Skip to main content

Motor Performance and Regional Brain Metabolism of Four Spontaneous Murine Mutations with Degeneration of the Cerebellar Cortex

  • Chapter
Motor Control and Learning

Abstract

Four spontaneous mutations with cerebellar atrophy exhibit ataxia and deficits in motor coordination tasks requiring balance and equilibrium. These mutants were compared to their respective controls for regional brain metabolism assessed by histochemical staining of the mitochondrial enzyme, cytochrome oxidase (CO). The enzymatic activity of Grid2Lc, Grid2ho, Rorasg, and Relnrl mutants was altered in cerebellum and cerebellar-related pathways at brainstem, midbrain, and telencephalic levels. The CO activity changes in cerebellar cortex and deep cerebellar nuclei as well as some cerebellar-related regions were linearly correlated with motor performance in stationary beam and rotorod tasks of Grid2Lc, Rorasg, and Relnrl mutants. These results indicate that in addition to its relation to neural activity, CO staining can be used as a predictor of motor capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckers MC, Bar I, Huynh-Thu T, Dernoncourt C, Brunialti AL, Montagutelli X, Guenet JL, Goffinet AM (1994) A high-resolution genetic map of mouse chromosome 5 encompassing the reeler (rl) locus. Genomics 23:685–690.

    Article  PubMed  CAS  Google Scholar 

  • Blatt GJ, Eisenman LM (1985a) A qualitative and quantitative light microscopic study of the inferior olivary complex in the adult staggerer mutant mouse. J Neurogenet 2:51–66.

    PubMed  CAS  Google Scholar 

  • Blatt GJ, Eisenman LM (1985b) A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol 232:117–128.

    Article  PubMed  CAS  Google Scholar 

  • Blatt GJ, Eisenman LM (1988) Topographic and zonal organization of the olivocerebellar projection in the reeler mutant mouse. J Comp Neurol 267:603–615.

    Article  PubMed  CAS  Google Scholar 

  • Caddy KWT, Biscoe TJ (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans Roy Soc Lond (Biol) 287:167–201.

    CAS  Google Scholar 

  • Caston J, Vasseur F, Stelz T, Chianale C, Delhaye-Bouchaud N, Mariani J (1995) Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of equilibrium behavior: studies in intact and cerebellectomized control and Lurcher mutant mice. Dev Brain Res 86: 311–316.

    Article  CAS  Google Scholar 

  • Cheng S-W, Heintz N (1997) Massive loss of mid-and hindbrain neurons during embryonic development of homozygous Lurcher mice. J Neurosci 17:2400–2407.

    PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479.

    Article  PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen S-C, Soared HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723.

    Article  PubMed  CAS  Google Scholar 

  • Deiss V, Strazielle C, Lalonde R (2000) Regional brain variations of cytochrome oxidase activity and motor coordination in staggerer mutant mice. Neuroscience 95:903–911.

    Article  PubMed  CAS  Google Scholar 

  • Goffinet AM (1983) The embryonic development of the inferior olivary complex in normal and reeler mutant mice. J Comp Neurol 219:10–24.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lima F, Jones D (1994) Quantitative mapping of cytochrome oxidase activity in the central auditory system of the gerbil: a study with calibrated activity standards and metal-intensified histochemistry. Brain Res 660:34–49.

    Article  PubMed  CAS  Google Scholar 

  • Guastavino J-M, Sotelo C, Damez-Kinselle I (1990) Hot-foot murine mutation: behavioral effects and neuroanatomical alterations. Brain Res 523:199–210.

    Article  PubMed  CAS  Google Scholar 

  • Hack I, Bancila M, Loulier K, Carroll P, Cremer H (2002) Reelin is a detachment signal in tangential chain-migration during postnatal neruogenesis. Nature Neurosci 5:939–945.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, Fitzhugh W, Kusumi K, Russell LB, Mueller KL, Van Burkel V, Birren BW, Krugiyak L, Lander EE (1996) Disruption of the nuclear hormone receptor ROR in staggerer mice. Nature 379:736–739.

    Article  PubMed  CAS  Google Scholar 

  • Heckroth JA (1994) Quantitative morphological analysis of the cerebellar nuclei in normal and Lurcher mutant mice. I. Morphology and cell number. J Comp Neurol 343:173–182.

    Article  PubMed  CAS  Google Scholar 

  • Heckroth JA, Eisenman LM (1991) Olivary morphology and olivocerebellar atrophy in adult Lurcher mutant mice. J Comp Neurol 312:641–651.

    Article  PubMed  CAS  Google Scholar 

  • Heckroth JA, Goldowitz D, Eisenman LM (1989) Purkinje cell reduction in the reeler mutant mouse: a quantitative immunohistochemical study. J Comp Neurol 279:546–555.

    Article  PubMed  CAS  Google Scholar 

  • Herrup K (1983) Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. Dev Brain Res 11:267–274.

    Article  Google Scholar 

  • Herrup K, Mullen RJ (1979) Regional variation and absence of large neurons in the cerebellum of the staggerer mouse. Brain Res 172:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y, Aizawa S, Mishina M (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81:245–252.

    Article  PubMed  CAS  Google Scholar 

  • Kluin KK, Gilman S, Markel DS, Koeppe RA, Rosenthal G, Junck L (1988) Speech disorders in olivopontocerebellar atrophy correlate with positron emission tomography findings. Ann Neurol 23:547–554.

    Article  PubMed  CAS  Google Scholar 

  • Krémarik P, Strazielle C, Lalonde R (1998) Regional brain variations of cytochrome oxidase activity and motor coordination in hot-foot mutant mice. Eur J Neurosci 10:2802–2809.

    Article  PubMed  Google Scholar 

  • Lalonde R, Strazielle C (1999) Motor performance of spontaneous murine mutations with cerebellar atrophy. In:W Crusio, R Gerlai (Eds) Handbook of molecular-genetic techniques for brain and behavior research (Techniques in the Behavioral and Neural Sciences, vol 13). Amsterdam: Elsevier, pp 627–637.

    Google Scholar 

  • Lalonde R, Bensoula AN, Filali M (1995) Rotorod sensorimotor learning in cerebellar mutant mice. Neurosci Res 22:423–426.

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Botez MI, Joyal CC, M. Caumartin M (1992) Motor deficits in Lurcher mutant mice. Physiol Behav 51:523–525.

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Filali M, Bensoula AN, Lestienne F (1996) Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem 65:113–120.

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Hayzoun K, Derer M, Mariani J, Strazielle C (2004) Neurobehavioral evaluation of Relnrl mutant mice: correlations with cytochrome oxidase activity. Neurosci Res 49:297–305.

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Hayzoun K, Selimi F, Mariani J, Strazielle C (2003) Motor coordination in mice with hot-foot, Lurcher, and double mutations of the Grid2 gene encoding the delta-2 excitatory amino acid receptor. Physiol Behav 80:333–339.

    Article  PubMed  CAS  Google Scholar 

  • Lalouette A, Guénet J-L, Vriz S (1998) Hot-foot mutations affect the δ2 glutamate receptor gene and are allelic to Lurcher. Genomics 50:9–13.

    Article  PubMed  CAS  Google Scholar 

  • Lalouette A, Lohof A, Sotelo C, Guénet J, Mariani J (2001) Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 105:443–455.

    Article  PubMed  CAS  Google Scholar 

  • Landis DMD, Sidman RL (1978) Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol 179:831–864.

    Article  PubMed  CAS  Google Scholar 

  • Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen OP(1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17:834–842.

    PubMed  CAS  Google Scholar 

  • Mariani J (1982) Extent of multiple innervation of Purkinje cells by climbing fibers in the olivocerebellar system of weaver, reeler and staggerer mutant mice. J Neurobiol 13:119–126.

    Article  PubMed  CAS  Google Scholar 

  • Mariani J, Crepel F, Mikoshiba K, Changeux J-P, Sotelo C (1977) Anatomical, physiological and biochemical studies of the cerebellum fromreeler mutant mouse. Phil Trans Roy Soc London (Biol) 281:1–28.

    CAS  Google Scholar 

  • Matsuda S, Yuzaki M (2002) Mutation in hotfoot-4J mice results in retention of δ2 glutamate receptors in ER. Eur J Neurosci 16:1507–1516.

    Article  PubMed  Google Scholar 

  • Nakagawa S, Watanabe M, Inoue Y (1997) Prominent expression of nuclear hormone receptor RORα in Purkinje cells from early development. Neurosci Res 28:177–184.

    Article  PubMed  CAS  Google Scholar 

  • Resibois A, Cuvelier L, Goffinet AM (1997) Abnormalities in the cerebellum and brainstem in homozygous Lurcher mice. Neuroscience 80:175–190.

