Skip to main content

Fitness Landscapes

  • Chapter

Abstract

One of the most commonly-used metaphors to describe the process of heuristic methods such as local search in solving a combinatorial optimization problem is that of a “fitness landscape”. However, describing exactly what we mean by such a term is not as easy as might be assumed. Indeed, many cases of its usage in both the biological and optimization literature reveal a rather serious lack of understanding.

Keywords

  • Local Search
  • Travel Salesman Problem
  • Combinatorial Optimization Problem
  • Neighborhood Structure
  • Fitness Landscape

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/0-387-28356-0_19
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-28356-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biggs, N. L., 1993, Algebraic Graph Theory, Cambridge University Press, Cambridge.

    Google Scholar 

  • Boese, K. D., Kahng, A. B. and Muddu, S., 1994, A new adaptive multi-start technique for combinatorial global optimizations, Oper. Res. Lett. 16:101–113.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Box, G. E. P. and Jenkins, G. M., 1970, Time Series Analysis, Forecasting and Control, Holden Day, San Francisco.

    MATH  Google Scholar 

  • Corne, D. A., Dorigo, M. and Glover, F., eds, 1999, New Methods in Optimization, McGraw-Hill, London.

    Google Scholar 

  • Dawkins, R. (1996) Climbing Mount Improbable, Viking, London.

    Google Scholar 

  • Dobzhansky, T., 1951, Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Eigen, M., 1993, Viral quasispecies, Sci. Am. 269:32–39.

    CrossRef  Google Scholar 

  • Eigen, M., McCaskill, J. and Schuster, P., 1989, The molecular quasi-species, Adv. Chem. Phys. 75:149–263.

    CrossRef  Google Scholar 

  • Eldredge, N. and Cracraft, J., 1980, Phylogenetic Patterns and the Evolutionary Process, Columbia University Press, New York.

    Google Scholar 

  • Eremeev, A. V. and Reeves, C. R., 2002, Non-parametric estimation of properties of combinatorial landscapes, in: Applications of Evolutionary Computing, Lecture Notes in Computer Science, Vol. 2279, J. Gottlieb and G. Raidl, ed., Springer, Berlin, pp. 31–40.

    Google Scholar 

  • Eremeev, A. V. and Reeves, C. R., 2003, On confidence intervals for the number of local optima, in: Applications of Evolutionary Computing, Lecture Notes in Computer Science, Vol. 2611, G. Raidl et al., ed., Springer, Berlin, pp. 224–235.

    Google Scholar 

  • Flamm, C, Hofacker, I. L., Stadler, P. F. and Wolfinger, M. T., 2002, Barrier trees of degenerate landscapes, Z. Phys. Chem. 216:155–173.

    Google Scholar 

  • Futuyma, D. J., 1998, Evolutionary Biology, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Godsil, C. D., 1993, Algebraic Combinatorics, Chapman and Hall, London.

    MATH  Google Scholar 

  • Grover, L. K., 1992, Local search and the local structure of N P-complete problems, Oper. Res. Lett. 12:235–243.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Haldane, J. B. S., 1931, A mathematical theory of natural selection, Part VI: Metastable populations, Proc. Camb. Phil. Soc. 27:137–142.

    MATH  CrossRef  Google Scholar 

  • Hordijk W., 1996, A measure of landscapes, Evol. Comput. 4:335–360.

    Google Scholar 

  • Johnson, D. S., 1990, Local optimization and the traveling salesman problem, in: Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 443, G. Goos and J. Hartmanis, eds, Springer, Berlin, pp. 446–461.

    CrossRef  Google Scholar 

  • Jones, T. C, 1995, Evolutionary Algorithms, Fitness Landscapes and Search, Doctoral dissertation, University of New Mexico, Albuquerque, NM.

    Google Scholar 

  • Kauffman, S., 1993, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, Oxford.

    Google Scholar 

  • Levenhagen, J., Bortfeldt, A. and Gehring, H., 2001, Path tracing in genetic algorithms applied to the multiconstrained knapsack problem, in: Applications of Evolutionary Computing, E. J. W. Boers et al., eds, Springer, Berlin, pp. 40–49.

    Google Scholar 

  • Lin, S., 1965, Computer solutions of the traveling salesman problem, Bell Syst. Tech. J. 44:2245–2269.

    MATH  Google Scholar 

  • Martin, O., Otto, S. W. and Felten, E. W., 1992, Large step Markov chains for the TSP incorporating local search heuristics. Oper. Res. Lett. 11:219–224.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Merz, P. and Freisleben, B., 1998, Memetic algorithms and the fitness landscape of the graph bi-partitioning problem, in: Parallel Problem-Solving from Nature—PPSN V, A. E. Eiben, T. Bäck, M. Schoenauer and H-P. Schwefel, eds, Springer, Berlin, pp. 765–774.

    CrossRef  Google Scholar 

  • Reeves, C. R., 1994, Genetic algorithms and neighbourhood search, in: Evolutionary Computing: AISB Workshop, Leeds, UK, April 1994; Selected Papers, T. C. Fogarty, ed., Springer, Berlin, pp. 115–130.

    Google Scholar 

  • Reeves, C. R. and Yamada, T., 1998, Genetic algorithms, path relinking and the flowshop sequencing problem, Evol. Comput., 6:45–60.

    Google Scholar 

  • Reeves, C. R., 1999, Landscapes, operators and heuristic search. Ann. Oper. Res. 86:473–490.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Reeves, C. R. and Yamada, T., 1999, Goal-Oriented Path Tracing Methods, in: New Methods in Optimization, D. A. Corne, M. Dorigo and F. Glover, eds, McGraw-Hill, London.

    Google Scholar 

  • Reeves, C. R., 2000, Fitness landscapes and evolutionary algorithms, in: Artificial Evolution: 4th Eur. Conf, AE99, Lecture Notes in Computer Science, Vol. 1829, C. Fonlupt, J-K. Hao, E. Lutton, E. Ronald and M. Schoenauer, eds, Springer, Berlin, pp. 3–20.

    Google Scholar 

  • Reeves, C. R., 2001, Direct statistical estimation of GA landscape features, in: Foundations of Genetic Algorithms 6, W. N. Martin and W. M. Spears, eds, Morgan Kaufmann, San Mateo, CA, pp. 91–107.

    Google Scholar 

  • Reeves, C. R. and Rowe, J. E., 2002, Genetic Algorithms—Principles and Perspectives, Kluwer, Norwell, MA.

    Google Scholar 

  • Reeves, C. R. and Eremeev, A. V, 2004, Statistical analysis of local search landscapes, J. Oper. Res. Soc. 55:687–693.

    MATH  CrossRef  Google Scholar 

  • Reeves, C. R., 2004, Partitioning landscapes. Available online at http://www.dagstuhl.de/04081/Talks/

    Google Scholar 

  • Reeves, C. R. and Aupetit-Bélaidouni, M., 2004, Estimating the number of solutions for SAT problems, in: Parallel Problem-Solving from Nature—PPSN VIII, X. Yao et al., eds, Springer, Berlin, pp. 101–110.

    Google Scholar 

  • Reidys, C. M. and Stadler, P. F., 2002, Combinatorial landscapes, SIAM Rev. 44:3–54.

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Ridley, M., 1993, Evolution, Blackwell, Oxford.

    Google Scholar 

  • Simpson, G. G., 1953, The Major Features of Evolution, Columbia University Press, New York.

    Google Scholar 

  • Stadler, P. F., 1995, Towards a Theory of Landscapes, in: Complex Systems and Binary Networks, R. Lopéz-Peña, R. Capovilla, R. García-Pelayo, H. Waelbroeck and F. Zertuche, eds, Springer, Berlin, pp. 77–163.

    Google Scholar 

  • Stadler, P. F. and Wagner, G. P., 1998, Algebraic theory of recombination spaces, Evol. Comput. 5:241–275.

    Google Scholar 

  • Waterman, M. S., 1995, Introduction to Computational Biology, Chapman and Hall, London.

    MATH  Google Scholar 

  • Watson, J-P, Barbalescu, L., Whitley, L. D. and Howe, A. E., 2002, Contrasting structured and random permutation flow-shop scheduling problems: Search-space topology and algorithm performance, INFORMS J. Comput. 14:98–123.

    CrossRef  MathSciNet  Google Scholar 

  • Weinberger, E. D., 1990, Correlated and uncorrelated landscapes and how to tell the difference, Biol. Cybernet. 63:325–336.

    MATH  CrossRef  Google Scholar 

  • Wright, S., 1932, The roles of mutation, inbreeding, crossbreeding and selection in evolution, in: Proc. 6th Int. Congress on Genetics, D. Jones, ed., 1:356–366.

    Google Scholar 

  • Wright, S., 1967, Surfaces of selective value, Proc. Natl Acad. Sci. USA 102:81–84.

    Google Scholar 

  • Wright, S., 1988, Surfaces of selective value revisited, Am. Nat., 131:115–123.

    CrossRef  Google Scholar 

  • Yamada, T. and Reeves, C. R., 1998, Solving the C sum permutation flowshop scheduling problem by genetic local search, in: Proc. 1998 Int. Conf. on Evolutionary Computation, IEEE, Piscataway, NJ, pp. 230–234.

    CrossRef  Google Scholar 

  • Zweig, G., 1995, An effective tour construction and improvement procedure for the traveling salesman problem, Oper. Res. 43:1049–1057.

    MATH  MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reeves, C.R. (2005). Fitness Landscapes. In: Burke, E.K., Kendall, G. (eds) Search Methodologies. Springer, Boston, MA. https://doi.org/10.1007/0-387-28356-0_19

Download citation