Advertisement

Influenza A Virus M2 Protein: Proton Selectivity of the Ion Channel, Cytotoxicity, and a Hypothesis on Peripheral Raft Association and Virus Budding

  • Cornelia Schroeder
  • Tse-I Lin
Part of the Protein Reviews book series (PRON, volume 1)

Abstract

The influenza A virus M2 protein, the prototype viral ion channel, mediates passage through low-pH compartments during viral entry and maturation. Its proton channel activity is essential for virus uncoating and in certain cases for the maturation of viral hemagglutinin (HA). A fluorimetric assay of ion translocation by membrane-reconstituted M2 disclosed the nature of the conducted ions, protons, and allowed the determination of an average unitary current in the attoampere range. Upon hyperexpression in heterologous systems, M2 is cytotoxic in correlation to pH gradients at the cytoplasmic membrane. An M2 mutant with relaxed cation selectivity proved significantly more cytotoxic and was exploited as a conditional-lethal transgene. M2 has an additional function, not inhibited by channel blockers, as a cofactor in virus budding where it interacts with M1 to determine virus morphology—spherical or filamentous. The M2 protein has recently been shown to bind cholesterol, but cholesterol appeared nonessential for ion channel activity. The M2 endodomain contains a cholesterol-binding motif, which also occurs in HIV gp41. We propose that M2 is targeted to the raft periphery enabling it to co-locate with HA and NA during apical transport. In a new model of influenza virus morphogenesis M2 may cluster or merge separate rafts into viral envelope and act as a fission (pinching-off) factor during virus budding.

Keywords

Human Immunodeficiency Virus Type Influenza Virus Insect Cell Proton Translocation Interfacial Hydrophobicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, S.N., Brown, D.A. and London, E. (1997). On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: Physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10944–10953.PubMedCrossRefGoogle Scholar
  2. Asano, K., and Asano, A. (1988). Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai Virus) Possible implication in the fusion reaction. Biochemistry 27, 1321–1329.PubMedCrossRefGoogle Scholar
  3. Barman, S., Ali, A. Hui, E.K., Adhikary, L. and Nayak, D.P. (2001). Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses. Virus Res. 77, 61–69.PubMedCrossRefGoogle Scholar
  4. Briggs, J.A.G., Wilk, T. and Fuller, S.D. (2003). Do lipid rafts mediate virus assembly and pseudotyping? J. Gen. Virol. 84, 757–768.PubMedCrossRefGoogle Scholar
  5. Bron, R., Kendal, A.P., Klenk, H.D. and Wilschut, J. (1993). Role of the M2 protein in influenza virus membrane fusion: Effects of amantadine and monensin on fusion kinetics. Virology 195, 808–811.PubMedCrossRefGoogle Scholar
  6. Brown, D.A. and London, E. (1998). Functions of lipid rafts in biological membranes. Annu. Rev. Cell. Dev. Biol. 14, 111–136.PubMedCrossRefGoogle Scholar
  7. Chizhmakov, I.V., Geraghty, F.M., Ogden, D.C., Hayhurst, A., Antoniou, M. and Hay, A.J. (1996). Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukemia cells. J. Physiol. 494, 329–336.PubMedGoogle Scholar
  8. Ciampor, F., Bayley, P.M., Nermut, M.V., Hirst, E.M.A., Sugrue, R.J. and Hay, A.J. (1992a). Evidence that the amantadine-induced, M2-mediated conversion of influenza A virus haemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment. Virology 188, 14–24.PubMedCrossRefGoogle Scholar
  9. Ciampor, F., Thompson, C.A. and Hay, A.J. (1992b). Regulation of pH by the M2 protein of influenza A viruses. Virus Res. 22, 247–258.PubMedCrossRefGoogle Scholar
  10. Cleverley, D.Z., Geller, H.M. and Lenard, J. (1997). Characterization of cholesterol-free insect cells infectible by baculoviruses: Effects of cholesterol on VSV fusion and infectivity and on cytotoxicity induced by influenza M2 protein. Exp. Cell Res. 233, 288–296.PubMedCrossRefGoogle Scholar
  11. Collawn, J.F., Stangel, M., Kuhn, L.A., Esekogwu, V., Jing, S., Trowbridge, I.S. et al. (1990). Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63, 1061–1072.PubMedCrossRefGoogle Scholar
  12. Coxey, R.A., Pentchev, P.G., Campbell, G. and Blanchette-Mackie, E.J. (1993). Differential accumulation of cholesterol in Golgi compartments of normal and Niemann-Pick type C fibroblasts incubated with LDL: A cytochemical freeze-fracture study. J. Lipid Res. 34, 1165–1176.PubMedGoogle Scholar
  13. Dencher, N.A., Burghaus, P.A. and Grzesiek, S. (1986). Determination of the net proton-hydroxide ion permeability across vesicular lipid bilayers and membrane proteins by optical probes. Meth. Enzymol. 127, 746–760.PubMedCrossRefGoogle Scholar
  14. Fiedler, K., Kobayashi, T., Kurzchalia, T.V. and Simons, K. (1993). Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry 32, 6365–6373.PubMedCrossRefGoogle Scholar
  15. Fischer, W.B. and Sansom, M.S.P. (2002). Viral ion channels: Structure and function. Biochim. Biophys. Acta 1561, 27–45.PubMedCrossRefGoogle Scholar
  16. Garoff, H., Hewson, R. and Opstelten, D.E. (1998). Virus maturation by budding. Microbiol. Molec. Biol. Revs. 62, 1171–1190.Google Scholar
  17. Gómez-Puertas, P., Albo, C., Pérez-Pastrana, E., Vivo, A. and Portela, A. (2000). Influenza virus matrix protein is the major driving force in virus budding. J. Virol. 74, 11538–11547.PubMedCrossRefGoogle Scholar
  18. Guinea, R., and Carrasco, L. (1994). Influenza virus M2 protein modifies membrane permeability in E coli cells. FEBS Lett. 343, 242–246.PubMedCrossRefGoogle Scholar
  19. Harder, T., Scheiffele, P., Verkade, P. and Simons, K. (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942.PubMedCrossRefGoogle Scholar
  20. Haugland, R.P. (1999). Fluorescent Na+ and K+ indicators (Chapter 24). In Handbook of Fluorescent Probes and Research Chemicals, 7th edn. (CD ROM). Molecular Probes, Inc., Eugene, pp. 572–577.Google Scholar
  21. Hay, A.J. (1992). The action of adamantanamines against influenza A viruses: Inhibition of the M2 ion channel protein. Seminars Virol. 3, 21–30.Google Scholar
  22. He, Z., S. Feng, Tong, Q., Hilgemann, D.W. and Philipson, K.D. (2000). Interaction of PIP(2) with the XIP region of the cardiac Na/Ca exchanger. Am. J. Physiol. Cell. Physiol. 278, C661–C666.PubMedGoogle Scholar
  23. Holsinger, L.J., Shaughnessy, M.A., Micko, A., Pinto, L.H. and Lamb, R.A. (1995). Analysis of posttranslational modifications of the influenza virus M2 protein. J. Virol. 69, 1219–1225.PubMedGoogle Scholar
  24. Hughey, P.G., Compans, R.W., Zebedee, S.L., and Lamb, R.A. (1992). Expression of the influenza A virus M2 protein is restricted to apical surfaces of polarized epithelial cells. J. Virol. 66, 5542–5552.PubMedGoogle Scholar
  25. Hughey, P.G., Roberts, P.C., Holsinger, L.J., Zebedee, S.L., Lamb, R.A., and Compans, R.W. (1995). Effects of antibody to the influenza A virus M2 protein on M2 surface expression and virus assembly. Virology 212, 411–421.PubMedCrossRefGoogle Scholar
  26. Huttner, W.B. and Zimmerberg, J. (2001). Implications of lipid microdomains for membrane curvature, budding and fission. Curr. Opin. Cell Biol. 13, 478–484.PubMedCrossRefGoogle Scholar
  27. Jin, H., Leser, G.P., Zhang, J. and Lamb, R.A. (1997). Influenza hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J. 16, 1236–1247.PubMedCrossRefGoogle Scholar
  28. Jin, H., K. Subbarao, Bagal, S., Leser, G.P., Murphy, B.R. and Lamb, R.A. (1996). Palmitylation of the influenza virus hemagglutinin (H3) is not essential for virus assembly or infectivity. J. Virol. 70, 1406–1414.PubMedGoogle Scholar
  29. Kato, N., and Eggers, H.J. (1969). Inhibition of uncoating of fowl plague virus by 1-adamantanamine hydrochloride. Virology 37, 632–641.PubMedCrossRefGoogle Scholar
  30. Keller, P., and Simons, K. (1998). Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol. 140, 1357–1367.PubMedCrossRefGoogle Scholar
  31. Kochendorfer, G.G., Salom, D., Lear, J.D., Wilk-Orescen, R., Kent, S.B.H., and DeGrado, W.F. (1999). Total synthesis of the integral membrane protein influenza A virus M2: Role of its C-terminal domain in tetramer assembly. Biochemistry 38, 11905–11913.CrossRefGoogle Scholar
  32. Kundu, A., Avalos, R.T., Sanderson, C.M., and Nayak, D.P. (1996). Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J. Virol. 70, 6508–6515.PubMedGoogle Scholar
  33. Kurtz, S., Luo, G., Hahnenberger, K.M., Brooks, C., Gecha, O., Ingalls, K. et al. (1995). Growth impairment resulting from expression of influenza virus M2 protein in Saccharomyces cerevisiae: Identification of a novel inhibitor of influenza virus. Antimicrob. Agents Chemother. 39, 2204–2209.PubMedGoogle Scholar
  34. Kurzchalia, T.V., Dupree, P., Parton, R.G., Kellner, R., Virta, H., Lehnert, M. et al. (1992). VIP21 a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J. Cell Biol. 118, 1003–1014.PubMedCrossRefGoogle Scholar
  35. Kyte, J. and Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.PubMedCrossRefGoogle Scholar
  36. Lamb, R.A. and Krug, R.M. (1996). Orthomyxoviridae: The viruses and their replication. In B.N. Fields, D.M. Knipe, P.M. Howley, R.M. Chanock, J.L. Melnick, T.P. Monath, et al. (eds.), Fields Virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia, pp. 1353–1395.Google Scholar
  37. Lamb, R.A. and Pinto, L.A. (1997). Do vpu and vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology 229, 1–11.PubMedCrossRefGoogle Scholar
  38. Latham, T. and Galarza, J.M. (2001). Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J. Virol. 75, 6154–6165.PubMedCrossRefGoogle Scholar
  39. Li, H. and Papadopoulos, V. (1998). Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139, 4991–4997.PubMedCrossRefGoogle Scholar
  40. Li, H., Z. Yao, Degenhardt, B., Teper, G. and Papadopoulos, V. (2001). Cholesterol binding at the cholesterol recognition/ interaction amino acid consensus (CRAC) of the peripheral-type benyodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc. Natl. Acad. Sci. USA 98, 1267–1272.PubMedCrossRefGoogle Scholar
  41. Lin, T., and Schroeder, C. (2001). Definitive assignment of proton selectivity and attoampere unitary current to the M2 ion channel protein of influenza A virus. J. Virol. 75, 3647–3656.PubMedCrossRefGoogle Scholar
  42. Lin, T., Heider, H. and Schroeder, C. (1997). Different modes of inhibition by adamantane amine derivatives and natural polyamines of the functionally reconstituted influenza virus M2 proton channel protein. J. Gen. Virol. 78, 767–774.PubMedGoogle Scholar
  43. Liu, Y., Casey, L. and Pike, L.J. (1998). Compartmentalization of phosphatidylinositol 4,5-bisphosphate in low-density membrane domains in the absence of caveolin. Biochem. Biophys. Res. Commun. 245, 684–690.PubMedCrossRefGoogle Scholar
  44. Lodish, H., Beerk, H., Matsudaira, P., Baltimore, D., Zipurski, L. and Darnell, J. (1996). Molecular Cell Biology 3.0, CD-ROM. W.H. Freeman and Company, New York.Google Scholar
  45. Lohmeyer, J., Talens, L.T. and Klenk H.D. (1979). Biosynthesis of influenza virus envelope in abortive infection. J. Gen. Virol. 42, 73–88.PubMedGoogle Scholar
  46. Manié, S.N., Debreyne, S., Vincent, S. and Gerlier, D. (2000). Measles virus structural components are enriched into lipid raft microdomains: A potential cellular location for virus assembly. J. Virol. 74, 305–311.PubMedCrossRefGoogle Scholar
  47. Melkonian, K.A., Ostermeyer, A.G., Chen, J.Z., Roth, M.G. and Brown, D.A. (1999). Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. J. Biol. Chem. 274, 3910–3917.PubMedCrossRefGoogle Scholar
  48. Monier, S., D.J. Dietzen, W.R. Hastings, D.M. Lublin, and T.V. Kurzchalia (1996). Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett. 388, 143–149.PubMedCrossRefGoogle Scholar
  49. Mould, J.A., Drury, J.E., Frings, S.M., Kaupp, U.B., Pekosz, E., Lamb, R.A. et al. (2000). Permeation and activation of the M2 ion channel of influenza A virus. J. Biol. Chem. 275, 31038–31050.PubMedCrossRefGoogle Scholar
  50. Mould, J.A., Paterson, R.G., Takeda, M., Ohigashi, Y., Venkataraman, P., Lamb, R.A., et al. (2003). Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. Dev. Cell 5, 175–184.PubMedCrossRefGoogle Scholar
  51. Muñoz-Barroso, I., Salzwedel, K., Hunter, E., and Blumenthal, R. (1999). Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type I envelope glycoprotein-mediated membrane fusion. J. Virol. 73, 6089–6092.PubMedGoogle Scholar
  52. Murata, M., Peränen, J., Schreiner, R., Wieland, F., Kurzchalia, T.V., and Simons, K. (1995). VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. USA 92, 10339–10343.PubMedCrossRefGoogle Scholar
  53. Nayak, D.P. and Barman, S. (2002). Role of lipid rafts in virus assembly and budding. Advances in Virus Res. 58, 1–28.Google Scholar
  54. Ogden, D., I.V. Chizhmakov, F.M. Geraghty, and Hay, A.J. (1999). Virus ion channels. Meth. Enzymol. 294, 490–506.PubMedGoogle Scholar
  55. Ohuchi, M., A. Cramer, M. Vey, R. Ohuchi, M. Garten, and H.D. Klenk, (1994). Rescue of vector-expressed fowl plague virus hemagglutinin in biologically active form by acidotropic agents and coexpressed M2 protein. J. Virol. 68, 920–926.PubMedGoogle Scholar
  56. Paterson, R.G., Takeda, M., Ohigashi, Y., Pinto, L.H. and Lamb, R.A. (2003). Influenza B virus BM2 protein is an oligomeric integral membrane protein expressed at the cell surface. Virology 306, 7–17.PubMedCrossRefGoogle Scholar
  57. Pepinsky, R.B., Zheng, C., Wen, D., Rayhorn, P., Baker, D.P., Williams, K.P. et al. (1998). Identification of a palmitic acid-modified form of human sonic hedgehog. J. Biol. Chem. 273, 14037–14045.PubMedCrossRefGoogle Scholar
  58. Pickl, W.F., Pimentel-Muiños, F.X., and Seed, B. (2001). Lipid rafts and pseudotyping. J. Virol. 75, 7175–7183.PubMedCrossRefGoogle Scholar
  59. Pinto, L.H., L.J. Holsinger, and R.A. Lamb, (1992). Influenza virus M2 protein has ion channel activity. Cell 69, 517–528.PubMedCrossRefGoogle Scholar
  60. Porter, J.A., Young, K.E., and Beachy, P.A. (1996). Cholesterol modification of hedgehog signaling domains in animal development. Science 274, 255–259.PubMedCrossRefGoogle Scholar
  61. Ren, J., S. Lew, Wang, Z., and London, E. (1997). Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by cholesterol concentration. Biochemistry 36, 10213–10220.PubMedCrossRefGoogle Scholar
  62. Roberts, P.C. and Compans, R.C. (1998). Host cell dependence of viral morphology. Proc. Natl. Acad. Sci. USA 95, 5746–5751.PubMedCrossRefGoogle Scholar
  63. Roberts, P.C., Lamb, R.A., and Compans, R.W. (1998). The M1 and M2 proteins of influenza virus are important determinants in filamentous particle formation. Virology 240, 127–137.PubMedCrossRefGoogle Scholar
