Advertisement

Evolutionary Origins of Human Malaria Parasites

  • Stephen M. Rich
  • Francisco J. Ayala
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Keywords

Plasmodium Falciparum Evolutionary Origin World Monkey Plasmodium Species Much Recent Common Ancestor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, A.C. (1964). Polymorphism and natural selection in human populations, Cold Spring Harbor Symp. Quant. Biol., 29, 137–149.Google Scholar
  2. Ayala, F., Escalante, A., Lal, A., and Rich, S. (1998). Evolutionary relationships of human malarias. In I.W. Sherman. (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. American Society of Microbiology, Washington, DC. pp. 285–300.Google Scholar
  3. Ayala, F.J., Escalante, A.A., and Rich, S.M. (1999). Evolution of plasmodium and the recent origin of the world populations of Plasmodium falciparum. Parassitologia, 41, 55–68.Google Scholar
  4. Babiker, H. and Walliker, D. (1997). Current views on the population structure of Plasmodium falciparum: Implications for control. Parasitol. Today, 13, 262–267.CrossRefGoogle Scholar
  5. Barta, J.R. (1989). Phylogenetic analysis of the class sporozoea (phylum Apicomplexa Levine, 1970): Evidence for the independent evolution of heteroxenous life cycles. J. Parasitol., 75, 195–206.CrossRefGoogle Scholar
  6. Bensch, S., Stjernman, M., Hasselquist, D., Ostman, O., Hansson, B., Westerdahl, H., and Pinheiro, R.T. (2000). Host specificity in avian blood parasites: A study of plasmodium and haemoproteus mitochondrial DNA amplified from birds. Proc. Royal Soc. London Ser. B-Biol. Sci., 267, 1583–1589.CrossRefGoogle Scholar
  7. Cavalli-Sforza, L.L., Menozzi, P., and Piazza, A. (1994). The History and Geography of Human Genes. Princeton University Press, Princeton, NJ.Google Scholar
  8. Chin, W., Contacos, P.G., Coatney, G.R., and Kimball, H.R. (1965). A naturally acquired quotidiantype malaria in man transferable to monkeys. Science, 149, 865.Google Scholar
  9. Coatney, R.G., Collins, W.E., Warren, M., and Contacos, P.G. (1971). The Primate Malarias. U.S. Government Printing Office, Washington DC.Google Scholar
  10. Coluzzi, M. (1997). Evoluzione Biologica i Grandi Problemi della Biología. Accademia dei Lincei, Rome, pp. 263–285.Google Scholar
  11. Coluzzi, M. (1999). The clay feet of the malaria giant and its African roots: Hypotheses and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia, 41, 277–283.Google Scholar
  12. Contacos, P.G., Lunn, J.S., Coatney, G.R., Kilpatrick, J.W., and Jones, F.E. (1963). Quartan-Type Malaria Parasite of New World Monkeys Transmissible to Man. Science, 142, 676.Google Scholar
  13. Conway, D.J., Fanello, C., Lloyd, J.M., Al-Joubori, B.M., Baloch, A.H., Somanath, S.D., Roper, C., Oduola, A.M.J., Mulder, B., Povoa, M.M., Singh, B., and Thomas, A.W. (2000). Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA. Mol. Biochem. Parasitol., 111, 163–171.CrossRefGoogle Scholar
  14. Creasey, A., Fenton, B., Walker, A., Thaithong, S., Oliveira, S., Mutambu, S., and Walliker, D. (1990). Genetic diversity of Plasmodium falciparum shows geographical variation. Am. J. Trop. Med. Hyg., 42, 403–413.Google Scholar
  15. Currat, M., Trabuchet, G., Rees, D., Perrin, P., Harding, R.M., Clegg, J.B., Langaney, A., and Excoffier, L. (2002). Molecular analysis of the β-globin gene cluster in the Niokholo Mandenka population reveals a recent origin of the β s Senegal mutation. Am.J. Hum. Gen., 70, 207–223.CrossRefGoogle Scholar
  16. Deane, L.M., Deane, M.P., and Ferreira, N.J. (1966). Trans. R. Soc. Trop. Med. Hyg. 60, 563–564.CrossRefGoogle Scholar
  17. de Zulueta, J., (1994). Malaria and ecosystems: From prehistory to posteradication. Parassitologia, 36, 7–15.Google Scholar
