Advertisement

Structure and Function of Vpu from HIV-1

  • S. J. Opella
  • S. H. Park
  • S. Lee
  • D. Jones
  • A. Nevzorov
  • M. Mesleh
  • A. Mrse
  • F. M. Marassi
  • M. Oblatt-Montal
  • M. Montal
  • K. Strebel
  • S. Bour
Part of the Protein Reviews book series (PRON, volume 1)

Keywords

Cytoplasmic Domain Dipolar Coupling Residual Dipolar Coupling Particle Release Dipolar Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akari, H., Bour, S., Kao, S., Adachi, A., and Strebel, K. (2001). The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor kappaB-dependent expression of antiapoptotic factors. J. Exp. Med. 194, 1299–1311.PubMedCrossRefGoogle Scholar
  2. Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W. et al. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274.PubMedCrossRefGoogle Scholar
  3. Bax, A., Kontaxis, G., and Tjandra, N. (2001) Dipolar couplings in macromolecular structure determination. Meth. Enzymol. 339, 127–174.PubMedGoogle Scholar
  4. Bour, S., Akari, H., Miyagi, E., and Strebel, K. (2003). Naturally occurring amino acid substitutions in the HIV-2 ROD envelope glycoprotein regulate its ability to augment viral particle release. Virology 309, 85–98.PubMedCrossRefGoogle Scholar
  5. Bour, S., Boulerice, F., and Wainberg, M.A. (1991). Inhibition of gp160 and CD4 maturation in U937 cells after both defective and productive infections by human immunodeficiency virus type 1. J. Virol. 65, 6387–6396.PubMedGoogle Scholar
  6. Bour, S., Geleziunas, R., and Wainberg, M.A. (1995a). The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in the promotion of HIV-1 infection. Microbiol. Rev. 59, 63–93.PubMedGoogle Scholar
  7. Bour, S., Perrin, C., Akari, H., and Strebel, K. (2001). The human immunodeficiency virus type 1 Vpu protein inhibits NF-kappa B activation by interfering with beta TrCP-mediated degradation of Ikappa B. J. Biol. Chem. 276, 15920–15928.PubMedCrossRefGoogle Scholar
  8. Bour, S., Perrin, C., and Strebel, K. (1999a). Cell surface CD4 inhibits HIV-1 particle release by interfering with Vpu activity. J. Biol. Chem. 274, 33800–33806.PubMedCrossRefGoogle Scholar
  9. Bour, S., Schubert, U., Peden, K., and Strebel, K. (1996). The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release: A Vpu-like factor? J. Virol. 70, 820–829.PubMedGoogle Scholar
  10. Bour, S., Schubert, U., and Strebel, K. (1995b). The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4: Implications for the mechanism of degradation. J. Virol. 69, 1510–1520.PubMedGoogle Scholar
  11. Bour, S. and Strebel, K. (1996). The human immunodeficiency virus (HIV) type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses. J. Virol. 70, 8285–8300.PubMedGoogle Scholar
  12. Bour, S. and Strebel, K. (2000). HIV accessory proteins: Multifunctional components of a complex system. Adv. Pharmacol. 48, 75–120.PubMedCrossRefGoogle Scholar
  13. Bour, S. and Strebel, K. (2003). The HIV-1 Vpu protein: A multifunctional enhancer of viral particle release. Microbes Infect. 5, 1029–1039.PubMedCrossRefGoogle Scholar
  14. Bour, S. P., Aberham, C., Perrin, C., and Strebel, K. (1999b). Lack of effect of cytoplasmic tail truncations on human immunodeficiency virus type 2 ROD env particle release activity. J. Virol. 73, 778–782.PubMedGoogle Scholar
  15. Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T., and Bax, A. (2002). Micelle-induced curvature in a waterinsoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J. Amer. Chem. Soc. 124, 2450–2451.CrossRefGoogle Scholar
  16. Coadou, G., Evrard-Todeschi, N., Gharbi-Benarous, J., Benarous, R., and Girault, J.P. (2002). HIV-1 encoded virus protein U (Vpu) solution structure of the 41–62 hydrophilic region containing the phosphorylated sites Ser52 and Ser56. Int. J. Biol. Macromol. 30, 23–40.PubMedCrossRefGoogle Scholar
  17. Coadou, G., Gharbi-Benarous, J., Megy, S., Bertho, G., Evrard-Todeschi, N., Seberal, E. et al. (2003). NMR studies of the phosphorylation motif of the HIV-1 protein Vpu bound to the F-box protein B-TrCP. Biochemistry 42, 14741–14751.PubMedCrossRefGoogle Scholar
  18. Cohen, E.A., Terwilliger, E.F., Sodroski, J.G., and Haseltine, W.A. (1988). Identification of a protein encoded by the vpu gene of HIV-1. Nature 334, 532–534.PubMedCrossRefGoogle Scholar
  19. Cordes, F.S., Kukol, A., Forrest, L.R., Arkin, I.T., Sansom, M.S.P., and Fischer, W.B. (2001). The structure of the HIV-1 Vpu ion channel: Modelling and simulation studies. Biochim. Biophys. Acta 1512, 291–298.PubMedCrossRefGoogle Scholar
  20. Cordes, F.S., Tustian, A.D., Sansom, M.S.P., Watts, A., and Fischer, W.B. (2002). Bundles consisting of extended transmembrane segments of Vpu from HIV-1: Computer simulations and conductance measurements. Biochemistry 41, 7359–7365.PubMedCrossRefGoogle Scholar
  21. Crise, B., Buonocore, L., and Rose, J. K. (1990). CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J. Virol. 64, 5585–5593.PubMedGoogle Scholar
  22. Erickson, J.W. and Burt, S.K. (1996). Structural mechanisms of HIV drug resistance. Annu. Rev. Pharmacol. Toxicol. 36, 545–571.PubMedCrossRefGoogle Scholar
  23. Ewart, G. D., Sutherland, T., Gage, P. W., and Cox, G. B. (1996). The Vpu protein of human immunodeficiency virus type 1 forms cationselective ion channels. J. Virol. 70, 7108–7115.PubMedGoogle Scholar
  24. Fan, L. and Peden, K. (1992). Cell-free transmission of Vif mutants of HIV-1. Virology 190, 19–29.PubMedCrossRefGoogle Scholar
  25. Federau, T., Schubert, U., Flossdorf, J., Henklein, P., Schomburg, D., and Wray, V. (1996). Solution structure of the cytoplasmic domain of the human immunodeficiency virus type 1 encoded virus protein U (Vpu). Int. J. Pept. Protein Res. 47, 297–310.PubMedCrossRefGoogle Scholar
  26. Fischer, W.B. (2003). Vpu from HIV-1 on an atomic scale: Experiments and computer simulations. FEBS Lett. 552, 39–46.PubMedCrossRefGoogle Scholar
  27. Fischer, W.B. and Sansom, M.S.P. (2002). Viral ion channels: Structure and function. Biochim. Biophys. Acta 1561, 27–45.PubMedCrossRefGoogle Scholar
  28. Fujita, K., Omura, S., and Silver, J. (1997). Rapid degradation of CD4 in cells expressing human immunodeficiency virus type 1 Env and Vpu is blocked by proteasome inhibitors [published erratum appears in J. Gen. Virol. 1997 Aug; 78 (Pt 8), 2129–2130. J. Gen. Virol. 78, 619–625.PubMedGoogle Scholar
  29. Gottlinger, H.G., Dorfman, T., Cohen, E.A., and Haseltine, W.A. (1993). Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc. Natl. Acad. Sci. USA 90, 7381–7385.PubMedCrossRefGoogle Scholar
  30. Gottlinger, H.G., Dorfman, T., Sodroski, J.G., and Haseltine, W.A. (1991). Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl. Acad. Sci. USA 88, 3195–3199.PubMedCrossRefGoogle Scholar
  31. Grice, A.L., Kerr, I.D., and Sansom, M.S. (1997). Ion channels formed by HIV-1 Vpu: A modelling and simulation study. FEBS Lett. 405, 299–304.PubMedCrossRefGoogle Scholar
  32. Henklein, P., Kinder, R., Schubert, U., and Bechinger, B. (2000). Membrane interactions and alignment of structures within the HIV-1 Vpu cytoplasmic domain: Effect of phosphorylation of serines 52 and 56. FEBS Lett. 482, 220–224.PubMedCrossRefGoogle Scholar
  33. Ishima, R., Torchia, D.A., Lynch, S.M., Gronenborn, A.M., and Louis, J.M. (2003). Solution structure of the mature HIV-1 protease monomer. J. Biol. Chem. 278, 43311–43319.PubMedCrossRefGoogle Scholar
  34. Jabbar, M.A. and Nayak, D.P. (1990). Intracellular interaction of human immunodeficiency virus type 1 (ARV-2) envelope glycoprotein gp160 with CD4 blocks the movement and maturation of CD4 to the plasma membrane. J. Virol. 64, 6297–6304.PubMedGoogle Scholar
  35. Klimkait, T., Strebel, K., Hoggan, M.D., Martin, M.A., and Orenstein, J.M. (1990). The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J. Virol. 64, 621–629.PubMedGoogle Scholar
  36. Korber, B., Foley, B. Leitner, T., McCutchan, F., Hahn, B., Mellors, J.W. et al. (1997). Human retroviruses and AIDS. In Theoretical Biology and Biophysics. Los Alamos National Laboratory, Los Alamos.Google Scholar
  37. Kukol, A. and Arkin, I.T. (1999). Vpu transmembrane peptide structure obtained by site-specific Fourier transform infrared dichroism and global molecular dynamics searching. Biophys. J. 77, 1594–1601.PubMedGoogle Scholar
  38. Lamb, R.A. and Pinto, L.H. (1997). Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycle? Virology 229, 1–11.PubMedCrossRefGoogle Scholar
  39. Lenburg, M.E. and Landau, N.R. (1993). Vpu-induced degradation of CD4: Requirement for specific amino acid residues in the cytoplasmic domain of CD4. J. Virol. 67, 7238–7245.PubMedGoogle Scholar
  40. Li, J.T., Halloran, M., Lord, C.I., Watson, A., Ranchalis, J., Fung, M. et al. (1995). Persistent infection of macaques with simian-human immunodeficiency viruses. J. Virol. 69, 7061–7067.PubMedGoogle Scholar
  41. Lopez, C.F., Montal, M., Blasie, J.K., Klein, M.L., and Moore, P.B. (2002). Molecular dynamics investigation of membrane-bound bundles of the channel-forming transmembrane domain of viral protein U from the human immunodeficiency virus HIV-1. Biophys. J. 83, 1259–1267.PubMedCrossRefGoogle Scholar
  42. Ma, C. and Opella, S.J. (2000). Lanthanide ions bind specifically to an added EF-hand and orient a membrane protein in micelles for solution NMR spectroscopy. J. Magn. Reson. 146, 381–384.PubMedCrossRefGoogle Scholar
  43. Ma, C., Marassi, F.M., Jones, D.H., Straus, S.K., Bour, S., Strebel, K. et al. (2002). Expression, purification and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1, Protein Sci. 11, 556–557.Google Scholar
  44. Mackay, G.A., Niu, Y., Liu, Z.Q., Mukherjee, S., Li, Z., Adany, I. et al. (2002). Presence of intact vpu and nef genes in nonpathogenic SHIV is essential for acquisition of pathogenicity of this virus by serial passage in macaques. Virology 295, 133–146.PubMedCrossRefGoogle Scholar
  45. Maldarelli, F., Chen, M.Y., Willey, R.L., and Strebel, K. (1993). Human immunodeficiency virus type 1 Vpu protein is an oligomeric type I integral membrane protein. J. Virol. 67, 5056–5061.PubMedGoogle Scholar
  46. Marassi, F.M. and Opella, S.J. (2000). A solid-state NMR index of helical membrane protein structure and topology. J. Magn. Reson. 144, 162–167.CrossRefGoogle Scholar
  47. Marassi, F.M., Ma, C., Gratkowski, H., Straus, S.K., Strebel, K., Oblatt-Montal, M. et al. (1999). Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc. Natl. Acad. Sci. USA 96, 14336–14341.PubMedCrossRefGoogle Scholar
  48. Margottin, F., Bour, S.P., Durand, H., Selig, L., Benichou, S., Richard, V. et al. (1998). A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1, 565–574.PubMedCrossRefGoogle Scholar
  49. McCormick-Davis, C., Dalton, S.B., Hout, D.R., Singh, D.K., Berman, N.E., Yong, C. et al. (2000a). A molecular clone of simian-human immunodeficiency virus (DeltavpuSHIV(KU-1bMC33) ) with a truncated, nonmembrane-bound vpu results in rapid CD4(+) T cell loss and neuro-AIDS in pig-tailed macaques. Virology 272, 112–126.PubMedCrossRefGoogle Scholar
  50. McCormick-Davis, C., Dalton, S.B., Singh, D.K., and Stephens, E.B. (2000b). Comparison of Vpu sequences from diverse geographical isolates of HIV type 1 identifies the presence of highly variable domains, additional invariant amino acids, and a signature sequence motif common to subtype C isolates. AIDS Res. Hum. Retroviruses 16, 1089–1095.PubMedCrossRefGoogle Scholar
  51. McCormick-Davis, C., Zhao, L.J., Mukherjee, S., Leung, K., Sheffer, D., Joag, S.V. et al. (1998). Chronology of genetic changes in the vpu, env, and Nef genes of chimeric simian-human immunodeficiency virus (strain HXB2) during acquisition of virulence for pig-tailed macaques. Virology 248, 275–283.PubMedCrossRefGoogle Scholar
  52. Mesleh, M.F. and Opella, S.J. (2003). Dipolar waves as NMR maps of helices in proteins. J. Magn. Reson. 163, 288–299.PubMedCrossRefGoogle Scholar
  53. Mesleh, M.F., Lee, S., Veglia, G., Thiriot, D.S., Marassi, M.M., and Opella, S.J. (2003). Dipolar waves map the structure and topology of helices in membrane proteins. J. Amer. Chem. Soc. 125, 8928–8935.CrossRefGoogle Scholar
  54. Mesleh, M.F., Veglia, G. DeSilva, T.M., Marassi, F.M., and Opella, S.J. (2002). Dipolar waves as NMR maps of protein structure. J. Amer. Chem. Soc. 124, 4206–4207.CrossRefGoogle Scholar
  55. Miller, R.H. and Sarver, N. (1997). HIV accessory proteins as therapeutic targets. Nature Med. 3, 389–394.PubMedCrossRefGoogle Scholar
  56. Montal, M. (2003). Structure-function correlates of Vpu, a membrane protein of HIV-1. FEBS Lett. 552, 47–53.PubMedCrossRefGoogle Scholar
  57. Moore, P. B., Zhong, Q., Husslein, T., and Klein, M. L. (1998). Simulation of the HIV-1 Vpu transmembrane domain as a pentameric bundle. FEBS Lett. 431, 143–148.PubMedCrossRefGoogle Scholar
  58. Navia, M.A., Fitzgerald, P.M., McKenner, B.M. et al. (1989). Three-dimensional structure of asparatyl protease from human immunodeficiency virus HIV-1. Nature 337, 615–620.PubMedCrossRefGoogle Scholar
  59. Nevzorov, A.A. and Opella, S.J. (2003). A “magic sandwich” pulse sequence with reduced offset dependence for high-resolution separated local field spectroscopy. J. Magn. Reson. 164, 182–186.PubMedCrossRefGoogle Scholar
  60. Opella, S.J. (1997). NMR and membrane proteins. Nat. Struct. Biol. NMR suppl., 845–848.Google Scholar
  61. Opella, S.J., Stewart, P., and Valentine K. (1987). Protein structure by solid-state NMR spectroscopy. Q. Rev. Biophys. 19, 7–49.PubMedGoogle Scholar
  62. Opella, S.J., Nevzorov, A., Mesleh, M.F., and Marassi, F.M. (2002). Structure determination of membrane proteins by NMR spectroscopy. Biochem. Cell Biol. 80, 597–604.PubMedCrossRefGoogle Scholar
  63. Pake, G. (1948). Nuclear resonance absorption in hydrated crystals: Fine structure of the proton line. J. Chem. Phys. 16, 327–336.CrossRefGoogle Scholar
  64. Park, S.H., Mrse, A.A., Nevzorov, A.A., Mesleh, M.G., Oblatt-Montal, M., Montal, M., and Opella, S.J. (2003). Three-dimensional structure of the channel-forming trans-membrane domain of virus proteins “u” (Vpu) from HIV-1. J. Mol. Biol. 333, 409–424.PubMedCrossRefGoogle Scholar
  65. Paul, M. and Jabbar, M.A. (1997). Phosphorylation of both phosphoacceptor sites in the HIV-1 Vpu cytoplasmic domain is essential for Vpu-mediated ER degradation of CD4. Virology 232, 207–216.PubMedCrossRefGoogle Scholar
  66. Paul, M., Mazumder, S., Raja, N., and Jabbar, M.A. (1998). Mutational analysis of the human immunodeficiency virus type 1 Vpu transmembrane domain that promotes the enhanced release of virus-like particles from the plasma membrane of mammalian cells. J. Virol. 72, 1270–1279.PubMedGoogle Scholar
  67. Prestegard, J.H., Al-Hashimi, H.M., and Tolman, J.R. (2001). NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q. Rev. Biophys. 33, 371–424.CrossRefGoogle Scholar
