Advertisement

Interaction of HIV-1 Nef with Human CD4 and Lck

  • Dieter Willbold
Part of the Protein Reviews book series (PRON, volume 1)

Keywords

Human Immunodeficiency Virus Type Nuclear Magnetic Resonance Spectroscopy Equine Infectious Anemia Virus Nuclear Magnetic Resonance Structure Heteronuclear Single Quantum Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken, C., Konner, J., Landau, N.R., Lenburg, M.E., and Trono, D. (1994). Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 76: 853–864.PubMedCrossRefGoogle Scholar
  2. Aiken, C., Krause, L., Chen, Y.L., and Trono, D. (1996). Mutational analysis of HIV-1 Nef: identification of two mutants that are temperature-sensitive for CD4 downregulation. Virology 217, 293–300.PubMedCrossRefGoogle Scholar
  3. Anderson, S., Shugars, D.C., Swanstrom, R., and Garcia, J.V., (1993). Nef from primary isolates of human immunodeficiency virus type 1 suppresses surface CD4 expression in human and mouse T cells. J. Virol. 67, 4923–4931.PubMedGoogle Scholar
  4. Anderson, S.J., Lenburg, M., Landau, N.R., and Garcia, J.V. (1994). The cytoplasmic domain of CD4 is sufficient for its down-regulation from the cell surface by human immunodeficiency virus type 1 Nef [published erratum appears in J. Virol. 68(7): 4705. J. Virol. 68, 3092–3101.PubMedGoogle Scholar
  5. Arold, S., Franken, P., Strub, M.P., Hoh, F., Benichou, S., Benarous, R. et al. (1997). The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling. Structure 5, 1361–1372.PubMedCrossRefGoogle Scholar
  6. Arold, S., O’Brien, R., Franken, P., Strub, M.P., Hoh, F., Dumas, C. et al. (1998). RT loop flexibility enhances the specificity of Src family SH3 domains for HIV-1 Nef. Biochemistry 37, 14683–14691.PubMedCrossRefGoogle Scholar
  7. Arold, S.T. and Baur, A.S. (2001). Dynamic Nef and Nef dynamics: how structure could explain the complex activities of this small HIV protein. Trends Biochem. Sci. 26, 356–363.PubMedCrossRefGoogle Scholar
  8. Baur, A.S., Sass, G., Laffert, B., Willbold, D., Cheng Mayer, C., and Peterlin, B.M. (1997). The N-terminus of Nef from HIV-1/SIV associates with a protein complex containing Lck and a serine kinase. Immunity 6; 283–291.PubMedCrossRefGoogle Scholar
  9. Bayer, P., Kraft, M., Ejchart, A., Westendorp, M., Frank, R., and Rösch, P. (1995). Structural studies of HIV-1 Tat protein. J. Mol. Biol. 247, 529–535.PubMedCrossRefGoogle Scholar
  10. Benichou, S., Bomsel, M., Bodeus, M., Durand, H., Doute, M., Letourneur, F. et al. (1994). Physical interaction of the HIV-1 Nef protein with beta-COP, a component of non-clathrin-coated vesicles essential for membrane traffic. J. Biol. Chem. 269, 30073–30076.PubMedGoogle Scholar
  11. Benson, R.E., Sanfridson, A., Ottinger, J.S., Doyle, C., and Cullen, B.R. (1993). Downregulation of cell-surface CD4 expression by simian immunodeficiency virus Nef prevents viral super infection. J. Exp. Med. 177, 1561–1566.PubMedCrossRefGoogle Scholar
  12. Biddison, W.E., Rao, P.E., Talle, M.A., Goldstein, G., and Shaw, S. (1984). Possible involvement of the T4 molecule in T cell recognition of class II HLA antigens. Evidence from studies of CTL-target cell binding. Distinct epitopes on the T8 molecule are differentially involved in cytotoxic T cell function. J. Exp. Med. 159, 783–797.PubMedCrossRefGoogle Scholar
  13. Bresnahan, P.A., Yonemoto, W., Ferrell, S., Williams-Herman, D., Geleziunas, R., and Greene, W.C. (1998). A dileucine motif in HIV-1 Nef acts as an internalization signal for CD4 downregulation and binds the AP-1 clathrin adaptor. Curr. Biol. 8, 1235–1238.PubMedCrossRefGoogle Scholar
  14. Briese, L. and Willbold, D. (2003). Structure determination of human Lck unique and SH3 domains by nuclear magnetic resonance spectroscopy. BMC Struct. Biol. 3, 3.PubMedCrossRefGoogle Scholar
  15. Briese, L., Hoffmann, S., Friedrich, U., Biesinger, B., and Willbold, D. (2001). Sequence-specific 1H, 13C and 15N resonance assignments of lymphocyte specific kinase unique and SH3 domains. J. Biomol. NNR 19, 193–194.CrossRefGoogle Scholar
  16. Briese, L., Preusser, A., and Willbold, D. (2004). Determination of HIV-1 Nef binding site on human Lck unique and SH3 domains. Virology submitted.Google Scholar
  17. Carrera, A.C., Paradis, H., Borlado, L.R., Roberts, T.M., and Martinez, C. (1995). Lck unique domain influences Lck specificity and biological function. J. Biol. Chem. 270, 13385–3391.Google Scholar
  18. Chen, M.Y., Maldarelli, F., Karczewski, M.K., Willey, R.L., and Strebel, K. (1993). Human immunodeficiency virus type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain of CD4 contributes to Vpu sensitivity. J. Virol. 67, 3877–3884.PubMedGoogle Scholar
  19. Cicchetti, P., Mayer, B.J., Thiel, G., and Baltimore, D. (1992). Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 257, 803–806.PubMedCrossRefGoogle Scholar
  20. Collette, Y., Dutartre, H., Benziane, A., Romas, M., Benarous, R., Harris, M. et al. (1996). Physical and functional interaction of Nef with Lck. HIV-1 Nef-induced T-cell signaling defects. J. Biol. Chem. 271, 6333–6341.PubMedCrossRefGoogle Scholar
  21. Craig, H.M., Pandori, M.W., and Guatelli, J.C. (1998). Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Proc. Natl. Acad. Sci. USA 95, 11229–11234.PubMedCrossRefGoogle Scholar
  22. Craig, H.M., Reddy, T.R., Riggs, N.L., Dao, P.P., and Guatelli, J.C. (2000). Interactions of HIV-1 nef with the mu subunits of adaptor protein complexes 1, 2, and 3: role of the dileucine-based sorting motif. Virology 271, 9–17.PubMedCrossRefGoogle Scholar
  23. Cullen, B.R. (1994). The role of Nef in the replication cycle of the human and simian immunodeficiency viruses. Virology 205, 1–6.PubMedCrossRefGoogle Scholar
  24. Dalgeish, A.G., Beverly, P.C.L., Clapham, P.R., Crawford, D.H., Greaves, M.F., and Weiss, R.A. (1984). The CD4(T4)antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–767.CrossRefGoogle Scholar
  25. Engler, A., Stangler, T., and Willbold, D. (2001). Solution structure of human immunodeficiency virus type 1 Vpr(13–33) peptide in micelles. Eur. J. Biochem. 268, 389–395.PubMedCrossRefGoogle Scholar
  26. Engler, A., Stangler, T., and Willbold, D. (2002). Structure of human immunodeficiency virus type 1 Vpr(34–51) peptide in micelle containing aqueous solution. Eur. J. Biochem. 269, 3264–3269.PubMedCrossRefGoogle Scholar
  27. Fackler, O.T. and Baur, A.S. (2002). Live and let die: Nef functions beyond HIV replication. Immunity 16, 493–497.PubMedCrossRefGoogle Scholar
  28. Freund, J., R. Kellner, T. Houthaeve, and H.R. Kalbitzer. (1994a). Stability and proteolytic domains of Nef protein from human immunodeficiency virus (HIV) type 1. Eur. J. Biochem. 221, 811–189.PubMedCrossRefGoogle Scholar
  29. Freund, J., Kellner, R., Konvalinka, J., Wolber, V., Krausslich, H.G., and Kalbitzer, H.R. (1994b). A possible regulation of negative factor (Nef) activity of human immunodeficiency virus type 1 by the viral protease. Eur. J. Biochem. 223, 589–593.PubMedCrossRefGoogle Scholar