  18. De Zulueta, J., Blazquez, J., and Maruto, J.F. (1973). Entomological aspects of receptivity to malaria in the region of Navalmoral of Mata. Rev. Sanid. Hig. Publica. (Madr) 47, 853–870.Google Scholar
  19. Eyles, D.E., Coatney, G.R. and Getz, M.E. (1960). Vivax-type malaria parasite of macaques transmissible to man. Science, 131, 1812–1813.Google Scholar
  20. Escalante, A.A. and Ayala, F J. (1994). Phylogeny of the malarial genus Plasmodium derived from rRNA gene sequences. Proc. Natl. Acad. Sci. USA., 91, 11373–11377.CrossRefGoogle Scholar
  21. Escalante, A.A. and Ayala, F.J., (1995). Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. Proc. Natl. Acad. Sci. USA, 92, 5793–5797.CrossRefGoogle Scholar
  22. Escalante, A.A., Barrio, E. and Ayala, F.J. (1995). Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol. Biol. Evol., 12, 616–626.Google Scholar
  23. Escalante, A.A., Goldman, I.F., De Rijk, P., De Wachter, R., Collins, W.E., Qari, S.H. and Lal, A.A. (1997). Phylogenetic study of the genus Plasmodium based on the secondary structure-based alignment of the Small Subunit ribosomal RNA. Mol. Biochem. Parasitol., 90, 317–321.CrossRefGoogle Scholar
  24. Escalante, A.A., Lal, A.A. and Ayala, F.J. (1998). Genetic polymorphism and natural selection in the malaria parasite plasmodium falciparum. Genetics, 149, 189–202.Google Scholar
  25. Fast, N.M., Xue, L., Bingham, S. and Keeling, P.J. (2002). Re-examining alveolate evolution using multiple protein molecular phylogenies. J. Eukaryot. Microbiol., 49, 30–37.CrossRefGoogle Scholar
  26. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using bootstrap, Evolution, 39, 783–791.CrossRefGoogle Scholar
  27. Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., Carlton, J.M., Pain, A., Nelson, K.E., Bowman, S., Paulsen, I.T., James, K., Eisen, J.A., Rutherford, K., Salzberg, S.L., Craig, A., Kyes, S., Chan, M.S., Nene, V., Shallom, S.J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M.W., Vaidya, A.B., Martin, D.M.A., Fairlamb, A.H., Fraunholz, M.J., Roos, D.S., Ralph, S.A., McFadden, G.I., Cummings, L.M., Subramanian, G.M., Mungall, C., Venter, J.C., Carucci, D.J., Hoffman, S.L., Newbold, C., Davis, R.W., Fraser, C.M., and Barrell, B. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511.CrossRefGoogle Scholar
  28. Garnham, P.C.C. (1966). Malaria Parasites and Other Haemosporidia. Blackwell Scientific Publications, Oxford, UK.Google Scholar
  29. Gysin, J. (1998). Animal models: Primates. In I.W. Sherman (ed), Malaria: Parasite Biology, Pathogenesis, and Protection, ASM Press, Washington, DC. pp. 419–441.Google Scholar
  30. Hartl, D.L. (2004). The origin of malaria: mixed messages from genetic diversity. Nat. Rev. Microbiol., 2, 15–22.CrossRefGoogle Scholar
  31. Hill, A.V.S. and Weatherall, D.J. (1998). Host genetic factors in resistance to malaria, In I. W. Sherman (ed), Malaria: Parasite Biology, Pathogenesis, and Protection. American Society of Microbiology, Washington, D.C., pp. 445–455.Google Scholar
  32. Huff, C.G. (1938). Studies on the evolution of some disease-producing organisms. Q. Rev. Biol. 13, 196–206.CrossRefGoogle Scholar
  33. Hughes, A.L. (1993). Coevolution of immunogenic proteins of Plasmodium falciparum and the Host’s immune system, In N. Takahata, and A.G. Clark (eds), Mechanisms of Molecular Evolution, Sinauer Assoc., Sunderland, Mass, U. S. A., pp. 109–127.Google Scholar
  34. Hughes, A.L., and Hughes, M.K. (1995). Natural Selection on Plasmodium surface proteins. Mol. Biochem. Parasitol., 71, 99–113.CrossRefGoogle Scholar
  35. Hughes, A.L. and Verra, F. (2001). Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc. R. Soc. Lond. B. Biol. Sci., 268, 1855–1860.CrossRefGoogle Scholar
  36. Joy, D.A., Feng, X., Mu, J., Furuya, T., Chotivanich, K., Krettli, A.U., Ho, M., Wang, A., White, N.J., Suh, E., Beerli, P. and Su, X.Z. (2003). Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax, Science, 300, 318–321.Google Scholar
  37. Kemp, D.J. and Cowman, A.F. (1990). Genetic diversity of Plasmodium falciparum. Adv. Parasitol., 29, 75–133.CrossRefGoogle Scholar
  38. Kimsey, R.B. (1992). Host association and the capacity of sand flies as vectors of lizard malaria in Panama. Int. J. Parasitol., 22, 657–664.CrossRefGoogle Scholar
  39. Leclerc, M.C., Durand, P., Gauthier, C., Patot, S., Billotte, N., Menegon, M., Severini, C., Ayala, F.J. and Renaud, F. (2004). Meager genetic variability of the human malaria agent Plasmodium vivax. Proc. Natl. Acad. Sci. USA, 101, 14455–14460.CrossRefGoogle Scholar
  40. Livingston, F.B. (1958). Anthropological Implications of sickle cell gene distribution in West Africa. American Anthropologist 60, 533–560.CrossRefGoogle Scholar
  41. López-Antuñano, F. and Schumunis, F.A. (1993). Plasmodia of humans, In J. P. Kreier, (ed), Parasitic Protozoa, 2nd edn., vol. 5, Academic Press Inc., New York, pp. 135–265.Google Scholar
  42. Manwell, R. (1955). Some evolutionary possibilities in the history of the malaria parasites. Indian J. Malariol., 9,247–253.Google Scholar
  43. Margulis, L., McKhann, H., and Olendzenski, L. (1993). Illustrated Guide of Protoctista. Jones and Bartlett, Boston.Google Scholar
  44. McConkey, G.A., Waters, A.P. and McCutchan, T.F. (1990). The generation of genetic diversity in malarial parasites. Annu. Rev. Microbiol., 44, 479–498.CrossRefGoogle Scholar
  45. McCutchan, T.F., Kissinger, J.C., Touray, M.G., Rogers, M.J., Li, J., Sullivan, M., Braga, E.M., Kretli, A.U. and Miller, L. (1996). Comparison of circumsporozoite proteins from avian and mammalian malaria: Proc. Natl. Acad. Sci. USA 93, 11889–11894.CrossRefGoogle Scholar
  46. Miller, R.L., Ikram, S., Armelagos, G.J., Walker, R., Harer, W.B., Shiff, C.J., Baggett, D., Carrigan, M. and Maret, S.M. (1994). Diagnosis of Plasmodium falciparum infections in mummies using the rapid manual ParaSight™-Ftest. Trans. R. Soc. Trop. Med. Hyg., 88, 31–32.CrossRefGoogle Scholar
  47. Modiano, D., Luoni, G., Sirima, B.S., Simporé, J., Verra, F., Konaté, A., Rastrelli, E., Olivieri, A., Calissano, C., Paganotti, G.M., D’Urbano, L., Sanou, I., Sawadogo, A., Mediano, G. and Coluzzi, M. (2001). Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature, 414, 305–308.CrossRefGoogle Scholar
  48. Mu, J., Duan, J., Makova, K.D., Joy, D.A., Huynh, C.Q., Branch, O.H., Li, W.-H. and Su, X.-Z (2002). Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature, 418, 323–326.CrossRefGoogle Scholar
  49. Nakamura, Y., Gojobori, T. and Ikemura, T. (1997). Codon usage tabulated from the international DNA sequence databases. Nuc. Acids Res., 25, 244–245.CrossRefGoogle Scholar
  50. Perkins, S.L. and Schall, J.J. (2002). A molecular phylogeny of malarial parasites recovered from cytochrome-b gene sequences. J. Parasitol., 88, 972–978.CrossRefGoogle Scholar
  51. Qari, S.H., Shi, Y.-P., Povoa, M.M., Alpers, M.P., Deloron, P., Murphy, G.S., Harjosuwarno, S. and Lal, A.A. (1993). J. Infec. Dis., 168, 485–1489.Google Scholar
  52. Qari, S.H., Shi, Y.P., Pieniazek, N.J., Collins, W.E. and Lal, A.A. (1996). Phylogenetic relationship among the malaria parasites based on small subunit rRNA gene sequences: Monophyletic nature of the human malaria parasite. Plasmodium falciparum. Mol. Phylogenet. Evol., 6, 157–165.CrossRefGoogle Scholar
  53. Rich, S.M. (2004). The unpredictable past of Plasmodium vivax revealed in its genome. Proc. Natl. Acad. Sci. USA, 101, 15547–15548.CrossRefGoogle Scholar
  54. Rich, S.M. and Ayala, F.J. (1998). The recent origin of allelic variation in antigenic determinants of Plasmodium falciparum. Genetics, 150, 515–517.Google Scholar
  55. Rich, S.M. and Ayala, F. J. (1999). Circumsporozoite polymorphism, silent mutations and the evolution of Plasmodium falciparum. Reply. Parasitol. Today, 15, 39–40.CrossRefGoogle Scholar
  56. Rich, S.M. and Ayala, F.J. (2000). Population structure and recent evolution of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 97, 6994–7001.CrossRefGoogle Scholar
  57. Rich, S.M. and Ayala. F.J. (2003). Progress in malaria research: the case for phylogenetics. In D.T.J. Littlewood (ed), Advances in Parasitology: The Evolution of Parasitism a Phylogenetic Perspective, vol. 54. Elsevier/Academic, Amsterdam. pp. 255–280.Google Scholar
  58. Rich, S.M., Hudson, R.R., and Ayala, F.J. (1997). Plasmodium falciparum antigenic diversity: Evidence of clonal population structure. Proc. Natl. Acad. Sci. USA, 94, 13040–13045.CrossRefGoogle Scholar
  59. Rich, S.M., Licht, M.C., Hudson, R.R., and Ayala, F.J. (1998). Malaria’s Eve: Evidence of a recent bottleneck in the global Plasmodium falciparum population. Proc. Natl. Acad. Sci. USA, 95, 4425–4430.CrossRefGoogle Scholar
  60. Ricklefs, R.E. and Fallon, S.M. (2002). Diversification and host-switching in avian malaria parasites. Proc. Royal Soc. London B., 269, 885–892.CrossRefGoogle Scholar
  61. Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.Google Scholar
  62. Sherman, I.W. (1998). A brief history of malaria and the discovery of the parasite’s life cycle. In: I.W. Sherman (ed), Malaria: Parasite Biology, Pathogenesis, and Protection. American Society of Microbiology, Washington, DC. pp. 3–10.Google Scholar
  63. Sinnis, P. and Wellems, T.E. (1988). Long range restriction maps of Plasmodium falciparum chromosomes: Crossing over and size variation in geographically distant isolates. Genomics, 3, 287–295.CrossRefGoogle Scholar
  64. Slatkin, M. and Hudson, R.R. (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555–562.Google Scholar
  65. Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases. Mol. Biol. Evol., 9, 678–687.Google Scholar
  66. Tishkoff, S.A., Varkonyi, R., Cahinhinan, N., Abbes, S., Argyropoulos, G., Destro-Bisol, G., Drousiotou, A., Dangerfield, B., Lefranc, G., Loiselet, J., Piro, A., Stoneking, M., Tagarelli, A., Tagarelli, G., Touma, E.H., Williams, S.M., and Clark, A.G. (2001). Haplotype diversity and linkage disequilibrium at human G6PD: Recent origin of alleles that confer malarial resistance. Science, 293, 455–462.CrossRefGoogle Scholar
  67. Vaidya, A.B., Lashgari, M.S., Pologe, L.G., and Morrissey, J. (1993). Structural features of Plasmodium cytochrome-b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol. Biochem. Parasitol., 58, 33–42.CrossRefGoogle Scholar
  68. Volkman, S.K., Barry, A.E., Lyons, E.J., Nielsen, K.M., Thomas, S.M., Choi, M., Thakore, S.S., Day, K.P., Wirth, D.J., and Hartl, D.L. (2001). Recent origin of Plasmodium falciparum from a single progenitor. Science, 293, 482–484.CrossRefGoogle Scholar
  69. Watts, S. (1997). Epidemics and History: Disease, Power and Imperialism. Yale University Press, New Haven, CT.Google Scholar
  70. Weatherall, D.J. (2004). J.B.S. Haldane and the malaria hypothesis. In K.R. Dronamraju (ed), Infectious Disease and Host-Pathogen Evolution. Cambridge University Press, Cambridge. pp. 18–36.Google Scholar
  71. Weisenfeld, S.L. (1967). Sickle cell trait in human biological and cultural evolution. Development of agriculture causing increased malaria is bound to gene pool changes causing malaria reduction. Science 157, 1134–1140.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Stephen M. Rich
    • 1
  • Francisco J. Ayala
    • 2
  1. 1.Department of Plant, Soil and Insect SciencesUniversity of MassachusettsAmherstUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations