Skip to main content

Feedback Remapping and the Cortical Control of Movement

  • Chapter

Abstract

Motor cortex in the primate brain controls movement at a complex level. For example, electrical stimulation of motor cortex on a behavioral time scale can elicit multi-joint movements that resemble common gestures in the monkey’s behavioral repertoire. How is this complex control accomplished? It was once hypothesized that motor cortex contains a topographic, one-to-one map from points in cortex to muscles. It is now well known that the topography contains a considerable degree of overlap and that the mapping between points in cortex and muscles is many-to-many. However, can a fixed, many-to-many map account for the complex manner in which motor cortex appears to control movement? Recent experiments suggest that the mapping between cortex and muscles may be of a higher order than a fixed, many-to-many map; it may continuously change depending on proprioceptive feedback from the limb. This “feedback remapping” may be a fundamental aspect of motor control, allowing motor cortex to flexibly control almost any high-level or low-level aspect of movement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong DM, Drew T (1985) Forelimb electromyo-graphic responses to motor cortex stimulation during locomotion in the cat. J Physiol 367: 327–351.

    PubMed  CAS  Google Scholar 

  • Asanuma H (1975) Recent developments in the study of the columnar arrangement of neurons within the motor cortex. Physiol Rev 55: 143–156.

    PubMed  CAS  Google Scholar 

  • Asanuma H, Zarzecki P, Jankowska E, Hongo T, Marcus S (1979) Projection of individual pyramidal tract neurons to lumbar motor nuclei of the monkey. Exp Brain Res 34: 73–89.

    Article  PubMed  CAS  Google Scholar 

  • Baker SN, Olivier E, Lemon RN (1998) An investigation of the intrinsic circuitry of the motor cortex of the monkey using intra-cortical microstimulation. Exp Brain Res 123: 397–411.

    Article  PubMed  CAS  Google Scholar 

  • Bennett KM, Lemon RN (1994) The influence of single monkey cortico-motoneuronal cells at different levels of activity in target muscles. J Physiol 477: 291–307.

    PubMed  Google Scholar 

  • Bizzi E, Tresch MC, Saltiel P, d’Avella A (2000) New perspectives on spinal motor systems. Nat Rev Neurosci 1: 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Caminiti R, Johnson PB, Urbano A (1990) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 10: 2039–2058.

    PubMed  CAS  Google Scholar 

  • Capaday C, Devanne H, Bertrand L, Lavoie BA (1998) Intracortical connections between motor cortical zones controlling antagonistic muscles in the cat: a combined anatomical and physiological study. Exp Brain Res 120: 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Cheney PD, Fetz EE (1985) Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells. J Neurophys 53: 786–804.

    CAS  Google Scholar 

  • Cheney PD, Fetz EE, Palmer SS (1985) Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey. J Neurophys 53: 805–820.

    CAS  Google Scholar 

  • Cooke DF, Graziano MSA (2004) Sensorimotor integration in the precentral gyrus: polysensory neurons and defensive movements. J Neurophys 91: 1648–1660.

    Article  Google Scholar 

  • Crowe DA, Chafee MV, Averbeck BB, Georgopoulos AP (2004) Participation of primary motor cortical neurons in a distributed network during maze solution: representation of spatial parameters and time-course comparison with parietal area 7a. Exp Brain Res 158: 28–34.

    Article  PubMed  Google Scholar 

  • Donoghue JP, LeiBovic S, Sanes JN (1992) Organization of the forelimb area in squirrel monkey motor cortex: representation of digit, wrist, and elbow muscles. Exp Brain Res 89: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophys 31: 14–27.

    CAS  Google Scholar 

  • Fetz EE, Cheney PD (1980) Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophys 44: 751–772.

    CAS  Google Scholar 

  • Foerster O (1936) The motor cortex of man in the light of Hughlings Jackson’s doctrines. Brain 59: 135–159.

    Google Scholar 

  • Fulton JF (1938) Physiology of the Nervous System. Oxford University Press, New York, p. 399–457.

    Google Scholar 

  • Gatter KC, Sloper JJ, Powell TP (1978) The intrinsic connections of the cortex of area 4 of the monkey. Brain 101: 513–541.

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233: 1416–1419.

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation of the neuronal population vector. Science 243: 234–236.