    Article  PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S, Herrup K (1981) Quantitative examination of the deep cerebellar nuclei in the staggerer mutant mouse. Brain Res 215:49–59.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal G, Gilman S, Koeppe RA, Kluin KJ, Markel DS, Junck L, Gebarski SS (1988) Motor dysfunction in olivopontocerebellar atrophy is related to cerebral metabolic rate studies with positron emission tomography. Ann Neurol 24:414–419.

    Article  PubMed  CAS  Google Scholar 

  • Sashihara S, Felts PA, Waxman SG, Matsui T (1996) Orphan nuclear receptorROR gene: isoform-specific spatiotemporal expression during postnatal development of brain. Mol Brain Res 42:109–117.

    Article  PubMed  CAS  Google Scholar 

  • Selimi F, Lohof AM, Heitz S, Lalouette A, Jarvis CI, Bailly Y, Mariani J (2003) Lurcher GRID2-induced death and depolarization can be dissociated in cerebellar Purkinje cells. Neuron 37:813–819.

    Article  PubMed  CAS  Google Scholar 

  • Shojaeian H, Delhaye-Bouchaud N, Mariani J (1985a) Decreased number of cells in the inferior olivary nucleus of the developing staggerer mouse. Dev Brain Res 21:141–146.

    Article  Google Scholar 

  • Shojaeian H, Delhaye-Bouchaud N, Mariani J (1985b) Neuronal death and synapse elimination in the olivocerebellar system. II. Cell counts in the inferior olive of adult X-irradiated rats andweaver and reeler mice. J Comp Neurol 232:309–318.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C (1975) Dendritic abnormalities of Purkinje cells in the cerebellum of neurologic mutant mice (weaver and staggerer). In: G.W. Kreutzberg (Ed.) Physiology and pathology of dendrite (Advances in Neurology). New York: Raven Press, pp 335–351.

    Google Scholar 

  • Stanfield BB, Cowan WM (1979) The morphology of the hippocampus and dentate gyrus in normal and reeler mutant mice. J Comp Neurol 185:393–422.

    Article  PubMed  CAS  Google Scholar 

  • Steinmayr M, André E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, Daniel H, Crépel F, Mariani J, Sotelo C, Becker-André M (1998) Staggerer phenotype in retinoid-related orphan receptor α-deficient mice. Proc Natl Acad Sci USA 95:3960–3965.

    Article  PubMed  CAS  Google Scholar 

  • Strazielle C, Krémarik P, Ghersi-Egea J-F, Lalonde R (1998) Regional brain variations of cytochrome oxidase activity and motor coordination in Lurcher mutant mice. Exp Brain Res 121:35–45.

    Article  PubMed  CAS  Google Scholar 

  • Strazielle C, Hayzoun K, Derer M, Mariani J, Lalonde R (2005) Regional brain variations of cytochrome oxidase activity in Relnrl mutant mice. Synapse (submitted).

    Google Scholar 

  • Terashima T, Inoue K, Inoue Y, Yokoyama M, Mikoshiba K (1986) Observations on the cerebellum of normalreeler mutant mouse chimera. J Comp Neurol 252:264–278.

    Article  PubMed  CAS  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J. (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701.

    Article  PubMed  CAS  Google Scholar 

  • Thullier F, Lalonde R, Cousin X, Lestienne F (1997) Neurobehavioral evaluation of Lurcher mutant mice during ontogeny. Dev Brain Res 100:22–28.

    Article  CAS  Google Scholar 

  • Vogel MW, McInnes M, Zanjani HS, Herrup K (1991) Cerebellar Purkinje cells provide target support over a limited spatial range: evidence from Lurcher chimeric mice. Dev Brain Res 64:87–94.

    Article  CAS  Google Scholar 

  • Wollmuth L, Kuner T, Jatzke C, Seeburg PH, Heintz N, Zuo J (2000) The Lurcher mutation identifies δ2 as an AMPA/kainate receptor-like channel that is potentiated by Ca2+. J Neurosci 20:5973–5980.

    PubMed  CAS  Google Scholar 

  • Wong-Riley MTT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101.

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, De Jager Pl, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mutant mice caused by mutation in the delta 2 glutamate receptor gene. Nature 388:679–673.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Lalonde, R., Strazielle, C. (2006). Motor Performance and Regional Brain Metabolism of Four Spontaneous Murine Mutations with Degeneration of the Cerebellar Cortex. In: Latash, M.L., Lestienne, F. (eds) Motor Control and Learning. Springer, Boston, MA. https://doi.org/10.1007/0-387-28287-4_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-28287-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25390-9

  • Online ISBN: 978-0-387-28287-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics