Advertisement

Stabilization of Old and New Postural Patterns in Standing Humans

  • Benoît G. Bardy
  • Elise Faugloire
  • Paul Fourcade
  • Thomas A. Stoffregen
Chapter
  • 3.3k Downloads

Abstract

In human stance, rotations around the hips and ankles typically exhibit a relative phase close to 20°, or close to 180°. In this article, we propose a model of stance that captures these postural states and the changes between them. We also describe the results of a recent study in which participants learned a novel pattern of hip and ankle coordination (a relative phase of 135°). Participants learned this novel pattern rapidly. At the same time, learning led to a robust destabilization of pre-existing patterns of hip-ankle coordination. The rate and type of destabilization depended upon the initial stability of the pre-existing patterns. We discuss similarities and differences between the learning of postural and bimanual coordination modes.

Keywords

Relative Phase Retention Test Tracking Task Coordination Pattern Bimanual Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balasubramaniam, R., Riley, M. A., & Turvey, M.T. (2000). Specificity of postural sway to the demands of a precision task. Gait & Posture, 11, 12–24.CrossRefGoogle Scholar
  2. Bardy, B. G. (2004). Postural coordination dynamics in standing humans. In V. K. Jirsa & J. A. S. Kelso (Eds.), Coordination dynamics: Issues and trends (pp. 103–121). Berlin: Springer.Google Scholar
  3. Bardy, B. G., Faugloire, E., & Stoffregen, T. (2005). The dynamics of learning new postural patterns. Manuscript submitted for publication.Google Scholar
  4. Bardy, B. G., Marin, L., Stoffregen, T. A., & Bootsma, R. J. (1999). Postural coordination modes considered as emergent phenomena. Journal of Experimental Psychology: Human Perception and Performance, 25, 1284–1301.PubMedCrossRefGoogle Scholar
  5. Bardy, B. G., Oullier, O., Bootsma, R. J., & Stoffregen, T. A. (2002). Dynamics of human postural transitions. Journal of Experimental Psychology: Human Perception and Performance, 28, 499–514.PubMedCrossRefGoogle Scholar
  6. Barin, K. (1989). Evaluation of a generalized model of human postural dynamics and control in the sagittal plane. Biological Cybernetics, 61, 37–50.PubMedCrossRefGoogle Scholar
  7. Beek, P. J., Peper, C.E., Daffertshofer, A., Van Soest, A., & Meijer, O. G. (1998). Studying perceptual-motor actions from mutually constraining perspectives. In: A. A. Post, J. R. Pijpers, P. Bosch, M. J. S. Boschker (eds.), Models in Human Movement Sciences: Proceedings of the second symposium of the Institute for Fundamental and Clinical movement Science (pp. 93–111). Enschede, NL: Print-Partners Ipskamp.Google Scholar
  8. Bernstein, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon Press.Google Scholar
  9. Dijkstra, T. M. H., Schöner, G., & Gielen, C. C. A. M. (1994). Temporal stability of the action-perception cycle for postural control in a moving visual environment. Experimental Brain Research, 97, 477–486.CrossRefGoogle Scholar
  10. Farley, C. T., & Morgenroth, D. C. (1999). Leg stiffness primarily depends on ankle stiffness during human hopping. Journal of Biomechanics, 32, 267–273.PubMedCrossRefGoogle Scholar
  11. Faugloire, E. (2005). Approche dynamique de l’apprentissage des coordinations posturales [Dynamical perspective on learning postural coordination modes]. PhD thesis in Movement Sciences, University of Paris 11.Google Scholar
  12. Faugloire, E., Bardy, B. G., Merhi, O., & Stoffregen, T.A (2005). Exploring coordination dynamics of the postural system with real-time visual feedback. Neuroscience Letters, 374, 136–141.PubMedCrossRefGoogle Scholar
  13. Fontaine, R. J., Lee, T. D., & Swinnen, S. P. (1997). Learning a new bimanual coordination pattern: reciprocal influences of intrinsic and to-be-learned patterns. Canadian Journal of Experimental Psychology, 51, 1–9.PubMedGoogle Scholar
  14. Fourcade, P., Bardy, B. G., & Roudeix, S. (2005). A ‘compound’ model of human postural transitions. Manuscript in preparation.Google Scholar
  15. Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.PubMedCrossRefGoogle Scholar
  16. Kay, B.A., & Warren, W.H. (2001). Coupling of posture and gait: mode locking and parametric excitation. Biological Cybernetics, 85, 89–106.PubMedCrossRefGoogle Scholar
  17. Kelso, J. A. S. & Zanone, P. G. (2002). Coordination dynamics of learning and transfer across different effector systems. Journal of Experimental Psychology: Human Perception and Performance, 28, 776–797.PubMedCrossRefGoogle Scholar
  18. Kelso, J. A. S. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology: Regulatory, Integrative, and Comparative, 15, R1000–R1004.Google Scholar
  19. Kuo, A. D. (1995). An optimal control model for analyzing human postural balance. IEEE Transaction Biomed Engineering, 42, 87–101.CrossRefGoogle Scholar
  20. LeVeau, B. (1977). Biomechanics of human motion. Philadelphia, PA: W. B. Saunders Company.Google Scholar
  21. Lee, T. D., Swinnen, S. P., & Verschueren, S. (1995). Relative phase alterations during bimanual skill acquisition. Journal of Motor Behavior, 27, 263–274.PubMedCrossRefGoogle Scholar
  22. Marin, L., Bardy, B. G., Baumberger, B., Flückiger, M., & Stoffregen, T. A. (1999). Interaction between task demands and surface properties in the control of goal-oriented stance. Human Movement Science, 18, 31–47.CrossRefGoogle Scholar
  23. Nashner, L. M, & McCollum, G. (1985). The organization of postural movements: A formal basis and experimental synthesis. Behavioral and Brain Sciences, 8, 135–172.CrossRefGoogle Scholar
  24. Nashner, L.M. (1976). Adapting reflexes controlling the human posture. Experimental Brain Research, 26, 59–72.CrossRefGoogle Scholar
  25. Newell, K. M. (1986). Constraints on the development of coordination. In M. G. Wade & H. T. A. Whiting (Eds.), Motor development in children: Aspects of coordination and control (pp. 341–360). Dordrecht: Martinus Nijhoff.Google Scholar
  26. Newell, K. M. (1996). Change in movement and skill: Learning, retention, and transfer. In M. L. Latash & M. T. Turvey (Eds.), Dexterity and its development (pp. 393–430). Mahwah, NJ: L. Erlbaum Associates.Google Scholar
  27. Oullier, O., Bardy, B. G., Stoffregen, T. A., & Bootsma, R. J. (2002). Postural coordination in looking and tracking tasks. Human Movement Science, 21, 147–167.PubMedCrossRefGoogle Scholar
  28. Oullier, O., Bardy, B. G., Stoffregen, T. A., & Bootsma, R. J. (2004). Task-specific stabilization of postural coordination during stance on a beam. Motor Control, 7, 174–187.Google Scholar
  29. Schöner, G. (1991). Dynamic theory of action-perception patterns: The “moving room” paradigm. Biological Cybernetics, 64, 455–462.PubMedCrossRefGoogle Scholar
  30. Smethurst, C. J. & Carson, R. G. (2001). The acquisition of movement skills: Practice enhances the dynamic stability of bimanual coordination. Human Movement Science, 20, 499–529.PubMedCrossRefGoogle Scholar
  31. Stefanyshyn, D. J., & Nigg, B.M. (1998). Dynamic angular stiffness of the ankle joint during running and sprinting. Journal of Applied Biomechanics, 14, 292–299.Google Scholar
  32. Sternad, D., Amazeen, E. L., & Turvey, M. T. (1996). Diffusive, synaptic, and synergetic coupling: An evaluation through in-phase and antiphase rhythmic movements. Journal of Motor Behavior, 28, 255–269.PubMedCrossRefGoogle Scholar
  33. Stockwell, C. W., Koozekanani, S. H., & Barin, K. (1981). A physical model of human postural dynamics. Annals New York Academy of Sciences, 374, 722–730.Google Scholar
  34. Stoffregen, T. A., Smart, L. J., Bardy, B. G., & Pagulayan, R. J. (1999). Postural stabilization of looking. Journal of Experimental Psychology: Human Perception and Performance, 25, 1641–1658.CrossRefGoogle Scholar
  35. Taga, G. (1994). Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica D, 75, 190–208.CrossRefGoogle Scholar
  36. Taga, G. (1995). A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait. Biological Cybernetics, 73, 97–111.PubMedGoogle Scholar
  37. Weiss, P. L., Hunter, I.W., & Kearney, R.E. (1988). Human ankle joint stiffness over the full range of muscle activation levels, Journal of Biomechanics, 21, 539–544.PubMedCrossRefGoogle Scholar
  38. Wenderoth, N. & Bock, O. (2001). Learning of a new bimanual coordination pattern is governed by three distinct processes. Motor Control, 1, 23–35.Google Scholar
  39. Winter, D. A. (1990). Biomechanics and motor control of human gait. Waterloo: University of Waterloo Press.Google Scholar
  40. Yang, J. F., Winter, D. A., Wells, R.P. (1990). Postural dynamics in the standing human. Biological Cybernetics, 62, 309–320.PubMedCrossRefGoogle Scholar
  41. Zanone, P. G. & Kelso, J. A. S. (1992). Evolution of behavioral attractors with learning: Nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance, 18, 403–421.PubMedCrossRefGoogle Scholar
  42. Zanone, P. G. & Kelso, J. A. S. (1997). Coordination dynamics of learning and transfer: Collective and component levels. Journal of Experimental Psychology: Human Perception and Performance, 23, 1454–1480.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Benoît G. Bardy
    • 1
    • 2
  • Elise Faugloire
    • 3
  • Paul Fourcade
    • 4
  • Thomas A. Stoffregen
    • 3
  1. 1.University of Montpellier-1France
  2. 2.Institut Universitaire de FranceFrance
  3. 3.School of KinesiologyUniversity of MinnesotaUSA
  4. 4.University of Paris 11OrsayFrance

Personalised recommendations