  68. Ritter, G.D., Jr., Yamshchikov, G., Cohen, S.J., and Mulligan, M.J. (1996). Human immunodeficiency virus type 2 glycoprotein enhancement of particle budding: Role of the cytoplasmic domain. J. Virol. 70, 2669–2673.PubMedGoogle Scholar
  69. Schubert, U., Anton, L.C., Bacik, I., Cox, J.H., Bour, S., Bennink, J.R. et al. (1998). CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J. Virol. 72, 2280–2288.PubMedGoogle Scholar
  70. Schubert, U., Bour, S., Ferrer-Montiel, A. V., Montal, M., Maldarell, F., and Strebel, K. (1996a). The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J. Virol. 70, 809–819.PubMedGoogle Scholar
  71. Schubert, U., Bour, S., Willey, R.L., and Strebel, K. (1999). Regulation of virus release by the macrophage-tropic human immunodeficiency virus type 1 AD8 isolate is redundant and can be controlled by either Vpu or Env. J. Virol. 73, 887–896.PubMedGoogle Scholar
  72. Schubert, U., Ferrer-Montiel, A.V., Oblatt-Montal, M., Henklein, P., Strebel, K., and Montal, M. (1996b). Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett. 398, 12–18.PubMedCrossRefGoogle Scholar
  73. Schubert, U., Henklein, P., Boldyreff, B., Wingender, E., Strebel, K., and Porstmann, T. (1994). The human immunodeficiency virus type 1 encoded Vpu protein is phosphorylated by casein kinase-2 (CK-2) at positions Ser 52 and Ser 56 within a predicted alpha-helix-turn-alpha-helix-motif. J. Mol. Biol. 236, 16–25.PubMedCrossRefGoogle Scholar
  74. Schubert, U. and Strebel, K. (1994). Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J. Virol. 68, 2260–2271.PubMedGoogle Scholar
  75. Schwartz, M.D., Geraghty, R.J., and Panganiban, A.T. (1996). HIV-1 particle release mediated by Vpu is distinct from that mediated by p6. Virology 224, 302–309.PubMedCrossRefGoogle Scholar
  76. Schwartz, S., Felber, B.K., Fenyo, E.M., and Pavlakis, G.N. (1990). Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J. Virol. 64, 5448–5456.PubMedGoogle Scholar
  77. Singh, D.K., McCormick, C., Pacyniak, E., Lawrence, K., Dalton, S.B., Pinson, D.M. et al. (2001). A simian human immunodeficiency virus with a nonfunctional Vpu (deltavpuSHIV(KU-1bMC33)) isolated from a macaque with neuroAIDS has selected for mutations in env and nef that contributed to its pathogenic phenotype. Virology 282, 123–140.PubMedCrossRefGoogle Scholar
  78. Spevak, W., Keiper, B.D., Stratowa, C., and Castanon, M.J. (1993). Saccharomyces cerevisiae cdc15 mutants arrested at a late stage in anaphase are rescued by Xenopus cDNAs encoding N-ras or a protein with beta-transducin repeats. Mol. Cell Biol. 13, 4953–4966.PubMedGoogle Scholar
  79. Stephens, E.B., McCormick, C., Pacyniak, E., Griffin, D., Pinson, D.M., Sun, F. et al. (2002). Deletion of the vpu sequences prior to the env in a simian-human immunodeficiency virus results in enhanced Env precursor synthesis but is less pathogenic for pig-tailed macaques. Virology 293, 252–261.PubMedCrossRefGoogle Scholar
  80. Stephens, E.B., Mukherjee, S., Sahni, M., Zhuge, W., Raghavan, R., Singh, D.K. et al. (1997). A cell-free stock of simian-human immunodeficiency virus that causes AIDS in pig-tailed macaques has a limited number of amino acid substitutions in both SIVmac and HIV-1 regions of the genome and has offered cytotropism. Virology 231, 313–321.PubMedCrossRefGoogle Scholar
  81. Strebel, K., Klimkait, T., and Martin, M.A. (1988). A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 241, 1221–1223.PubMedCrossRefGoogle Scholar
  82. Strebel, K., Klimkait, T., Maldarelli, F., and Martin, M.A. (1989). Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J. Virol. 63, 3784–3791.PubMedGoogle Scholar
  83. Torres, J., Kekal, A., and Arkin, I.T. (2001). Mapping the energy surface of transmembrane helix-helix detections. Biophys. J. 81, 2681–2692.PubMedGoogle Scholar