  30. Gallaher, W.R., Ball, J.M., Garry, R.F., Martin-Amedee, A.M., and Montelaro, R.C. (1995). A general model for the surface glycoproteins of HIV and other retroviruses. AIDS Res. Hum. Retroviruses 11, 191–202.PubMedGoogle Scholar
  31. Garcia, J.V. and Miller, A.D. (1991). Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature 350, 508–511.PubMedCrossRefGoogle Scholar
  32. Garcia, J.V., Alfano, J., and Miller, A.D. (1993). The negative effect of human immunodeficiency virus type 1 Nef on cell surface CD4 expression is not species specific and requires the cytoplasmic domain of CD4. J. Virol. 67, 1511–1516.PubMedGoogle Scholar
  33. Geyer, M., Munte, C.E., Schorr, J., Kellner, R., and Kalbitzer, H.R. (1999). Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. J. Mol. Biol. 289, 123–138.PubMedCrossRefGoogle Scholar
  34. Görlach, M., Wittekind, M., Beckman, R.A., Mueller, L., and Dreyfuss, G. (1992). Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. EMBO J. 11, 3289–3295.PubMedGoogle Scholar
  35. Gratton, S., Yao, X.J., Venkatesan, S., Cohen, E.A., and Sekaly, R.P. (1996). Molecular analysis of the cytoplasmic domain of CD4: overlapping but noncompetitive requirement for lck association and down-regulation by Nef. J. Immunol. 157, 3305–3311.PubMedGoogle Scholar
  36. Greenberg, M.E., Bronson, S., Lock, M., Neumann, M., Pavlakis, G.N., and Skowronski, J. (1997). Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation. EMBO J. 16, 6964–6976.PubMedCrossRefGoogle Scholar
  37. Greenway, A., Azad, A., Mills, J., and McPhee, D. (1996). Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity. J. Virol. 70, 6701–6708.PubMedGoogle Scholar
  38. Grzesiek, S., Bax, A., Clore, G.M., Gronenborn, A.M., Hu, J.S., Kaufman, J. et al. (1996a). The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Nat. Struct. Biol. 3, 340–435.PubMedCrossRefGoogle Scholar
  39. Grzesiek, S., Bax, A., Hu, J.S., Kaufman, J., Palmer, I., Stahl, S.J. et al. (1997). Refined solution structure and backbone dynamics of HIV-1 Nef. Protein Sci. 6, 1248–1263.PubMedGoogle Scholar
  40. Grzesiek, S., Stahl, S.J., Wingfield, P.T., and Bax, A. (1996b). The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry 35, 10256–10261.PubMedCrossRefGoogle Scholar
  41. Hanna, Z., Kay, D.G., Rebai, N., Guimond, A., Jothy, S., and Jolicoeur, P. (1998). Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95, 163–175.PubMedCrossRefGoogle Scholar
  42. Harris, M. (1999). HIV: a new role for Nef in the spread of HIV. Curr. Biol. 9, R459–R461.PubMedCrossRefGoogle Scholar
  43. Harris, M. and Coates, K. (1993). Identification of cellular proteins that bind to the human immunodeficiency virus type 1 nef gene product in vitro: a role for myristylation. J. Gen. Virol. 74, 1581–1589.PubMedCrossRefGoogle Scholar
  44. Hua, J., Blair, W., Truant, R., and Cullen, B.R. (1997). Identification of regions in HIV-1 Nef required for efficient downregulation of cell surface CD4. Virology 231, 231–238.PubMedCrossRefGoogle Scholar
  45. Huse, M., Eck, M.J., and Harrison, S.C. (1998). A Zn2+ ion links the cytoplasmic tail of CD4 and the N-terminal region of Lck. J. Biol. Chem. 273, 18729–18733.PubMedCrossRefGoogle Scholar
  46. Iafrate, A.J., Bronson, S. and Skowronski, J. (1997). Separable functions of Nef disrupt two aspects of T cell receptor machinery: CD4 expression and CD3 signaling. EMBO J. 16, 673–684.PubMedCrossRefGoogle Scholar