    PubMed  CAS  Google Scholar 

  • Ghosh S, Porter R (1988) Morphology of pyramidal neurones in monkey motor cortex and the synaptic actions of their intracortical axon collaterals. J Physiol 400: 593–615.

    PubMed  CAS  Google Scholar 

  • Gould HJ 3rd, Cusick CG, Pons TP, Kaas JH (1986) The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J Comp Neurol 247: 297–325.

    Article  PubMed  Google Scholar 

  • Graziano MSA, Taylor CSR, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34: 841–851.

    Article  PubMed  CAS  Google Scholar 

  • Graziano MSA, Taylor CSR, Moore T, Cooke DF (2002) The cortical control of movement revisited. Neuron 36: 349–362.

    Article  PubMed  CAS  Google Scholar 

  • Graziano MSA, Patel KT, Taylor CSR (2004) Mapping from motor cortex to biceps and triceps altered by elbow angle. J Neurophys 92: 395–407.

    Article  Google Scholar 

  • He SQ, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13: 952–980.

    PubMed  CAS  Google Scholar 

  • Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146: 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Huntley GW, Jones EG (1991) Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. J Neurophys 66: 390–413.

    CAS  Google Scholar 

  • Jankowska E, Hammar I (2002) Spinal interneurones; how can studies in animals contribute to the understanding of spinal interneuronal systems in man? Brain Res Rev 40:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Padel Y, Tanaka R (1975) The mode of activation of pyramidal tract cells by intracortical stimuli. J Physiol 249: 617–636.

    PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman D, Strick P (1999) Muscle and movemet representations in the primary motor cortex. Science 285: 2136–2139.

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF, Cohen DA, Hyde ML, Prud’homme MA (1989) Comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci 9: 2080–2102.

    PubMed  CAS  Google Scholar 

  • Kang Y, Endo K, Araki T (1988) Excitatory synaptic actions between pairs of neighboring pyramidal tract cells in the motor cortex. J Neurophys 59: 636–647.

    CAS  Google Scholar 

  • Kuang RZ, Kalil K (1990) Branching patterns of corticospinal axon arbors in the rodent. J Comp Neurol 292: 585–598.

    Article  PubMed  CAS  Google Scholar 

  • Kwan HC, MacKay WA, Murphy JT, Wong YC (1978) Spatial organization of precentral cortex in awake primates. II. Motor outputs. J Neurophys 41: 1120–1131.

    CAS  Google Scholar 

  • Kwan HC, Murphy JT, Wong YC (1987) Interaction between neurons in precentral cortical zones controlling different joints. Brain Res 400: 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Landgren S, Phillips CG, Porter R (1962) Cortical fields of origin of the monosynaptic pyramidal pathways to some alpha motoneurones of the baboon’s hand and forearm. J Physiol 161: 112–125.

    PubMed  CAS  Google Scholar 

  • Landry P, Labelle A, Deschenes M (1980) Intracortical distribution of axonal collaterals of pyramidal tract cells in the cat motor cortex. Brain Res 191: 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Lemon RN, Johansson RS, Westling G (1995) Corticospinal control during reach, grasp, and precision lift in man. J Neurosci 15: 6145–6156.

    PubMed  CAS  Google Scholar 

  • Lemon RN, Kirkwood PA, Maier MA, Nakajima K, Nathan P (2004) Direct and indirect pathways for corticospinal control of upper limb motoneurons in the primate. Prog Brain Res 143: 263–279.

    Article  PubMed  Google Scholar 

  • Lemon RN, Mantel GW, Muir RB (1986) Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey. J Physiol 381: 497–527.

    PubMed  CAS  Google Scholar 

  • Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 12: 281–296.

    Article  PubMed  CAS  Google Scholar 

  • Maier MA, Olivier E, Baker SN, Kirkwood PA, Morris T, Lemon RN (1997) Direct and indirect corticospinal control of arm and hand motoneurons in the squirrel monkey (Saimiri sciureus). J Neurophys 78: 721–733.

    CAS  Google Scholar 

  • Matsumura M, Chen D, Sawaguchi T, Kubota K, Fetz EE (1996) Synaptic interactions between primate precentral cortex neurons revealed by spike-triggered averaging of intracellular membrane potentials in vivo. J Neurosci 16: 7757–7767.

    PubMed  CAS  Google Scholar 

  • McKiernan BJ, Marcario JK, Karrer JH, Cheney PD (1998) Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. J Neurophys 80: 1961–1980.

    CAS  Google Scholar 

  • Murray EA, Coulter JD (1981) Organization of corticospinal neurons in the monkey. J Comp Neurol 195: 339–365.

    Article  PubMed  CAS  Google Scholar 

  • Morrow MM, Miller LE (2003) Prediction of muscle activity by populations of sequentially recorded primary motor cortex neurons. J Neurophys 89: 2279–2288.

    CAS  Google Scholar 

  • Olivier E, Baker SN, Nakajima K, Brochier T, Lemon RN (2001) nvestigation into non-monosynaptic corticospinal excitation of macaque upper limb single motor units. J Neurophys 86: 1573–1586.

    CAS  Google Scholar 

  • Park MC, Belhaj-Saif A, Gordon M, Cheney PD (2001) Consistent features in the forelimb representation of primary motor cortex in rhesus macaques. J Neurosci 21: 2784–2792.

    PubMed  CAS  Google Scholar 

  • Reina GA, Moran DW, Schwartz AB (2001) On the relationship between joint angular velocity and motor cortical discharge during reaching. J Neurophys 85: 2576–2589.

    CAS  Google Scholar 

  • Rho MJ, Lavoie S, Drew T (1999) Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex. J Neurophys 81: 2297–2315.

    CAS  Google Scholar 

  • Sanes JN, Donoghue JP, Thangaraj V, Edelman RR, Warach S (1995) Shared neural substrates controlling hand movements in human motor cortex. Science 268: 1775–1777.

    PubMed  CAS  Google Scholar 

  • Sanes JN, Wang J, Donoghue JP (1992) Immediate and delayed changes of rat cortical output representation with new forelimb configurations. Cereb Cortex 2: 141–152.

    PubMed  CAS  Google Scholar 

  • Schieber MH, Hibbard LS (1993) How somatotopic is the motor cortex hand area? Science 261: 489–492.

    PubMed  CAS  Google Scholar 

  • Schneider C, Devanne H, Lavoie BA, Capaday C (2002) Neural mechanisms involved in the functional linking of motor cortical points. Exp Brain Res 146: 86–94.

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Zytnicki D, Capaday C (2001) Quantitative evidence for multiple widespread representations of individual muscles in the cat motor cortex. Neurosci Lett 310: 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Scott SH, Kalaska JF (1995) Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures. J Neurophys 73: 2563–2567.

    CAS  Google Scholar 

  • Scott SH, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J Neurophys 77: 826–852.

    CAS  Google Scholar 

  • Sergio LE, Kalaska JF (2003) Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J Neurophys 89: 212–228, 2003.

    Google Scholar 

  • Shinoda Y, Arnold AP, Asanuma H (1976) Spinal branching of corticospinal axons in the cat. Exp Brain Res 26: 215–234.

    Article  PubMed  CAS  Google Scholar 

  • Shinoda Y, Yamaguchi T, Futami T (1986) Multiple axon collaterals of single corticospinal axons in the cat spinal cord. J Neurophys 55: 425–448.

    CAS  Google Scholar 

  • Tantisira B, Alstermark B, Isa T, Kummel H, Pinter M (1996) Motoneuronal projection pattern of single C3-C4 propriospinal neurones. Can J Physiol Pharmacol 74: 518–530.

    Article  PubMed  CAS  Google Scholar 

  • Taylor CSR, Gross, CG (2003) Twitches vs. Movements: a story of motor cortex. Neuroscientist 9: 332–342.

    Article  PubMed  Google Scholar 

  • Todorov E (2000) Direct cortical control of muscle activation in voluntary arm movements: a model. Nat Neurosci 3: 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5: 1226–1235.

    Article  PubMed  CAS  Google Scholar 

  • Weiss DS, Keller A (1994) Specific patterns of intrinsic connections between representation zones in the rat motor cortex. Cereb Cortex 4: 205–214.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Graziano, M.S.A. (2006). Feedback Remapping and the Cortical Control of Movement. In: Latash, M.L., Lestienne, F. (eds) Motor Control and Learning. Springer, Boston, MA. https://doi.org/10.1007/0-387-28287-4_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-28287-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25390-9

  • Online ISBN: 978-0-387-28287-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics