Skip to main content

Variable Neighborhood Search

  • Chapter
Search Methodologies

Abstract

Variable Neighborhood Search (VNS) is a recent metaheuristic, or framework for building heuristics, which exploits systematically the idea of neighborhood change, both in the descent to local minima and in the escape from the valleys which contain them. In this tutorial we first present the ingredients of VNS, i.e. Variable Neighborhood Descent (VND) and Reduced VNS (RVNS) followed by the basic and then the general scheme of VNS itself which contain both of them. Extensions are presented, in particular Skewed VNS (SVNS) which enhances exploration of far-away valleys and Variable Neighborhood Decomposition Search (VNDS), a two-level scheme for solution of large instances of various problems. In each case, we present the scheme, some illustrative examples and questions to be addressed in order to obtain an efficient implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, R. K., Orlin, J. B. and Sharma, D., 2000, Very large-scale neighborhood search, Int. Trans. Oper. Res. 7:301–317.

    Article  MathSciNet  Google Scholar 

  • Aloise, D. J., Aloise, D., Rocha, C. T. M., Ribeiro Filho, J. C, Moura, L. S. S. and Ribeiro, C. C., 2003, Scheduling workover rigs for onshore oil production, Research Report, Department of Computer Science, Catholic University of Rio de Janeiro, submitted.

    Google Scholar 

  • Baum, E. B., 1986, Toward practical “neural” computation for combinatorial optimization problems, in: Neural Networks for Computing, J. Denker, ed., American Institute of Physics, New York.

    Google Scholar 

  • Braysy, O., 2001, Local search and variable neighborhood search algorithms for vehicle routing with time windows, Acta Wasaensia, Vol. 87.

    Google Scholar 

  • Burke, E. K., Cowling, P. and Keuthen, R., 1999, Effective local and guided variable neighborhood search methods for the asymmetric traveling salesman problem, in: Proc. of the Evo Workshops, Lecture Notes in Computer Science, Vol. 2037, Springer, Berlin, pp. 203–212.

    Google Scholar 

  • Caporossi, G., Cvetković, D., Gutman, I. and Hansen, P., 1999, Variable neighborhood search for extremal graphs: 2. Finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. 39:984–996.

    Article  Google Scholar 

  • Caporossi, G. and Hansen, P., 2000, Variable neighborhood search for extremal graphs: 1. The AutoGraphiX system, Discr. Math., 212:29–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Caporossi, G. and Hansen, P., 2004, Variable neighborhood search for extremal graphs: 5. Three ways to automate conjecture finding, Discr. Math. 276:81–94.

    Article  MATH  MathSciNet  Google Scholar 

  • Cornuejols, G., Fisher, M. and Nemhauser, G., 1990, The uncapacitated facility location problem, in: Discrete Location Theory P. Mirchandani and R. Francis, eds, Wiley, New York.

    Google Scholar 

  • Desaulniers, G., Desrosiers, J. and Solomon, M. M., 2001, Accelerating strategies in column generation methods for vehicle routing and crew scheduling problems, Essays and Surveys in Metaheuristics, Kluwer, Dordrecht, pp. 309–324.

    Google Scholar 

  • Drezner, Z., 2003a, Heuristic algorithms for the solution of the quadratic assignment problem, J. Appl. Math. Decision Sci., to appear.

    Google Scholar 

  • Drezner, Z., 2003b, A new genetic algorithm for the quadratic assignment problem, INFORMS J. Comput. 15, to appear.

    Google Scholar 

  • Festa, P., Pardalos, P., Resende, M. and Ribeiro, C., 2001, GRASP and VNS for Max-cut, Proc. MIC’2001, pp. 371–376.

    Google Scholar 

  • Fischetti, M. and Lodi, A., 2003, Local branching, Math. Program. B, published online, 28 March.

    Google Scholar 

  • Fischetti, M., Polo, C. and Scantamburlo, M., 2003, A local branching heuristic for mixed-integer programs with 2-level variables, Research Report, University of Padova.

    Google Scholar 

  • Garey, M. R. and Johnson, D. S., 1979, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York.

    MATH  Google Scholar 

  • Glover, F. and Kochenberger, G., eds, 2003, Handbook of Metaheuristics, Kluwer, Dordrecht.

    MATH  Google Scholar 

  • Hansen, P., 1974, Programmes mathématiques en variables 0–1, Thèse d’Agrégation de l’Enseignment Supérieur, Université Libre de Bruxelles.

    Google Scholar 

  • Hansen, P., 1975, Les procédures d’optimization et d’exploration par séparation et évaluation, in: Combinatorial Programming, B. Roy, ed., Reidel, Dordrecht, pp. 19–65.

    Google Scholar 

  • Hansen, P., Brimberg, J., Urošević, D., and Mladenović, N., 2003a, Primaldual variable neighborhood search for exact solution of the simple plant location problem (in preparation).

    Google Scholar 

  • Hansen, P., and Mladenović, N., 1997, Variable neighborhood search for the p-median, Location Sci. 5: 207–226.

    Article  MATH  Google Scholar 

  • Hansen, P., and Mladenović, N., 1999, An introduction to variable neighborhood search, in: Metaheuristics, Advances and Trends in Local Search Paradigms for Optimization, S. Voss et al., eds, Kluwer, Dordrecht, pp. 433–458.

    Google Scholar 

  • Hansen, P., and Mladenović, N., 2001a, Variable neighborhood search: Principles and applications, Eur. J. Oper. Res. 130:449–467.

    Article  MATH  Google Scholar 

  • Hansen, P., and Mladenović, N., 2001b, J-Means: A new local search heuristic for minimum sum-of-squares clustering, Pattern Recognition 34:405–413.

    Article  MATH  Google Scholar 

  • Hansen, P. and Mladenović, N., 2001c, Developments of variable neighborhood search, in: Essays and Surveys in Metaheuristics, C. Ribeiro and P. Hansen, eds, Kluwer, Dordrecht, pp. 415–440.

    Google Scholar 

  • Hansen, P. and Mladenović, N., 2002a, Variable neighborhood search, in: Handbook of Applied Optimization, P. Pardalos and M. Resende, Oxford University Press, New York, pp. 221–234.

    Google Scholar 

  • Hansen, P. and Mladenović, N., 2002b, Recherche à voisinage variable in: Optimisation Approche en Recherche Opérationnelle, J. Teghem and M. Pirlot, eds, Lavoisier/Hermès, Paris, pp. 81–100.

    Google Scholar 

  • Hansen, P. and Mladenović, N., 2003, Variable neighborhood search, in: Handbook of Metaheuristics, F. Glover and G. Kochenberger, eds, Kluwer, Dordrecht, pp. 145–184.

    Chapter  Google Scholar 

  • Hansen, P., Mladenović, N. and Moreno Pérez, J. A., 2003b, Búsqueda de entorno variable (in Spanish), Intell. Artif., to appear.

    Google Scholar 

  • Hansen, P., Mladenović, N. and Perez-Brito, D., 2001, Variable neighborhood decomposition search, J. Heuristics 7:335–350.

    Article  MATH  Google Scholar 

  • Hansen, P., Ngai, E., Cheung, B. and Mladenović, N., 2003c, Survey and comparison of initialization methods for k-means clustering (in preparation).

    Google Scholar 

  • Kochetov, Y., Mladenović, N. and Hansen, P., 2003, Lokalnii poisk s chereduyshimisy okrestnostyami (in Russian), Diskretnoi analiza, to appear.

    Google Scholar 

  • Labbé, M., Peeters, D. and Thisse, J. F., 1995, Location on networks, in: Network Routing, M. Ball et al., eds, North-Holland, Amsterdam, pp. 551–624.

    Google Scholar 

  • Lopez, F. G., Batista, B. M., Moreno Pérez, J. A. and Moreno Vega J. M., 2002, The parallel variable neighborhood search for the p-median problem, J. Heuristics 8:375–388.

    Article  MATH  Google Scholar 

  • Mladenović, N. and Hansen, P., 1997, Variable neighborhood search, Comput. Oper. Res. 24:1097–1100.

    Article  MathSciNet  MATH  Google Scholar 

  • Papadimitriou, C., 1994, Computational Complexity, Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • Reeves, C.R., ed., 1993, Modern Heuristic Techniques for Combinatorial Problems, Blackwell, Oxford.

    MATH  Google Scholar 

  • Resende, M. G. C, and Werneck, R., 2003, On the implementation of a swap-based local search procedure for the p-median problem, Proc. 5th Workshop on Algorithm Engineering and Experiments (ALENEX’03), R. E. Ladner, ed., SIAM, Philadelphia, PA, pp. 119–127.

    Google Scholar 

  • Ribeiro, C, Uchoa, E. and Werneck, R., 2001, A hybrid GRASP with perturbations for the Steiner problem in graphs, Technical Report, Computer Science Department, Catholic University of Rio de Janeiro.

    Google Scholar 

  • Rodriguez, I., Moreno-Vega, M. and Moreno-Perez, J., 1999, Heuristics for routing-median problems, SMG Report, Université Libre de Bruxelles, Belgium.

    Google Scholar 

  • Teitz, M. B. and Bart, P., 1968, Heuristic methods for estimating the generalized vertex median of a weighted graph, Oper. Res. 16:955–961.

    Article  MATH  Google Scholar 

  • Whitaker, R., 1983, A fast algorithm for the greedy interchange for large-scale clustering and median location problems, INFOR 21:95–108.

    MATH  Google Scholar 

  • Zufferey, N., Hertz A. and Avanthay, C, 2003, Variable neighborhood search for graph colouring, Eur. J. Oper. Res., to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hansen, P., Mladenović, N. (2005). Variable Neighborhood Search. In: Burke, E.K., Kendall, G. (eds) Search Methodologies. Springer, Boston, MA. https://doi.org/10.1007/0-387-28356-0_8

Download citation

Publish with us

Policies and ethics