Advertisement

Motor Performance and Regional Brain Metabolism of Four Spontaneous Murine Mutations with Degeneration of the Cerebellar Cortex

  • Robert Lalonde
  • Catherine Strazielle
Chapter
  • 3.2k Downloads

Abstract

Four spontaneous mutations with cerebellar atrophy exhibit ataxia and deficits in motor coordination tasks requiring balance and equilibrium. These mutants were compared to their respective controls for regional brain metabolism assessed by histochemical staining of the mitochondrial enzyme, cytochrome oxidase (CO). The enzymatic activity of Grid2Lc, Grid2ho, Rorasg, and Relnrl mutants was altered in cerebellum and cerebellar-related pathways at brainstem, midbrain, and telencephalic levels. The CO activity changes in cerebellar cortex and deep cerebellar nuclei as well as some cerebellar-related regions were linearly correlated with motor performance in stationary beam and rotorod tasks of Grid2Lc, Rorasg, and Relnrl mutants. These results indicate that in addition to its relation to neural activity, CO staining can be used as a predictor of motor capacity.

Keywords

cerebellum motor control equilibrium cytochrome oxidase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckers MC, Bar I, Huynh-Thu T, Dernoncourt C, Brunialti AL, Montagutelli X, Guenet JL, Goffinet AM (1994) A high-resolution genetic map of mouse chromosome 5 encompassing the reeler (rl) locus. Genomics 23:685–690.PubMedCrossRefGoogle Scholar
  2. Blatt GJ, Eisenman LM (1985a) A qualitative and quantitative light microscopic study of the inferior olivary complex in the adult staggerer mutant mouse. J Neurogenet 2:51–66.PubMedGoogle Scholar
  3. Blatt GJ, Eisenman LM (1985b) A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol 232:117–128.PubMedCrossRefGoogle Scholar
  4. Blatt GJ, Eisenman LM (1988) Topographic and zonal organization of the olivocerebellar projection in the reeler mutant mouse. J Comp Neurol 267:603–615.PubMedCrossRefGoogle Scholar
  5. Caddy KWT, Biscoe TJ (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans Roy Soc Lond (Biol) 287:167–201.Google Scholar
  6. Caston J, Vasseur F, Stelz T, Chianale C, Delhaye-Bouchaud N, Mariani J (1995) Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of equilibrium behavior: studies in intact and cerebellectomized control and Lurcher mutant mice. Dev Brain Res 86: 311–316.CrossRefGoogle Scholar
  7. Cheng S-W, Heintz N (1997) Massive loss of mid-and hindbrain neurons during embryonic development of homozygous Lurcher mice. J Neurosci 17:2400–2407.PubMedGoogle Scholar
  8. D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479.PubMedCrossRefGoogle Scholar
  9. D’Arcangelo G, Miao GG, Chen S-C, Soared HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723.PubMedCrossRefGoogle Scholar
  10. Deiss V, Strazielle C, Lalonde R (2000) Regional brain variations of cytochrome oxidase activity and motor coordination in staggerer mutant mice. Neuroscience 95:903–911.PubMedCrossRefGoogle Scholar
  11. Goffinet AM (1983) The embryonic development of the inferior olivary complex in normal and reeler mutant mice. J Comp Neurol 219:10–24.PubMedCrossRefGoogle Scholar
  12. Gonzalez-Lima F, Jones D (1994) Quantitative mapping of cytochrome oxidase activity in the central auditory system of the gerbil: a study with calibrated activity standards and metal-intensified histochemistry. Brain Res 660:34–49.PubMedCrossRefGoogle Scholar
  13. Guastavino J-M, Sotelo C, Damez-Kinselle I (1990) Hot-foot murine mutation: behavioral effects and neuroanatomical alterations. Brain Res 523:199–210.PubMedCrossRefGoogle Scholar
  14. Hack I, Bancila M, Loulier K, Carroll P, Cremer H (2002) Reelin is a detachment signal in tangential chain-migration during postnatal neruogenesis. Nature Neurosci 5:939–945.PubMedCrossRefGoogle Scholar
  15. Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, Fitzhugh W, Kusumi K, Russell LB, Mueller KL, Van Burkel V, Birren BW, Krugiyak L, Lander EE (1996) Disruption of the nuclear hormone receptor ROR in staggerer mice. Nature 379:736–739.PubMedCrossRefGoogle Scholar
  16. Heckroth JA (1994) Quantitative morphological analysis of the cerebellar nuclei in normal and Lurcher mutant mice. I. Morphology and cell number. J Comp Neurol 343:173–182.PubMedCrossRefGoogle Scholar
  17. Heckroth JA, Eisenman LM (1991) Olivary morphology and olivocerebellar atrophy in adult Lurcher mutant mice. J Comp Neurol 312:641–651.PubMedCrossRefGoogle Scholar
  18. Heckroth JA, Goldowitz D, Eisenman LM (1989) Purkinje cell reduction in the reeler mutant mouse: a quantitative immunohistochemical study. J Comp Neurol 279:546–555.PubMedCrossRefGoogle Scholar
  19. Herrup K (1983) Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Dev Brain Res 11:267–274.CrossRefGoogle Scholar
  20. Herrup K, Mullen RJ (1979) Regional variation and absence of large neurons in the cerebellum of the staggerer mouse. Brain Res 172:1–12.PubMedCrossRefGoogle Scholar
  21. Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y, Aizawa S, Mishina M (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81:245–252.PubMedCrossRefGoogle Scholar
  22. Kluin KK, Gilman S, Markel DS, Koeppe RA, Rosenthal G, Junck L (1988) Speech disorders in olivopontocerebellar atrophy correlate with positron emission tomography findings. Ann Neurol 23:547–554.PubMedCrossRefGoogle Scholar
  23. Krémarik P, Strazielle C, Lalonde R (1998) Regional brain variations of cytochrome oxidase activity and motor coordination in hot-foot mutant mice. Eur J Neurosci 10:2802–2809.PubMedCrossRefGoogle Scholar
  24. Lalonde R, Strazielle C (1999) Motor performance of spontaneous murine mutations with cerebellar atrophy. In:W Crusio, R Gerlai (Eds) Handbook of molecular-genetic techniques for brain and behavior research (Techniques in the Behavioral and Neural Sciences, vol 13). Amsterdam: Elsevier, pp 627–637.Google Scholar
  25. Lalonde R, Bensoula AN, Filali M (1995) Rotorod sensorimotor learning in cerebellar mutant mice. Neurosci Res 22:423–426.PubMedCrossRefGoogle Scholar
  26. Lalonde R, Botez MI, Joyal CC, M. Caumartin M (1992) Motor deficits in Lurcher mutant mice. Physiol Behav 51:523–525.PubMedCrossRefGoogle Scholar
  27. Lalonde R, Filali M, Bensoula AN, Lestienne F (1996) Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem 65:113–120.PubMedCrossRefGoogle Scholar
  28. Lalonde R, Hayzoun K, Derer M, Mariani J, Strazielle C (2004) Neurobehavioral evaluation of Relnrl mutant mice: correlations with cytochrome oxidase activity. Neurosci Res 49:297–305.PubMedCrossRefGoogle Scholar
  29. Lalonde R, Hayzoun K, Selimi F, Mariani J, Strazielle C (2003) Motor coordination in mice with hot-foot, Lurcher, and double mutations of the Grid2 gene encoding the delta-2 excitatory amino acid receptor. Physiol Behav 80:333–339.PubMedCrossRefGoogle Scholar
  30. Lalouette A, Guénet J-L, Vriz S (1998) Hot-foot mutations affect the δ2 glutamate receptor gene and are allelic to Lurcher. Genomics 50:9–13.PubMedCrossRefGoogle Scholar
  31. Lalouette A, Lohof A, Sotelo C, Guénet J, Mariani J (2001) Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 105:443–455.PubMedCrossRefGoogle Scholar
  32. Landis DMD, Sidman RL (1978) Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol 179:831–864.PubMedCrossRefGoogle Scholar
  33. Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen OP(1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17:834–842.PubMedGoogle Scholar
  34. Mariani J (1982) Extent of multiple innervation of Purkinje cells by climbing fibers in the olivocerebellar system of weaver, reeler and staggerer mutant mice. J Neurobiol 13:119–126.PubMedCrossRefGoogle Scholar
  35. Mariani J, Crepel F, Mikoshiba K, Changeux J-P, Sotelo C (1977) Anatomical, physiological and biochemical studies of the cerebellum fromreeler mutant mouse. Phil Trans Roy Soc London (Biol) 281:1–28.Google Scholar
  36. Matsuda S, Yuzaki M (2002) Mutation in hotfoot-4J mice results in retention of δ2 glutamate receptors in ER. Eur J Neurosci 16:1507–1516.PubMedCrossRefGoogle Scholar
  37. Nakagawa S, Watanabe M, Inoue Y (1997) Prominent expression of nuclear hormone receptor RORα in Purkinje cells from early development. Neurosci Res 28:177–184.PubMedCrossRefGoogle Scholar
  38. Resibois A, Cuvelier L, Goffinet AM (1997) Abnormalities in the cerebellum and brainstem in homozygous Lurcher mice. Neuroscience 80:175–190.PubMedCrossRefGoogle Scholar
  39. Roffler-Tarlov S, Herrup K (1981) Quantitative examination of the deep cerebellar nuclei in the staggerer mutant mouse. Brain Res 215:49–59.PubMedCrossRefGoogle Scholar
  40. Rosenthal G, Gilman S, Koeppe RA, Kluin KJ, Markel DS, Junck L, Gebarski SS (1988) Motor dysfunction in olivopontocerebellar atrophy is related to cerebral metabolic rate studies with positron emission tomography. Ann Neurol 24:414–419.PubMedCrossRefGoogle Scholar
  41. Sashihara S, Felts PA, Waxman SG, Matsui T (1996) Orphan nuclear receptorROR gene: isoform-specific spatiotemporal expression during postnatal development of brain. Mol Brain Res 42:109–117.PubMedCrossRefGoogle Scholar
  42. Selimi F, Lohof AM, Heitz S, Lalouette A, Jarvis CI, Bailly Y, Mariani J (2003) Lurcher GRID2-induced death and depolarization can be dissociated in cerebellar Purkinje cells. Neuron 37:813–819.PubMedCrossRefGoogle Scholar
  43. Shojaeian H, Delhaye-Bouchaud N, Mariani J (1985a) Decreased number of cells in the inferior olivary nucleus of the developing staggerer mouse. Dev Brain Res 21:141–146.CrossRefGoogle Scholar
  44. Shojaeian H, Delhaye-Bouchaud N, Mariani J (1985b) Neuronal death and synapse elimination in the olivocerebellar system. II. Cell counts in the inferior olive of adult X-irradiated rats andweaver and reeler mice. J Comp Neurol 232:309–318.PubMedCrossRefGoogle Scholar
  45. Sotelo C (1975) Dendritic abnormalities of Purkinje cells in the cerebellum of neurologic mutant mice (weaver and staggerer). In: G.W. Kreutzberg (Ed.) Physiology and pathology of dendrite (Advances in Neurology). New York: Raven Press, pp 335–351.Google Scholar
  46. Stanfield BB, Cowan WM (1979) The morphology of the hippocampus and dentate gyrus in normal and reeler mutant mice. J Comp Neurol 185:393–422.PubMedCrossRefGoogle Scholar
  47. Steinmayr M, André E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, Daniel H, Crépel F, Mariani J, Sotelo C, Becker-André M (1998) Staggerer phenotype in retinoid-related orphan receptor α-deficient mice. Proc Natl Acad Sci USA 95:3960–3965.PubMedCrossRefGoogle Scholar
  48. Strazielle C, Krémarik P, Ghersi-Egea J-F, Lalonde R (1998) Regional brain variations of cytochrome oxidase activity and motor coordination in Lurcher mutant mice. Exp Brain Res 121:35–45.PubMedCrossRefGoogle Scholar
  49. Strazielle C, Hayzoun K, Derer M, Mariani J, Lalonde R (2005) Regional brain variations of cytochrome oxidase activity in Relnrl mutant mice. Synapse (submitted).Google Scholar
  50. Terashima T, Inoue K, Inoue Y, Yokoyama M, Mikoshiba K (1986) Observations on the cerebellum of normalreeler mutant mouse chimera. J Comp Neurol 252:264–278.PubMedCrossRefGoogle Scholar
  51. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J. (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701.PubMedCrossRefGoogle Scholar
  52. Thullier F, Lalonde R, Cousin X, Lestienne F (1997) Neurobehavioral evaluation of Lurcher mutant mice during ontogeny. Dev Brain Res 100:22–28.CrossRefGoogle Scholar
  53. Vogel MW, McInnes M, Zanjani HS, Herrup K (1991) Cerebellar Purkinje cells provide target support over a limited spatial range: evidence from Lurcher chimeric mice. Dev Brain Res 64:87–94.CrossRefGoogle Scholar
  54. Wollmuth L, Kuner T, Jatzke C, Seeburg PH, Heintz N, Zuo J (2000) The Lurcher mutation identifies δ2 as an AMPA/kainate receptor-like channel that is potentiated by Ca2+. J Neurosci 20:5973–5980.PubMedGoogle Scholar
  55. Wong-Riley MTT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101.PubMedCrossRefGoogle Scholar
  56. Zuo J, De Jager Pl, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mutant mice caused by mutation in the delta 2 glutamate receptor gene. Nature 388:679–673.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Robert Lalonde
    • 1
    • 2
  • Catherine Strazielle
    • 3
    • 4
  1. 1.Faculté de Médecine et de Pharmacie, INSERM U614Université de RouenRouen, CedexFrance
  2. 2.Neuroscience Research CenterCHUM/St-LucMontrealCanada
  3. 3.Nancy I, Laboratoire de Pathologie Moléculaire et Cellulaire en Nutrition, INSERM U724Université Henri PoincaréFrance
  4. 4.Service de Microscopie ElectroniqueFaculté de MédecineVandoeuvre-les-NancyFrance

Personalised recommendations