  47. Isakov, N. and Biesinger, B. (2000). Lck protein tyrosine kinase is a key regulator of T-cell activation and a target for signal intervention by Herpesvirus saimiri and other viral gene products. Eur. J. Biochem. 267, 3413–3421.PubMedCrossRefGoogle Scholar
  48. Klatzmann, D., Barre-Sinoussi, F., Nugeyre, M.T., Danquet, C., Vilmer, E., Griscelli, C. et al. (1984a). Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes. Science 225, 59–63.PubMedCrossRefGoogle Scholar
  49. Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T. et al. (1984b). T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312, 767–768.PubMedCrossRefGoogle Scholar
  50. Koradi, R., Billeter, M., and Wuthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–5, 29–32.PubMedCrossRefGoogle Scholar
  51. Lane, A.N., Kelly, G., Ramos, A., and Frenkiel, T.A. (2001). Determining binding sites in protein-nucleic acid complexes by cross-saturation. J. Biomol. NMR 21, 127–139.PubMedCrossRefGoogle Scholar
  52. Larson, S.M. and Davidson, A.R. (2000). The identification of conserved interactions within SH3 domain by alignment of sequences and structures. Protein Sci. 9, 2170–2180.PubMedCrossRefGoogle Scholar
  53. Lee, C.H., Leung, B., Lemmon, M.A., Zheng, J., Cowburn, D., Kuriyan, J. et al. (1995). A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. EMBO J. 14, 5006–5015.PubMedGoogle Scholar
  54. Lee, C.H., Saksela, K., Mirza, U.A., Chait, B.T., and Kuriyan, J. (1996). Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 85, 931–942.PubMedCrossRefGoogle Scholar
  55. Lin, R.S., Rodriguez, C., Veillette, A., and Lodish, H.F. (1998). Zinc is essential for binding of p56(lck) to CD4 and CD8alpha. J. Biol. Chem. 273, 32878–32882.PubMedCrossRefGoogle Scholar
  56. Lock, M., Greenberg, M.E., Iafrate, A.J., Swigut, T., Muench, J., Kirchhoff, F., et al. (1999). Two elements target SIV Nef to the AP-2 clathrin adaptor complex, but only one is required for the induction of CD4 endocytosis. EMBO J. 18, 2722–2733.PubMedCrossRefGoogle Scholar
  57. Lu, X., Yu, H., Liu, S.H., Brodsky, F.M., and Peterlin, B.M. (1998). Interactions between HIV1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity 8, 647–656.PubMedCrossRefGoogle Scholar
  58. Maddon, P.J., Molineaux, S.M., Maddon, D.E., Zimmerman, K.A., Godfrey, M., Alt, F.W., et al. (1987). Structure and expression of the human and mouse T4 genes. Proc. Natl. Acad. Sci. USA 84, 9155–9159.PubMedCrossRefGoogle Scholar
  59. Mariani, R. and Skowronski, J. (1993). CD4 down-regulation by nef alleles isolated from human immunodeficiency virus type 1-infected individuals. Proc. Natl. Acad. Sci. USA 90, 5549–5553.PubMedCrossRefGoogle Scholar
  60. Marsh, J. W. (1999). The numerous effector functions of Nef. Arch. Biochem. Biophys. 365: 192–198.PubMedCrossRefGoogle Scholar
  61. Metzger, A.U., Bayer, P., Willbold, D., Hoffmann, S., Frank, R.W., Goody, R.S. et al. (1997). The interaction of HIV-1 Tat(32–72) with its target RNA: a fluorescence and nuclear magnetic resonance study. Biochem Biophys. Res. Comm. 241, 31–36.PubMedCrossRefGoogle Scholar
  62. Metzger, A.U., Schindler, T., Willbold, D., Kraft, M., Steegborn, C., Volkmann, A. et al. (1996). Structural rearrangements on HIV-1 Tat (32–72) TAR complex formation. FEBS Lett. 384, 255–259.PubMedCrossRefGoogle Scholar
  63. Morellet, N., Bouaziz, S., Petitjean, P., and Roques, B.P. (2003). NMR structure of the HIV-1 regulatory protein VPR. J. Mol. Biol. 327, 215–227.PubMedCrossRefGoogle Scholar