  64. Sáez-Cirión, A., Nir, S., Lorizate, M., Agirre, A., Cruz, A., Pérez-Gil, J. et al. (2002). Sphingomyelin and cholesterol promote HIV gp41 pretransmembrane sequence surface aggregation and membrane restructuring. J. Biol. Chem. 277, 21776–21785.PubMedCrossRefGoogle Scholar
  65. Sakaguchi, T., Leser, G.P., and Lamb, R.A. (1996). The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus. J. Cell Biol. 133, 733–747.PubMedCrossRefGoogle Scholar
  66. Sakaguchi, T., Tu, Q., Pinto, L.H., and Lamb, R.A. (1997). The active oligomeric state of the minimalistic influenza virus M2 ion channel is a tetramer. Proc. Natl. Acad. Sci. USA 94, 5000–5005.PubMedCrossRefGoogle Scholar
  67. Saldanha, J.W., Czabotar, P.E., Hay, A.J., and Taylor, W.R. (2002). A model for the cytoplasmic domain of the influenza A virus M2 channel by analogy to the HIV-1 vpu protein. Protein Peptide Lett. 9, 495–502.CrossRefGoogle Scholar
  68. Salom, D., Hill, B.R., Lear, J.D., and DeGrado, W.F. (2000). pH-dependent tetramerization and amantadine binding of the transmembrane helix of M2 from the influenza A virus. Biochemistry 39, 14160–14170.PubMedCrossRefGoogle Scholar
  69. Salzwedel, K., West, J.T. and Hunter, E. (1999). A conserved tryptophae-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J. Virol. 73, 2469–2480.PubMedGoogle Scholar
  70. Sanderson, C.M., Avalos, R., Kundu, A., and Nayak, D.P. (1995). Interaction of Sendai viral F, HN and M proteins with host cytoskeletal and lipid components in Sendai virus-infected BHK cells. Virology 209, 701–707.PubMedCrossRefGoogle Scholar
  71. Scheiffele, P., Rietveld, A., Wilk, T., and Simons, K. (1999). Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044.PubMedCrossRefGoogle Scholar
  72. Scheiffele, P., Roth, M.G., and Simons, K. (1997). Interaction of influenza virus haemagglutinin with sphingolipidcholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501–5508.PubMedCrossRefGoogle Scholar
  73. Schmidt, M.F.G., (1982). Acylation of viral spike glycoproteins: A feature of enveloped RNA viruses. Virology 116, 327–338.PubMedCrossRefGoogle Scholar
  74. Schroeder, C., Ford, C.F., Wharton, S.A., and Hay, A.J. (1994a). Functional reconstitution in lipid vesicles of influenza virus M2 protein expressed by baculovirus: evidence for proton transfer activity. J. Gen. Virol. 75, 3477–3484.PubMedGoogle Scholar
  75. Schroeder, C., Heider, H., Möncke-Buchner, E., and Lin, T. (2004). The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur. Biophys. J. DOI: 10.1007/s00249-004-0424-1.Google Scholar
  76. Schroeder, R., London, E. and Brown, D. (1994b). Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behaviour. Proc. Natl. Acad. Sci. USA 91, 12130–12134.PubMedCrossRefGoogle Scholar
  77. Schroeder, R.J., Ahmed, S.N., Zhu, Y., London, E. and Brown, D.A. (1998). Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J. Biol. Chem. 273, 1150–1157.PubMedCrossRefGoogle Scholar
  78. Skibbens, J.E., Roth, M.G., and Matlin, K.S. (1989). Differential extractability of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and nonpolar fibroblasts. J. Cell Biol. 108, 821–832.PubMedCrossRefGoogle Scholar
  79. Smejkal, G.B., and Hoff, H.F. (1994). Filipin staining of lipoproteins in polyacrylamide gels: Sensitivity and photobleaching of the fluorophore and its use in a double staining method. Electrophoresis 15, 922–925.PubMedCrossRefGoogle Scholar
  80. Smith, C.A., Graham, C.M., Mathers, K., Skinner, A., Hay, A.J., Schroeder, C. et al. (2002). Conditional ablation of T-cell development by a novel viral ion channel transgene. Immunology 105, 306–313.PubMedCrossRefGoogle Scholar
  81. Suárez, T., Gallaher, W.R., Agirre, A., Goñi, F.M., and Nieva, J.L. (2000). Membrane interface-interacting sequences within the ectodomain of the human immunodeficiency virus type 1 envelope glycoprotein: Putative role during viral fusion. J. Virol. 74, 8038–8047.PubMedCrossRefGoogle Scholar
  82. Sugrue, R.J. and Hay, A.J. (1991). Structural characteristics of the M2 protein of influenza A viruses: Evidence that it forms a tetrameric channel. Virology 180, 617–624.PubMedCrossRefGoogle Scholar
  83. Sugrue, R.J., Bahadur, G., Zambon, M.C., Hall-Smith, M., Douglas, A.R., and Hay, A.J. (1990b). Specific structural alteration of the influenza haemagglutinin by amantadine. EMBO J. 9, 3469–3476.PubMedGoogle Scholar
  84. Sugrue, R.J., Belshe, R.B., and Hay, A.J. (1990a). Palmitoylation of the influenza A virus M2 protein. Virology 179, 51–56.PubMedCrossRefGoogle Scholar
  85. Suumalainen, M. (2002). Lipid rafts and assembly of enveloped viruses. Traffic 3, 705–709.CrossRefGoogle Scholar
  86. Takeda, M., Pekosz, A., Shuck, K., Pinto, L.H., and Lamb, R.A. (2002). Influenza A virus M2 ion channel activity is essential for efficient replication in tissue culture. J. Virol. 76, 1391–1399.PubMedGoogle Scholar
  87. Takeuchi, K. and Lamb, R.A. (1994). Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J. Virol. 68, 911–919.PubMedGoogle Scholar
  88. Tang, Y., Zaitseva, F., Lamb, R.A., and Pinto, L.H. (2002). The gate of the influenza virus M2 protein channel is formed by a single tryptophan residue. J. Biol. Chem. 277, 39880–39886.PubMedCrossRefGoogle Scholar
  89. Tatulian, S.A. and Tammm, L.K. (2000). Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Biochemistry 39, 496–507.PubMedCrossRefGoogle Scholar
  90. Veit, M., Klenk, H.D., Rott, R., and Kendal, A. (1991). The M2 protein of influenza A virus is acylated. J. Gen. Virol. 72, 1461–1465.PubMedGoogle Scholar
  91. Vincent, N., Genin, C., and Malvoisin, E. (2002). Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups. Biochem. Biophys. Acta 1567, 157–164.PubMedCrossRefGoogle Scholar
  92. Wang, C., Lamb, R.A., and Pinto, L.H. (1995). Activation of the M2 ion channel of influenza virus, a role for the transmembrane domain histidine residue. Biophys. J. 69, 1363–1371.PubMedGoogle Scholar
  93. White, S.H. and Wimley, W.C. (1999). Membrane protein folding and stability: physical principles Annu. Rev. Biophys. Biomol. Struct. 28, 319–365.CrossRefGoogle Scholar
  94. Zebedee, S.L. and Lamb, R.A. (1988). Influenza A virus M2 protein: Monoclonal antibody restriction of virus growth and detection of M2 in virions. J. Virol. 62, 2762–2772.PubMedGoogle Scholar
  95. Zebedee, S.L. and Lamb, R.A. (1989). Growth restriction of influenza A virus by M2 protein antibody is genetically linked to the M1 protein. Proc. Natl. Acad. Sci. USA 86, 1061–1065.PubMedCrossRefGoogle Scholar
  96. Zebedee, S.L., Richardson, C.D., and Lamb, R.A. (1985). Characterization of the influenza virus M2 integral membrane protein and expression at the infected-cell surface from cloned cDNA. J. Virol. 56, 502–511.PubMedGoogle Scholar
  97. Zhang, J., Pekosz, A., and Lamb, R.A. (2000). Influenza virus assembly and lipid raft microdomains: A role for the cytoplasmic tails of the spike glycoproteins. J. Virol. 74, 4634–4644.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2005

Authors and Affiliations

  • Cornelia Schroeder
    • 1
  • Tse-I Lin
    • 2
  1. 1.Abteilung Virologie, Institut für Mikrobiologie und HygieneUniversitätskliniken Homburg/SaarGermany
  2. 2.Tibotec BVDVMechelenBelgium

Personalised recommendations