–224.

    Article  MathSciNet  MATH  Google Scholar 

  23. Hsing, T. and Teugels, J. L., (1989), Extremal properties of shot noise processes, Adv. Appl. Probability 21, 513–525.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kesten, EL, (1973), Random difference equations and renewal theory for products of random matrices, Acta Math. 131, 207–248.

    Article  MATH  MathSciNet  Google Scholar 

  25. Klüppelberg, C, (1989), Subexponential distributions and characterizations of related classes, Probab. Theory Relat. Fields 82, 259–269.

    Article  MATH  Google Scholar 

  26. Klüppelberg, C, (2004), Risk management with extreme value theory, In: B. Finkenstädt and H. Rootzén (Eds), Extreme Values in Finance, Telecommunication and the Environment, 101–168, Chapman & Hall/CRC, Boca Raton.

    Google Scholar 

  27. Klüppelberg, C. and Lindner, A. and Mailer, R., (2004), A continuous time GARCH process driven by a Lévy process: stationarity and second order behaviour, J. Appl. Probab. 41(3), 601–622.

    Article  MathSciNet  MATH  Google Scholar 

  28. Klüppelberg, C. and Lindner, A. and Mailer, R., (2004), Continuous time volatility modelling: COGARCH versus Ornstein-Uhlenbeck models, In: From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift (Eds. Yu. Kabanov, R. Liptser and J. Stoyanov). Springer, to appear.

    Google Scholar 

  29. Leadbetter, M. R. and Lindgren, G. and Rootzén, H., (1983), Extremes and Related Properties of Random Sequences and Processes, Springer, New York.

    MATH  Google Scholar 

  30. Lindner, A. and Mailer, R., (2004), Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes, Preprint, available at http://www.ma.tum.de/stat/.

    Google Scholar 

  31. Mikosch, T. and Stărică, C., (2000), Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process, Ann. Statist. 28, 1427–1451.

    Article  MathSciNet  MATH  Google Scholar 

  32. Pakes, A. G., (2004), Convolution equivalence and infinite divisibility, J. Appl. Probab. 41(2), 407–424.

    Article  MATH  MathSciNet  Google Scholar 

  33. Rootzén, H., (1986), Extreme value theory for moving average processes, Ann. Probab. 14(2), 612–652.

    MATH  MathSciNet  Google Scholar 

  34. Rosinski, J. and Samorodnitsky, G., (1993), Distributions of subadditive functionals of sample paths of infinitely divisible processes, Ann. Probab. 21(2), 996–1014.

    MathSciNet  MATH  Google Scholar 

  35. Sato, K., (1999), Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  36. Vervaat, W., (1979), On a stochastic difference equation and a representation of non-negative infinitely divisible random variables, Adv. Appl. Probability 11, 750–783.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Fasen, V., Klüppelberg, C., Lindner, A. (2006). Extremal behavior of stochastic volatility models. In: Shiryaev, A.N., Grossinho, M.R., Oliveira, P.E., Esquível, M.L. (eds) Stochastic Finance. Springer, Boston, MA. https://doi.org/10.1007/0-387-28359-5_4

Download citation

Publish with us

Policies and ethics