  64. Mujeeb, A., Bishop, K., Peterlin, B.M., Turck, C., Parslow, T.G., and James, T.L. (1994). NMR structure of a biologically active peptide containing the RNA-binding domain of human immunodeficiency virus type 1 Tat. Proc. Natl. Acad. Sci. USA 91, 8248–8252.PubMedCrossRefGoogle Scholar
  65. Otting, G., Qian, Y.Q., Billeter, M., Müller, M., Affolter, M., Gehring, W.J. et al. (1990). Protein-DNA contacts in the structure of a homeodomain-DNA complex determined by nuclear magnetic resonance spectroscopy in solution. EMBO J. 9, 3085–3092.PubMedGoogle Scholar
  66. Piguet, V., Gu, F., Foti, M., Demaurex, N., Gruenberg, J., Carpentier, J.L. et al. (1999). Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Cell 97, 63–73.PubMedCrossRefGoogle Scholar
  67. Preusser, A., Briese, L., Baur, A.S., and Willbold, D. (2001). Direct in vitro binding of full-length human immunodeficiency virus type 1 Nef protein to CD4 cytoplasmic domain. J. Virol. 75, 3960–3964.PubMedCrossRefGoogle Scholar
  68. Preusser, A., Briese, L., and Willbold, D. (2002). Presence of a helix in human CD4 cytoplasmic domain promotes binding to HIV-1 Nef protein. Biochem Biophys. Res. Comm. 292, 734–740.PubMedCrossRefGoogle Scholar
  69. Ren, R., Mayer, B.J., Cicchetti, P., and Baltimore, D. (1993). Identification of a ten-amino acid proline-rich SH3 binding site. Science 259, 1157–1161.PubMedCrossRefGoogle Scholar
  70. Renkema, H.G. and Saksela, K. (2000). Interactions of HIV-1 NEF with cellular signal transducing proteins. Front. Biosci. 5, D268–D283.PubMedCrossRefGoogle Scholar
  71. Roques, B.P., Morellet, N., de Rocquigny, H., Déméné, H., Schueler, W., and Jullian, N. (1997). Structure, biological functions and inhibition of the HIV-1 proteins Vpr and NCp7. Biochimie 79, 673–680.PubMedCrossRefGoogle Scholar
  72. Rösch, P., Bayer, P., Ejchart, A., Frank, R., Gazit, A., Herrmann, F. et al. (1996). The structure of lentiviral tat proteins. In B. D. N. Rao and M. D. Kemple (eds), NMR as Structural Tool for Macromolecules: Current Status and Future Directions. Plenum Publishing Corporation, New York.Google Scholar
  73. Rossi, F., Gallina, A., and Milanesi, G. (1996). Nef-CD4 physical interaction sensed with the yeast two-hybrid system. Virology 217, 397–403.PubMedCrossRefGoogle Scholar
  74. Saksela, K. (1997). HIV-1 Nef and host cell protein kinases. Front. Biosci. 2, 606–618.Google Scholar
  75. Saksela, K., Cheng, G., and Baltimore, D. (1995). Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J. 14, 484–491.PubMedGoogle Scholar
  76. Salghetti, S., Mariani, R., and Skowronski, J. (1995). Human immunodeficiency virus type 1 Nef and p56lck protein-tyrosine kinase interact with a common element in CD4 cytoplasmic tail. Proc. Natl. Acad. Sci. USA 92, 349–353.PubMedCrossRefGoogle Scholar
  77. Sanfridson, A., Cullen, B.R., and Doyle, C. (1994). The simian immunodeficiency virus Nef protein promotes degradation of CD4 in human T cells. J. Biol. Chem. 269, 3917–3920.PubMedGoogle Scholar
  78. Schüler, W., Wecker, K., de Rocquigny, H., Baudat, Y., Sire, J., and Roques, B.P. (1999). NMR structure of the (52–96) C-terminal domain of the HIV-1 regulatory protein Vpr: molecular insights into its biological functions. J. Mol. Biol. 285, 2105–2117.PubMedCrossRefGoogle Scholar
  79. Schweimer, K., Hoffmann, S., Bauer, F., Friedrich, U., Kardinal, C., Feller, S.M. et al. (2002). Structural investigation of the binding of a herpesviral protein to the SH3 domain of tyrosine kinase Lck. Biochemistry 41, 5120–5130.PubMedCrossRefGoogle Scholar
  80. Shaw, A.S., Chalupny, J., Whitney, J.A., Hammond, C., Amrein, K.E., Kavathas, P. et al. (1990). Short related sequences in the cytoplasmic domains of CD4 and CD8 mediate binding to the amino-terminal domain of the p56lck tyrosine protein kinase. Mol. Cell. Biol. 10, 1853–1862.PubMedGoogle Scholar
  81. Simmons, A., Aluvihare, V., and McMichael, A. (2001). Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 14, 763–777.PubMedCrossRefGoogle Scholar
  82. Sticht, H., Willbold, D., Bayer, P., Ejchart, A., Herrmann, F., Rosin Arbesfeld, R. et al. (1993). Equine infectious anemia virus Tat is a predominantly helical protein. Eur. J. Biochem. 218, 973–976.PubMedCrossRefGoogle Scholar
  83. Sticht, H., Willbold, D., Ejchart, A., Rosin Arbesfeld, R., Yaniv, A., Gazit, A. et al. (1994). Trifluoroethanol stabilizes a helix-turn-helix motif in equine infectious-anemia-virus trans-activator protein. Eur. J. Biochem. 225, 855–861.PubMedCrossRefGoogle Scholar
  84. Takahashi, H., Nakanishi, T., Kami, K., Arata, Y., and Shimada, I. (2000). A novel NMR method for determining the interfaces of large protein-protein complexes. Nat. Struct. Biol. 7, 220–223.PubMedCrossRefGoogle Scholar
  85. Turner, J.M., Brodsky, M.H., Irving, B.A., Levin, S.D., Perlmutter, R.M., and Littman, D.R. (1990). Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell 60, 755–765.PubMedCrossRefGoogle Scholar
  86. Veillette, A., Bookman, M.A., Horak, E.M., and Bolen, J.B. (1988). The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301–308.PubMedCrossRefGoogle Scholar
  87. Wecker, K. and Roques, B.P. (1999). NMR structure of the (1–51) N-terminal domain of the HIV-1 regulatory protein Vpr. Eur. J. Biochem. 266, 359–369.PubMedCrossRefGoogle Scholar
  88. Welker, R., Kottler, H., Kalbitzer, H.R., and Kräusslich, H.G. (1996). Human immunodeficiency virus type 1 Nef protein is incorporated into virus particles and specifically cleaved by the viral proteinase. Virology 219, 228–236.PubMedCrossRefGoogle Scholar
  89. Willbold, D. and Rösch, P. (1996). Solution structure of the human CD4 (403–419) receptor peptide. J. Biomed. Sci. 3, 435–441.PubMedCrossRefGoogle Scholar
  90. Willbold, D., Kruger, U., Frank, R., Rosin Arbesfeld, R., Gazit, A., Yaniv, A., et al. (1993). Sequence-specific resonance assignments of the 1H-NMR spectra of a synthetic, biologically active EIAV Tat protein. Biochemistry 32, 8439–8445.PubMedCrossRefGoogle Scholar
  91. Willbold, D., Rosin Arbesfeld, R., Sticht, H., Frank, R., and Rösch, P. (1994). Structure of the equine infectious anemia virus Tat protein. Science 264, 1584–1587.PubMedCrossRefGoogle Scholar
  92. Willbold, D., Volkmann, A., Metzger, A., Sticht, H., Rosin-Arbesfeld, R., Gazit, A. et al. (1996). Structural studies of the equine infectious anemia virus trans-activator protein. Eur. J. Biochem. 240, 45–52.PubMedCrossRefGoogle Scholar
  93. Wolf, D., Witte, V., Laffert, B., Blume, K., Stromer, E., Trapp, S. et al. (2001). HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat. Med. 7, 1217–1224.PubMedCrossRefGoogle Scholar
  94. Wray, V., Mertins, D., Kiess, M., Henklein, P., Trowitzsch-Kienast, W., and Schubert, U. (1998). Solution structure of the cytoplasmic domain of the human CD4 glycoprotein by CD and 1H NMR spectroscopy: implications for biological functions. Biochemistry 37, 8527–8538.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2005

Authors and Affiliations

  • Dieter Willbold
    • 1
    • 2
  1. 1.Institut für Physikalische BiolgieHeinrich-Heine-UniversitätDüsseldorfGermany
  2. 2.Forschungszentrum Jülich, IBI-2JülichGermany

Personalised recommendations