Plans for Grasping Objects

  • David A. Rosenbaum
  • Rajal G. Cohen
  • Ruud G. J. Meulenbroek
  • Jonathan Vaughan


Through the lens of prehension research, we consider how motor planning is influenced by people’s perception of, and their intentions for how to act in, the environment. We review some noteworthy prehension phenomena, including a number of studies from our own labs which demonstrate the “end-state comfort effect,” the discovery of sequential effects in motor planning, and the finding that postural end states are known before movements begin. The existence of these phenomena highlights the role that mental representation plays in motor control. We review a recent model of motor control which can account for both perception-related and intention-related features of motor planning.


Sequential Effect Goal Posture Experimental Brain Research Tennis Ball Home Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abend, W., Bizzi, E., & Morasso, P. (1982). Human arm trajectory formation. Brain, 105, 331–348.PubMedGoogle Scholar
  2. Alexander, R. M. & Bennet-Clark, H. C. (1977). Storage of elastic strain energy in muscle and other tissues. Nature, 265, 114–117.PubMedCrossRefGoogle Scholar
  3. Asatryan, D. G., & Feldman, A. G. (1965). Functional tuning of the nervous system with control of movement or maintenance of a steady posture. 1. Mechanographic analysis of the work of the joint on execution of a postural task. Biophysics, 10, 925–935.Google Scholar
  4. Atkeson, C. G., & Hollerbach, J. M. (1985). Kinematic features of unrestrained arm movements. The Journal of Neuroscience, 5, 2318–2330.PubMedGoogle Scholar
  5. Carello, C. & Turvey, M. T. (2004). Physics and psychology of the muscle sense. Current Directions In Psychological Science, 13, 25–28.CrossRefGoogle Scholar
  6. Clifton, R., K., Rochat, P., Litovsky, R. Y., & Perris, E. E. (1991). Object representation guides infant reaching in the dark. Journal of Experimental Psychology: Human Perception and Performance, 17, 323–329.PubMedCrossRefGoogle Scholar
  7. Cohen, R. G. & Rosenbaum, D. A. (2004). Where objects are grasped reveals how grasps are planned: Generation and recall of motor plans. Experimental Brain Research, 157, 486–495.CrossRefGoogle Scholar
  8. Gachoud, J. P., Mounoud, P., Hauert, C. A., & Viviani, P. (1983). Motor strategies in lifting movements: A comparison of adult and child performance. Journal of Motor Behavior, 15(3), 202–216.PubMedGoogle Scholar
  9. Gibson, J. J. (1979). An ecological approach to visual perception. Boston, Houghton Mifflin.Google Scholar
  10. Gordon, J., Ghilardi, M. F., & Ghez, C. (1992). In reaching, the task is to move the hand to a target. Behavioral and Brain Sciences, 15, 337–338.Google Scholar
  11. Graziano, M. S., Taylor, C. S. R., & Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34, 841–851.PubMedCrossRefGoogle Scholar
  12. Hogan, N. (1984). An organizing principle for a class of voluntary movements. The Journal of Neuroscience, 4, 2745–2754.PubMedGoogle Scholar
  13. Jeannerod, M. (1984). The timing of natural prehension movement. Journal of Motor Behavior, 26, 235–254.Google Scholar
  14. Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Brain and Behavioral Science, 17, 187–245.CrossRefGoogle Scholar
  15. Kawato, M. (1996). Bidirectional theory approach to integration. In: T. Inui and J.L. McClelland (Eds), Attention and Performance XVI (pp 335–367). MIT Press, Cambridge (MA), USA.Google Scholar
  16. Klatzky, R. L., McCLoskey, B., Doherty, S., Pellegrino, J. & Smith, T. (1987). Knowledge about hand shaping and knowledge about objects. Journal of Motor Behavior, 19, 187–213.PubMedGoogle Scholar
  17. Marr, D. (1982). Vision. San Francisco: W. H. Freeman.Google Scholar
  18. Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology, 4, 365–378.Google Scholar
  19. Marteniuk, R. G., Leavitt, J. L., MacKenzie, C. L., & Athenes, S. (1990). Functional relationships between grasp and transport components in a prehension task. Human Movement Science, 9, 149–176.CrossRefGoogle Scholar
  20. McMahon, T. A. (1984). Muscles, reflexes, and locomotion. Princeton, NJ: Princeton University Press.Google Scholar
  21. Meulenbroek, R. G. J., Rosenbaum, D. A., Jansen, C., Vaughan, J., & Vogt, S. (2001). Multijoint grasping movements: Simulated and observed effects of object location, object size, and initial aperture. Experimental Brain Research, 138, 219–234.CrossRefGoogle Scholar
  22. Meulenbroek, R. G. J., Rosenbaum, D. A., Jansen, C., Vaughan, J., & Vogt, S. (2001). Multijoint grasping movements: Simulated and observed effects of object location, object size, and initial aperture. Experimental Brain Research, 138, 219–234.CrossRefGoogle Scholar
  23. Meulenbroek, R. G. J., Rosenbaum, D. A., & Vaughan, J. (2001). Planning reaching and grasping movements: Simulating reduced movement capabilities in spastic hemiparesis. Motor Control 5, 136–150.PubMedGoogle Scholar
  24. Milner, A. D. & Goodale, M. A. (1995). The visual brain in action. New York: Oxford University Press.Google Scholar
  25. Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42, 223–227.CrossRefGoogle Scholar
  26. Pigeon, P., Yahia, L. H., Mitnitski, A. B., & Feldman A. G. (2000). Superposition of independent synergies during pointing movements involving the trunk in the absence of vision. Experimental Brain Research, 131(3), 336–49.CrossRefGoogle Scholar
  27. Rosenbaum, D. A. & Dawson, A. (2004). The motor system computes well but remembers poorly. Journal of Motor Behavior, 36, 390–392.PubMedGoogle Scholar
  28. Rosenbaum, D. A., van Heugten, C., & Caldwell, G. C. (1996). From cognition to biomechanics and back: The end-state comfort effect and the middle-is-faster effect. Acta Psychologica, 94, 59–85.PubMedCrossRefGoogle Scholar
  29. Rosenbaum, D. A. & Jorgensen, M. J. (1992). Planning macroscopic aspects of manual control. Human Movement Science, 11, 61–69.CrossRefGoogle Scholar
  30. Rosenbaum, D. A., Marchak, F., Barnes, H. J., Vaughan, J., Slotta, J., & Jorgensen, M. (1990). Constraints for action selection: Overhand versus underhand grips. In M. Jeannerod (Ed.) Attention and performance XIII (pp. 321–342). Hillsdale, NJ: Erlbaum.Google Scholar
  31. Rosenbaum, D. A., Meulenbroek, R. G., Vaughan, J., & Jansen, C. (2001). Posture-based motion planning: Applications to grasping. Psychological Review, 108, 709–734.PubMedCrossRefGoogle Scholar
  32. Rosenbaum, D. A., Vaughan, J., Barnes, H. J., & Jorgensen, M. J. (1992). Time course of movement planning: Selection of hand grips for object manipulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 1058–1073.PubMedCrossRefGoogle Scholar
  33. Rosenbaum, D. A., Vaughan, J., Jorgensen, M. J., Barnes, H. J., & Stewart, E. (1993). Plans for object manipulation. In D. E. Meyer & S. Kornblum (Eds.), Attention and performance XIV—A silver jubilee: Synergies in experimental psychology, artificial intelligence and cognitive neuroscience (pp. 803–820). Cambridge: MIT Press, Bradford Books.Google Scholar
  34. Rossetti, Y., Meckler, C., & Prablanc, C. (1994). Is there an optimal arm posture? Deterioration of finger localization precision and comfort sensation in extreme armjoint postures. Experimental Brain Research, 99, 131–136.CrossRefGoogle Scholar
  35. Smeets, J. B. J., & Brenner, E. (2002). Does a complex model help to understand grasping? Experimental Brain Research, 144, 132–135.CrossRefGoogle Scholar
  36. Smyth, M. M. (1984). Memory for movements. In M. M. Smyth & A. M. Wing (Eds.), The psychology of human movement (pp. 83–117). London: Academic Press.Google Scholar
  37. Soechting, J. F., & Lacquaniti, F. (1981). Invariant characteristics of a pointing movement in man. Journal of Neuroscience, 1, 710–720.PubMedGoogle Scholar
  38. Vaughan, J., Rosenbaum, D. A., and Meulenbroek, R. G. J. (2001). Planning reaching and grasping movements: The problem of obstacle avoidance. Motor Control, 5, 116–135.PubMedGoogle Scholar
  39. Wallace, S. A. & Weeks, D. L. (1988). Temporal constraints in the control of prehensile movement. Journal of Motor Behavior, 20, 81–105.PubMedGoogle Scholar
  40. Wing, A., Turton, A., & Fraser, C. (1986). Grasp size and accuracy of approach in reaching. Journal of Motor Behavior, 18, 245–260.PubMedGoogle Scholar
  41. Winters, J. M. & Kleweno D. G. (1993). Effect of initial upper-limb alignment on muscle contributions to isometric strength curves. Journal of Biomechanics, 26, 143–153.PubMedCrossRefGoogle Scholar
  42. Wolpert, D. R., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • David A. Rosenbaum
    • 1
  • Rajal G. Cohen
    • 1
  • Ruud G. J. Meulenbroek
    • 2
  • Jonathan Vaughan
    • 3
  1. 1.Department of PsychologyPennsylvania State UniversityUniversity Park
  2. 2.Nijmegen Institute for Cognition and InformationUniversity of NijmegenNijmegenThe Netherlands
  3. 3.Department of PsychologyHamilton CollegeClinton

Personalised recommendations