Advertisement

The Distinctions Between State, Parameter and Graph Dynamics in Sensorimotor Control and Coordination

  • Elliot Saltzman
  • Hosung Nam
  • Louis Goldstein
  • Dani Byrd
Chapter

Abstract

The dynamical systems underlying the performance and learning of skilled behaviors can be analyzed in terms of state-, parameter-, and graph-dynamics. We review these concepts and then focus on the manner in which variation in dynamical graph structure can be used to explicate the temporal patterning of speech. Simulations are presented of speech gestural sequences using the task-dynamic model of speech production, and the importance of system graphs in shaping intergestural relative phasing patterns (both their mean values and their variability) within and between syllables is highlighted.

Keywords

Relative Phase Speech Production Coupling Function System Graph Graph Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abry, C. & Lallouache, T. (1995). Modeling lip constriction anticipatory behavior for rounding in French with MEM (Movement Expansion Model). In K. Elenius & P. Branderud, (Eds.). Proceedings of the XIIth International Congress of Phonetic Sciences. Stockholm: KTH and Stockholm University, pp. 152–155.Google Scholar
  2. Bailly, G., Laboissière, R., & Schwartz, J. L. (1991). Formant trajectories as audible gestures: An alternative for speech synthesis. Journal of Phonetics, 19, 9–23.Google Scholar
  3. Browman, C. P., & Goldstein, L. (1990). Tiers in articulatory phonology, with some implications for casual speech. In J. Kingston & M. E. Beckman (Eds.), Papers in laboratory phonology: I. Between the grammar and the physics of speech. Cambridge, England: Cambridge University Press. Pp. 341–338.Google Scholar
  4. Browman, C. P., & Goldstein, L. (1995). Gestural syllable position effects in American English. In F. Bell-Berti & L. Raphael, (Eds.). Producing speech: Contemporary issues. Woodbury, New York: American Institute of Physics. Pp. 19–33.Google Scholar
  5. Browman, C. P. & Goldstein, L. Competing constraints on intergestural coordination and self-organization of phonological structures. Bulletin de la Communication Parlée, 5: 25–34, 2000.Google Scholar
  6. Bullock, D., & Grossberg, S. (1988). Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychological Review, 95, 49–90.PubMedCrossRefGoogle Scholar
  7. Byrd, D. (1996) Influences on articulatory timing in consonant sequences. Journal of Phonetics, 24(2), 209–244, 1996.CrossRefGoogle Scholar
  8. Byrd D. & Saltzman, E. (1998) Intragestural dynamics of multiple prosodic boundaries. Journal of Phonetics, 26, 173–199.CrossRefGoogle Scholar
  9. Coker, C. H. (1976). A model of articulatory dynamics and control. Proceedings of the IEEE, 64, 452–460.CrossRefGoogle Scholar
  10. Farmer, J. D. (1990). A Rosetta Stone for connectionism. Physica D, 42, 153–187.CrossRefGoogle Scholar
  11. Huang, G.-B., Saratchandran, P., & Sundararajan, N. (2005). A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks, 16(1), 57–67.PubMedCrossRefGoogle Scholar
  12. Jordan M.I. (1990) Motor learning and the degrees of freedom problem. In Jeannerod M, (ed) Attention and Performance XIII. Hillsdale, NJ: Erlbaum.Google Scholar
  13. Jordan M.I. (1992) Constrained supervised learning. Journal of Mathematical Psychology, 36, 396–425.CrossRefGoogle Scholar
  14. Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307–354.CrossRefGoogle Scholar
  15. Kelso, J. A. S., Saltzman, E. L., & Tuller, B. (1986a). The dynamical perspective on speech production: Data and theory. Journal of Phonetics, 14, 29–60.Google Scholar
  16. Kelso, J. A. S., Saltzman, E. L., & Tuller, B. (1986b). Intentional contents, communicative context, and task dynamics: A reply to the commentators. Journal of Phonetics, 14, 171–196.Google Scholar
  17. Kröger, B., Schröder, G. and Opgen-Rhein, C. (1995) A gesture-based dynamic model describing articulatory movement data. Journal of the Acoustical Society of America 98.4 1878–1889.CrossRefGoogle Scholar
  18. Laboissière, R., Schwartz, J.-L. & Bailly, G. Motor control for speech skills: A connectionist approach. Connectionist models. Proceedings of the 1990 Summer School. (D. S. Touretzky, J. L. Elman, T. J. Sejnowski & G. E. Hinton, editors), pp. 319–327. SanMateo, CA: Morgan Kaufmann, 1991.Google Scholar
  19. Lathroum, A. (1989). Feature encoding by neural nets. Phonology, 6, 305–316.CrossRefGoogle Scholar
  20. Nam, H., & Saltzman, E. (2003). A competitive, coupled oscillator model of syllable structure. In Proceedings of the 15 th International Congress of Phonetic Sciences (ICPhS-15), Barcelona, Spain, 2003.Google Scholar
  21. Ostry, D. J., Gribble, P. and Gracco, V. L. (1996) Coarticulation of jaw movements in speech production: Is context sensitivity in speech kinematics centrally planned? The Journal of Neuroscience, 16(4), 1570–1579.PubMedGoogle Scholar
  22. Quartz, S. R., & Sejnowski, T. J. (1997). The neural base of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences, 20, 537–596.PubMedCrossRefGoogle Scholar
  23. Saltzman, E. (1986). Task dynamic coordination of the speech articulators: A preliminary model. Experimental Brain Research, Series 15, 129–144.Google Scholar
  24. Saltzman, E., & Byrd, D. (2000). Task dynamics of gestural timing: Phase windows and multifrequency rhythms. Human Movement Science, 19, 499–526.CrossRefGoogle Scholar
  25. Saltzman, E., Löfqvist, A., & Mitra, S. (2000). “Glue” and “clocks”: Intergestural cohesion and global timing. In Papers in Laboratory Phonology V. (M. B. Broe & J. B. Pierrehumbert, editors), pp. 88–101. Cambridge: Cambridge University Press.Google Scholar
  26. Saltzman, E., & Mitra, S. (1998). A task-dynamic approach to gestural patterning in speech: A hybrid recurrent network. Journal of the Acoustical Society of America, 103,(5; Pt.2), 2893 (Abstract).CrossRefGoogle Scholar
  27. Saltzman, E. L., & Munhall, K. G. (1989). A dynamical approach to gestural patterning in speech production. Ecological Psychology, 1, 333–382.CrossRefGoogle Scholar
  28. Saltzman, E., & Munhall, K. G. (1992). Skill acquisition and development: The roles of state-, parameter-, and graph-dynamics. Journal of Motor Behavior, 24(1), 49–57.PubMedCrossRefGoogle Scholar
  29. Tuller, B. & Kelso, J. A. S. (1991). The production and perception of syllable structure. Journal of Speech and Hearing Research, 34, 501–508.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Elliot Saltzman
    • 1
    • 2
  • Hosung Nam
    • 3
  • Louis Goldstein
    • 2
    • 3
  • Dani Byrd
    • 4
  1. 1.Department of Rehabilitation ScienceBoston UniversityBostonUSA
  2. 2.Haskins LaboratoriesNew HavenUSA
  3. 3.Department of LinguisticsYale UniversityNew HavenUSA
  4. 4.Department of LinguisticsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations