Advertisement

The Alphavirus 6K Protein

  • M. A. Sanz
  • V. Madan
  • J. L. Nieva
  • Luis Carrasco
Part of the Protein Reviews book series (PRON, volume 1)

Keywords

Semliki Forest Virus Sindbis Virus Modify Membrane Permeability Ross River Virus Hydrophobicity Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carrasco, L. (1978). Membrane leakiness after viral infection and a new approach to the development of antiviral agents. Nature 272, 694–699.PubMedCrossRefGoogle Scholar
  2. Carrasco, L. (1981). Modification of membrane permeability induced by animal viruses early in infection. Virology 113, 623–629.PubMedCrossRefGoogle Scholar
  3. Carrasco, L. (1995). Modifications of membrane permeability by animal viruses. Adv. Virus Res. 45, 61–112.PubMedCrossRefGoogle Scholar
  4. Fernández-Puentes, C. and Carrasco, L. (1980). Viral infection permeabilizes mammalian cells to protein toxins. Cell 20, 769–775.PubMedCrossRefGoogle Scholar
  5. Frolov, I. and Schlesinger, S. (1994). Translation of Sindbis virus mRNA: Effects of sequences downstream of the initiating codon. J. Virol. 68, 8111–8117.PubMedGoogle Scholar
  6. Frolov, I. and Schlesinger, S. (1996). Translation of Sindbis virus mRNA: Analysis of sequences downstream of the initiating AUG codon that enhance translation. J. Virol. 70, 1182–1190.PubMedGoogle Scholar
  7. Gaedigk-Nitschko, K. and Schlesinger, M.J. (1990). The Sindbis virus 6K protein can be detected in virions and is acylated with fatty acids. Virology 175, 274–281.PubMedCrossRefGoogle Scholar
  8. Gaedigk-Nitschko, K. and Schlesinger, M.J. (1991). Site-directed mutations in Sindbis virus E2 glycoproteins cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding. Virology 183, 206–214.PubMedCrossRefGoogle Scholar
  9. Gaedigk-Nitschko, K., Ding, M.X., Levy, M.A., and Schlesinger, M.J. (1990). Site-directed mutations in the Sindbis virus 6K protein reveal sites for fatty acylation and the underacylated protein affects virus release and virion structure. Virology 175, 282–291.PubMedCrossRefGoogle Scholar
  10. Garoff, H., Hewson, R., and Opstelfen, D.-J.E. (1998). Virus maturation by budding. Microbiol. Mol. Biol. Rev. 62, 1171–1190.PubMedGoogle Scholar
  11. Garry, R.F., and Dashb, S. (2003). Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins. Virology 307, 255–265.PubMedCrossRefGoogle Scholar
  12. Garry, R.F., Bishop, J.M., Parker, J., Westbrook, K., Lewis, G., and White, M.R.F. (1979). Na+ and K+ concentrations and the regulation of protein synthesis in Sindbis virus-infected chick cells. Virology 96, 108–120.PubMedCrossRefGoogle Scholar
  13. Hahn, C.S., Hahn, Y.S., Braciale, T.J., and Rice, C.M. (1992). Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc. Natl. Acad. Sci. USA 89, 2679–2683.PubMedCrossRefGoogle Scholar
  14. Ivanova, L., Le, L. and Schlesinger, M.J. (1995). Characterization of revertants of a Sindbis virus 6K gene mutant that affects proteolytic processing and virus assembly. Virus Res. 39, 165–179.PubMedCrossRefGoogle Scholar
  15. Jeetendra, E., Robison, C.S., Albritton, L.M., and Whitt, M.A. (2002). The membrane-proximal domain of vesicular stomatitis virus G protein functions as a membrane fusion potentiator and can induce hemifusion. J. Virol. 76, 12300–12311.PubMedCrossRefGoogle Scholar
  16. Lama, J. and Carrasco, L. (1992). Expression of poliovirus nonstructural proteins in Escherichia coli cells. Modification of membrane permeability induced by 2B and 3A. J. Biol. Chem. 267, 15932–15937.PubMedGoogle Scholar
  17. Li, M.C. and Stollar, V. (1995). A mutant of Sindbis virus which is released efficiently from cells maintained in low ionic strength medium. Virology 210, 237–243.PubMedCrossRefGoogle Scholar
  18. Liljeström, P. and Garoff, H. (1991). Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J. Virol. 65, 147–154.PubMedGoogle Scholar
  19. Liljeström, P., Lusa, S., Huylebroeck, D., and Garoff, H. (1991). In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: The small 6.000-molecular-weight membrane protein modulates virus release. J. Virol. 65, 4107–4113.PubMedGoogle Scholar
  20. Loewy, A., Smyth, J., Von, C.-H., Bonsdorff, Liljeström, P., and Schlesinger, M.J. (1995). The 6-kilodalton membrane protein of Semliki Forest virus is involved in the budding process. J. Virol. 69, 469–475.PubMedGoogle Scholar
  21. Lusa, S., Garoff, H., and Liljeström, P. (1991). Fate of the 6K membrane protein of Semliki Forest virus during virus assembly. Virology 185, 843–846.PubMedCrossRefGoogle Scholar
  22. Melton, J.V., Ewart, G.D., Weir, R.C., Board, P.G., Lee, E., and Gage, P.W. (2002). Alphavirus 6K proteins form ion channels. J. Biol. Chem. 277, 46923–46931.PubMedCrossRefGoogle Scholar
  23. Muñoz, A., Castrillo, J.L., and Carrasco, L. (1985). Modification of membrane permeability during Semliki Forest virus infection. Virology 146, 203–212.PubMedCrossRefGoogle Scholar
  24. Otero, M.J. and Carrasco, L. (1987). Proteins are cointernalized with virion particles during early infection. Virology 160, 75–80.PubMedCrossRefGoogle Scholar
  25. Rosemberg, A.H., Lade, B.N., Chui, D., Lin, S., Dunn, J.J., and Studier, F.W. (1987). Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56, 125–35.CrossRefGoogle Scholar
  26. Sanz, M.A. and Carrasco, L. (2001). Sindbis virus variant with a deletion in the 6K gene shows defects in glycoprotein processing and trafficking: Lack of complementation by a wild-type 6K gene in trans. J. Virol. 75, 7778–7784.PubMedCrossRefGoogle Scholar
  27. Sanz, M.A., Madan, V., Carrasco, L., and Nieva, J.L. (2003). Interfacial domains in Sindbis virus 6K protein. Detection and functional characterization. J. Biol. Chem. 278, 2051–2057.PubMedCrossRefGoogle Scholar
  28. Sanz, M.A., Pérez, L. and Carrasco, L. (1994). Semliki Forest virus 6K protein modifies membrane permeability after inducible expression in Escherichia coli cells. J. Biol. Chem. 269, 12106–1211.PubMedGoogle Scholar
  29. Schlesinger, S. and Schlesinger, M.J. (1996). In Fields, B.N. (ed.), Virology, Lippincott-Raven, Philadelphia, pp. 825–841.Google Scholar
  30. Schlesinger, M.J., London, S.D. and Ryan, C. (1993). An in-frame insertion into the Sindbis virus 6K gene leads to defective proteolytic processing of the virus glycoproteins, a trans-dominant negative inhibition of normal virus formation, and interference in virus shut off of host-cell protein synthesis. Virology 193, 424–432.PubMedCrossRefGoogle Scholar
  31. Suomalainen, M. and Garoff, H. (1994). Incorporation of homologous and heterologous proteins into the envelope of Moloney murine leukemia virus. J. Virol. 68, 4879–4889.PubMedGoogle Scholar
  32. Strauss, J.H. and Strauss, E.G. (1994). The alphaviruses: Gene expression, replication, and evolution. Microbiol. Rev. 58, 491–562.PubMedGoogle Scholar
  33. Studier, F.W. and Moffatt, B.A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high level expression of cloned genes. J. Mol. Biol. 198, 113–130.CrossRefGoogle Scholar
  34. Studier, F.W., A.H. Rosenberg, and Dunn, J.J. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology 185, 60–89.PubMedGoogle Scholar
  35. Suárez, T., Gallaher, W.R., Agirre, A., Goĩ, F.M., and Nieva, J.L. (2000). Membrane interface-interacting sequences within the ectodomain of the HIV-1 envelope glycoprotein: Putative role during viral fusion. J. Virol. 74, 8038–8047.PubMedCrossRefGoogle Scholar
  36. Waite, M.R. and Pfefferkorn, E.R. (1970). Inhibition of Sindbis virus production by media of low ionic strength: Intracellular events and requirements for reversal. J. Virol. 5, 60–71.PubMedGoogle Scholar
  37. Welch, W.J. and Sefton, B.M. (1980). Characterization of a small, nonstructural viral polypeptide present late during of BHK cells by Semliki Forest virus. J. Virol. 33, 230–237.PubMedGoogle Scholar
  38. White, S.H., Ladokhin, A.S., Jayasinghe, S., and Hristova, K. (2001). How membranes shape protein structure. J. Biol. Chem. 276, 32395–32398.PubMedCrossRefGoogle Scholar
  39. Wimley, W. and White, S.H. (1996). Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Struct. Biol. 3, 842–848.PubMedCrossRefGoogle Scholar
  40. Yao, J.S., Strauss, E.G., and Strauss, J.H. (1996). Interactions between PE2, E1, and 6K required for assembly of alphaviruses studied with chimeric viruses. J. Virol. 70, 7910–7920.PubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2005

Authors and Affiliations

  • M. A. Sanz
    • 1
  • V. Madan
    • 1
  • J. L. Nieva
    • 2
  • Luis Carrasco
    • 1
  1. 1.Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Facultad de CienciasUniversidad AutónomaCantoblanco, MadridSpain
  2. 2.Unidad de Biofísica (CSIC-UPV/EHU), Departamento de BioquímicaUniversidad del País VascoBilbaoSpain

Personalised recommendations