Biggs, N. L., 1993, Algebraic Graph Theory, Cambridge University Press, Cambridge.
Google Scholar
Boese, K. D., Kahng, A. B. and Muddu, S., 1994, A new adaptive multi-start technique for combinatorial global optimizations, Oper. Res. Lett.
16:101–113.
MATH
CrossRef
MathSciNet
Google Scholar
Box, G. E. P. and Jenkins, G. M., 1970, Time Series Analysis, Forecasting and Control, Holden Day, San Francisco.
MATH
Google Scholar
Corne, D. A., Dorigo, M. and Glover, F., eds, 1999, New Methods in Optimization, McGraw-Hill, London.
Google Scholar
Dawkins, R. (1996) Climbing Mount Improbable, Viking, London.
Google Scholar
Dobzhansky, T., 1951, Genetics and the Origin of Species. Columbia University Press, New York.
Google Scholar
Eigen, M., 1993, Viral quasispecies, Sci. Am.
269:32–39.
CrossRef
Google Scholar
Eigen, M., McCaskill, J. and Schuster, P., 1989, The molecular quasi-species, Adv. Chem. Phys.
75:149–263.
CrossRef
Google Scholar
Eldredge, N. and Cracraft, J., 1980, Phylogenetic Patterns and the Evolutionary Process, Columbia University Press, New York.
Google Scholar
Eremeev, A. V. and Reeves, C. R., 2002, Non-parametric estimation of properties of combinatorial landscapes, in: Applications of Evolutionary Computing, Lecture Notes in Computer Science, Vol. 2279, J. Gottlieb and G. Raidl, ed., Springer, Berlin, pp. 31–40.
Google Scholar
Eremeev, A. V. and Reeves, C. R., 2003, On confidence intervals for the number of local optima, in: Applications of Evolutionary Computing, Lecture Notes in Computer Science, Vol. 2611, G. Raidl et al., ed., Springer, Berlin, pp. 224–235.
Google Scholar
Flamm, C, Hofacker, I. L., Stadler, P. F. and Wolfinger, M. T., 2002, Barrier trees of degenerate landscapes, Z. Phys. Chem.
216:155–173.
Google Scholar
Futuyma, D. J., 1998, Evolutionary Biology, Sinauer Associates, Sunderland, MA.
Google Scholar
Godsil, C. D., 1993, Algebraic Combinatorics, Chapman and Hall, London.
MATH
Google Scholar
Grover, L. K., 1992, Local search and the local structure of N P-complete problems, Oper. Res. Lett.
12:235–243.
MATH
CrossRef
MathSciNet
Google Scholar
Haldane, J. B. S., 1931, A mathematical theory of natural selection, Part VI: Metastable populations, Proc. Camb. Phil. Soc.
27:137–142.
MATH
CrossRef
Google Scholar
Hordijk W., 1996, A measure of landscapes, Evol. Comput.
4:335–360.
Google Scholar
Johnson, D. S., 1990, Local optimization and the traveling salesman problem, in: Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 443, G. Goos and J. Hartmanis, eds, Springer, Berlin, pp. 446–461.
CrossRef
Google Scholar
Jones, T. C, 1995, Evolutionary Algorithms, Fitness Landscapes and Search, Doctoral dissertation, University of New Mexico, Albuquerque, NM.
Google Scholar
Kauffman, S., 1993, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, Oxford.
Google Scholar
Levenhagen, J., Bortfeldt, A. and Gehring, H., 2001, Path tracing in genetic algorithms applied to the multiconstrained knapsack problem, in: Applications of Evolutionary Computing, E. J. W. Boers et al., eds, Springer, Berlin, pp. 40–49.
Google Scholar
Lin, S., 1965, Computer solutions of the traveling salesman problem, Bell Syst. Tech. J.
44:2245–2269.
MATH
Google Scholar
Martin, O., Otto, S. W. and Felten, E. W., 1992, Large step Markov chains for the TSP incorporating local search heuristics. Oper. Res. Lett.
11:219–224.
MATH
CrossRef
MathSciNet
Google Scholar
Merz, P. and Freisleben, B., 1998, Memetic algorithms and the fitness landscape of the graph bi-partitioning problem, in: Parallel Problem-Solving from Nature—PPSN V, A. E. Eiben, T. Bäck, M. Schoenauer and H-P. Schwefel, eds, Springer, Berlin, pp. 765–774.
CrossRef
Google Scholar
Reeves, C. R., 1994, Genetic algorithms and neighbourhood search, in: Evolutionary Computing: AISB Workshop, Leeds, UK, April 1994; Selected Papers, T. C. Fogarty, ed., Springer, Berlin, pp. 115–130.
Google Scholar
Reeves, C. R. and Yamada, T., 1998, Genetic algorithms, path relinking and the flowshop sequencing problem, Evol. Comput., 6:45–60.
Google Scholar
Reeves, C. R., 1999, Landscapes, operators and heuristic search. Ann. Oper. Res.
86:473–490.
MATH
CrossRef
MathSciNet
Google Scholar
Reeves, C. R. and Yamada, T., 1999, Goal-Oriented Path Tracing Methods, in: New Methods in Optimization, D. A. Corne, M. Dorigo and F. Glover, eds, McGraw-Hill, London.
Google Scholar
Reeves, C. R., 2000, Fitness landscapes and evolutionary algorithms, in: Artificial Evolution: 4th Eur. Conf, AE99, Lecture Notes in Computer Science, Vol. 1829, C. Fonlupt, J-K. Hao, E. Lutton, E. Ronald and M. Schoenauer, eds, Springer, Berlin, pp. 3–20.
Google Scholar
Reeves, C. R., 2001, Direct statistical estimation of GA landscape features, in: Foundations of Genetic Algorithms 6, W. N. Martin and W. M. Spears, eds, Morgan Kaufmann, San Mateo, CA, pp. 91–107.
Google Scholar
Reeves, C. R. and Rowe, J. E., 2002, Genetic Algorithms—Principles and Perspectives, Kluwer, Norwell, MA.
Google Scholar
Reeves, C. R. and Eremeev, A. V, 2004, Statistical analysis of local search landscapes, J. Oper. Res. Soc.
55:687–693.
MATH
CrossRef
Google Scholar
Reeves, C. R., 2004, Partitioning landscapes. Available online at http://www.dagstuhl.de/04081/Talks/
Google Scholar
Reeves, C. R. and Aupetit-Bélaidouni, M., 2004, Estimating the number of solutions for SAT problems, in: Parallel Problem-Solving from Nature—PPSN VIII, X. Yao et al., eds, Springer, Berlin, pp. 101–110.
Google Scholar
Reidys, C. M. and Stadler, P. F., 2002, Combinatorial landscapes, SIAM Rev. 44:3–54.
MATH
CrossRef
MathSciNet
Google Scholar
Ridley, M., 1993, Evolution, Blackwell, Oxford.
Google Scholar
Simpson, G. G., 1953, The Major Features of Evolution, Columbia University Press, New York.
Google Scholar
Stadler, P. F., 1995, Towards a Theory of Landscapes, in: Complex Systems and Binary Networks, R. Lopéz-Peña, R. Capovilla, R. García-Pelayo, H. Waelbroeck and F. Zertuche, eds, Springer, Berlin, pp. 77–163.
Google Scholar
Stadler, P. F. and Wagner, G. P., 1998, Algebraic theory of recombination spaces, Evol. Comput.
5:241–275.
Google Scholar
Waterman, M. S., 1995, Introduction to Computational Biology, Chapman and Hall, London.
MATH
Google Scholar
Watson, J-P, Barbalescu, L., Whitley, L. D. and Howe, A. E., 2002, Contrasting structured and random permutation flow-shop scheduling problems: Search-space topology and algorithm performance, INFORMS J. Comput.
14:98–123.
CrossRef
MathSciNet
Google Scholar
Weinberger, E. D., 1990, Correlated and uncorrelated landscapes and how to tell the difference, Biol. Cybernet.
63:325–336.
MATH
CrossRef
Google Scholar
Wright, S., 1932, The roles of mutation, inbreeding, crossbreeding and selection in evolution, in: Proc. 6th Int. Congress on Genetics, D. Jones, ed., 1:356–366.
Google Scholar
Wright, S., 1967, Surfaces of selective value, Proc. Natl Acad. Sci. USA
102:81–84.
Google Scholar
Wright, S., 1988, Surfaces of selective value revisited, Am. Nat., 131:115–123.
CrossRef
Google Scholar
Yamada, T. and Reeves, C. R., 1998, Solving the C
sum permutation flowshop scheduling problem by genetic local search, in: Proc. 1998 Int. Conf. on Evolutionary Computation, IEEE, Piscataway, NJ, pp. 230–234.
CrossRef
Google Scholar
Zweig, G., 1995, An effective tour construction and improvement procedure for the traveling salesman problem, Oper. Res.
43:1049–1057.
MATH
MathSciNet
CrossRef
Google Scholar