  84. Turner, B.G. and Summers, M.F. (1999). Structural biology of HIV. J. Mol. Biol. 285, 1–32.PubMedCrossRefGoogle Scholar
  85. Vondrasek, J., van Bukirk, C.P., and Wlodawer, A. (1997). Database of three-dimensional structures of HIV proteinases. Nat. Struct. Biol. 4, 8.PubMedCrossRefGoogle Scholar
  86. Veglia, G. and Opella, S.J. (2000). Lanthanide ion binding to adventitious sites aligns membrane proteins in micelles for solution NMR spectroscopy. J. Amer. Chem. Soc. 47, 11733–11734.CrossRefGoogle Scholar
  87. Vincent, M.J., Raja, N.U., and Jabbar, M. A. (1993). Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: Role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum. J. Virol. 67, 5538–5549.PubMedGoogle Scholar
  88. Wang, J., Denny, J., Tian, C., Kim, S., Mo, Y., Kovacs, F. et al. (2000). Imaging membrane protein helical wheels. J. Magn. Reson. 144, 162–167.PubMedCrossRefGoogle Scholar
  89. Waugh, J.S. (1976). Uncoupling of local field spectra in nuclear magnetic resonance: Determination of atomic positions in solids. Proc. Natl. Acad. Sci. USA 73, 1394–1397.PubMedCrossRefGoogle Scholar
  90. Wiertz, E.J., Jones, T.R., Sun, L., Bogyo, M., Geuze, H.J., and Ploegh, H.L. (1996). The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779.PubMedCrossRefGoogle Scholar
  91. Willbold, D., Hoffman, S., and Rosch, P. (1997). Secondary structure and tertiary fold of the human immunodeficiency virus protein U (Vpu) cytoplasmic domain in solution. Eur. J. Biochem. 245, 581–588.PubMedCrossRefGoogle Scholar
  92. Willey, R.L., Maldarelli, F., Martin, M. A., and Strebel, K. (1992). Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. J. Virol. 66, 226–234.PubMedGoogle Scholar
  93. Wlodawer, A. (2002). Rational approach to AIDS drug design through structural biology. Annu. Rev. Med. 53, 595–614.PubMedCrossRefGoogle Scholar
  94. Wlodawer, A., Miller, M., Jaskolski, M. et al. (1989). Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease. Science 245, 616–621.PubMedCrossRefGoogle Scholar
  95. Wray, V., Federau, T., Henklein, P., Klabunde, S., Kunert, O., Schomburg, D. et al. (1995). Solution structure of the hydrophilic region of HIV-1 encoded virus protein U (Vpu) by CD and 1H NMR spectroscopy. Int. J. Pept. Protein Res. 45, 35–43.PubMedCrossRefGoogle Scholar
  96. Wray, V., Kinder, R., Federau, T., Henklein, P., Bechinger, B., and Schubert, U. (1999). Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high-resolution and solid-state NMR spectroscopy. Biochem. 38, 5272–5282.CrossRefGoogle Scholar
  97. Wu, C.H., Ramamoorthy, A., and Opella, S.J. (1994). High resolution heteronuclear dipolar solid-state NMR spectroscopy. J. Magn. Reson., A109, 270–272.Google Scholar
  98. Yaron, A., Hatzubai, A., Davis, M., Lavon, I., Amit, S., Manning, A.M. et al. (1998). Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396, 590–594.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2005

Authors and Affiliations

  • S. J. Opella
    • 1
  • S. H. Park
    • 1
  • S. Lee
    • 1
  • D. Jones
    • 1
  • A. Nevzorov
    • 1
  • M. Mesleh
    • 1
  • A. Mrse
    • 1
  • F. M. Marassi
    • 2
  • M. Oblatt-Montal
    • 3
  • M. Montal
    • 3
  • K. Strebel
    • 4
  • S. Bour
    • 5
  1. 1.Department of Chemistry and BiochemistryUniversity of California, San DiegoLa Jolla
  2. 2.The Burnham InstituteLa Jolla
  3. 3.Section of Neurobiology Division of BiologyUniversity of California, San DiegoLa Jolla
  4. 4.Bioinformatics and Cyber Technology Center, Office of Technology and Information Systems, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesda
  5. 5.Viral Biochemistry Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesda

Personalised recommendations