Advertisement

Membrane Proteins in Plant Viruses

  • Michael J. Adams
  • John F. Antoniw
Part of the Protein Reviews book series (PRON, volume 1)

Abstract

It is clear that MPs play an essential role in the pathogenesis and movement within the plant of many plant viruses. However, studies of the structure and function of such proteins are still in their infancy. Substantial progress may be expected in the next few years, particularly in the area of cell-to-cell movement where viruses are proving useful tools to study the basic processes of macromolecular trafficking between adjacent plant cells.

Keywords

Mosaic Virus Tobacco Mosaic Virus Plant Virus Movement Protein Tomato Spot Wilt Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberle, H.J., Rutz, M.L., Karayavuz, M., Frischmuth, S., Wege, C., Hulser, D. et al. (2002). Localizing the movement proteins of Abutilon mosaic geminivirus in yeast by subcellular fractionation and freeze-fracture immuno-labelling. Arch. Virol. 147, 103–117.Google Scholar
  2. Adams, M.J. (2002). Fungi. In R.T. Plumb (ed.), Plant Virus Vector Interactions (Adv. Bot. Res. 36). Academic Press, San Diego, CA, pp. 47–64.Google Scholar
  3. Adams, M.J., Swaby, A.G., and Jones, P. (1988). Confirmation of the transmission of barley yellow mosaic virus (BaYMV) by the fungus Polymyxa graminis. Ann. Appl. Biol. 112, 133–141.Google Scholar
  4. Adams, M.J., Antoniw, J.F., and Mullins, J.G.L. (2001). Plant virus transmission by plasmodiophorid fungi is associated with distinctive transmembrane regions of virus-encoded proteins. Arch. Virol. 146, 1139–1153.PubMedGoogle Scholar
  5. Adams, M.J., Antoniw, J.F., Barker, H., Jones, A.T., Murant, A.F., and Robinson, D. (1998). Descriptions of Plant Viruses on CD-ROM. Association of Applied Biologists, Wellesbourne.Google Scholar
  6. Alzhanova, D.V., Napuli, A.J., Creamer, R., and Dolja, V.V. (2001). Cell-to-cell movement and assembly of a plant closterovirus: Roles for the capsid proteins and Hsp70 homolog. EMBO J. 20, 6997–7007.PubMedGoogle Scholar
  7. Bandla, M.D., Campbell, L.R., Ullman, D.E., and Sherwood, J.L. (1998). Interaction of tomato spotted wilt tospovirus (TSWV) glycoproteins with a thrips midgut protein, a potential cellular receptor for TSWV. Phytopathology 88, 98–104.Google Scholar
  8. Bleve-Zacheo, T., Rubino, L., Melillo, M.T., and Russo, M. (1997). The 33K protein encoded by cymbidium ringspot tombusvirus localizes to modified peroxisomes of infected cells and of uninfected transgenic plants. J. Plant Pathol. 79, 197–202.Google Scholar
  9. Boulton, M.I. (2002). Functions and interactions of mastrevirus gene products. Physiol. Mol. Plant Path. 60, 243–255.Google Scholar
  10. Boulton, M.I., Pallaghy, C.K., Chatani, M., MacFarlane, S.A., and Davies, J.W. (1993). Replication of maize streak virus mutants in protoplasts — evidence for movement protein. Virology 192, 85–93.PubMedGoogle Scholar
  11. Boyko, V., Ferralli, J., Ashby, J., Schellenbaum, P., and Heinlein, M. (2000). Function of microtubules in intercellular transport of plant virus RNA. Nat. Cell Biol. 2, 826–832.PubMedGoogle Scholar
  12. Bozarth, C.S., Weiland, J.J., and Dreher, T.W. (1992). Expression of Orf-69 of turnip yellow mosaic-virus is necessary for viral spread in plants. Virology 187, 124–130.PubMedGoogle Scholar
  13. Brault, V., Mutterer, J., Scheidecker, D., Simonis, M.T., Herrbach, E., Richards, K. et al. (2000). Effects of point mutations in the readthrough domain of the beet western yellows virus minor capsid protein on virus accumulation in planta and on transmission by aphids. J. Virol. 74, 1140–1148.PubMedGoogle Scholar
  14. Briddon, R.W., Pinner, M.S., Stanley, J., and Markham, P.G. (1990). Geminivirus coat protein replacement alters insect specificity. Virology 177, 85–94.PubMedGoogle Scholar
  15. Brill, L.M., Nunn, R.S., Kahn, T.W., Yeager, M., and Beachy, R.N. (2000). Recombinant tobacco mosaic virus movement protein is an RNA-binding, alpha-helical membrane protein. Proc. Natl. Acad. Sci. USA 97, 7112–7117.PubMedGoogle Scholar
  16. Canto, T. and Palukaitis, P. (1999). Are tubules generated by the 3a protein necessary for cucumber mosaic virus movement? Mol. Plant-Microbe Interact. 12, 985–993.Google Scholar
  17. Carette, J.E., Stuiver, M., Van Lent, J., Wellink, J., and Van Kammen, A.B. (2000). Cowpea mosaic virus infection induces a massive proliferation of endoplasmic reticulum but not Golgi membranes and is dependent on de novo membrane synthesis. J. Virol. 74, 6556–6563.PubMedGoogle Scholar
  18. Carette, J.E., Verver, J., Martens, J., van Kampen, T., Wellink, J., and van Kammen, A. (2002). Characterization of plant proteins that interact with cowpea mosaic virus “60K” protein in the yeast two-hybrid system. J. Gen. Virol. 83, 885–893.PubMedGoogle Scholar
  19. Chay, C.A., Gunasinge, U.B., Dinesh-Kumar, S.P., Miller, W.A., and Gray, S.M. (1996). Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus—PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology 219, 57–65.PubMedGoogle Scholar
  20. Chen, J.B. and Ahlquist, P. (2000). Brome mosaic virus polymerase-like protein 2a is directed to the endoplasmic reticulum by helicase-like viral protein 1a. J. Virol. 74, 4310–4318.PubMedGoogle Scholar
  21. Citovsky, V. and Zambryski, P. (1991). How do plant virus nucleic acids move through intercellular connections? BioEssays 13, 373–379.PubMedGoogle Scholar
  22. Cowan, G.H., Lioliopoulou, F., Ziegler, A., and Torrance, L. (2002). Subcellular localisation, protein interactions, and RNA binding of potato mop-top virus triple gene block proteins. Virology 298, 106–115.PubMedGoogle Scholar
  23. den Boon, J.A., Chen, J.B., and Ahlquist, P. (2001). Identification of sequences in brome mosaic virus replicase protein 1a that mediate association with endoplasmic reticulum membranes. J. Virol. 75, 12370–12381.Google Scholar
  24. Desvoyes, B., Faure-Rabasse, S., Chen, M.H., Park, J.W., and Scholthof, H.B. (2002). A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein. Plant Physiol. 129, 1521–1532.PubMedGoogle Scholar
  25. Dickinson, V.J., Halder, J., and Woolston, C.J. (1996). The product of maize streak virus ORF V1 is associated with secondary plasmodesmata and is first detected with the onset of viral lesions. Virology 220, 51–59.PubMedGoogle Scholar
  26. Dunoyer, P., Ritzenthaler, C., Hemmer, O., Michler, P., and Fritsch, C. (2002). Intracellular localization of the Peanut clump virus replication complex in tobacco BY-2 protoplasts containing green fluorescent protein-labelled endoplasmic reticulum or golgi apparatus. J. Virol. 76, 865–874.PubMedGoogle Scholar
  27. Erhardt, M., Morant, M., Ritzenthaler, C., Stussi-Garaud, C., Guilley, H., Richards, K. et al. (2000). P42 movement protein of Beet necrotic yellow vein virus is targeted by the movement proteins P13 and P15 to puncuate bodies associated with plasmodesmata. Mol. Plant-Microbe Interact. 13, 520–528.PubMedGoogle Scholar
  28. Erhardt, M., Stussi-Garaud, C., Guilley, H., Richards, K.E., Jonard, G., and Bouzoubaa, S. (1999). The first triple gene block protein of peanut clump virus localizes to the plasmodesmata during virus infection. Virology 264, 220–229.PubMedGoogle Scholar
  29. Fridborg, I., Grainger, J., Page, A., Coleman, M., Findlay, K., and Angell, S. (2003). TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol. Plant-Microbe Interact. 16, 132–140.PubMedGoogle Scholar
  30. Garcia-Castillo, S., Sanchez-Pina, M.A., and Pallas, V. (2003). Spatio-temporal analysis of the RNAs, coat and movement (p7) proteins of Carnation mottle virus in Chenopodium quinoa plant. J. Gen. Virol. 84, 745–749.PubMedGoogle Scholar
  31. Garret, A., Kerlan, C., and Thomas, D. (1996). Ultrastructural study of acquisition and retention of potato leafroll luteovirus in the alimentary canal of its aphid vector, Myzus persicae Sulz. Arch. Virol. 141, 1279–1292.PubMedGoogle Scholar
  32. Gildow, F.E. (1993). Evidence for receptor-mediated endocytosis regulating luteovirus acquistion by aphids. Phytopathology 83, 270–277.Google Scholar
  33. Gildow, F.E., Reavy, B., Mayo, M.A., Duncan, G.H., Woodford, T., Lamb, J.W. et al. (2000). Aphid acquisition and cellular transport of Potato leafroll virus-like particles lacking P5 readthrough. Phytopathology 90, 1153–1161.Google Scholar
  34. Gillespie, T., Boevink, P., Haupt, S., Roberts, A.G., Toth, R., Valentine, T. et al. (2002). Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus. Plant Cell 14, 1207–1222.PubMedGoogle Scholar
  35. Gorshkova, E.N., Erokhina, T.N., Stroganova, T.A., Yelina, N.E., Zamayatin, A.A. J., Kalinina, N.O. et al. (2003). Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J. Gen. Virol. 84, 985–994.PubMedGoogle Scholar
  36. Hacker, D.L., Petty, I., Wei, N., and Morris, T.J. (1992). Turnip crinkle virus genes required for RNA replication and virus movement. Virology 186, 1–8.PubMedGoogle Scholar
  37. Hagiwara, Y., Komoda, K., Yamanaka, T., Tamai, A., Meshi, T., Funada, R. et al. (2003). Subcellular localization of host and viral proteins associated with tobamovirus RNA replication. EMBO J. 22, 344–353.PubMedGoogle Scholar
  38. Han, S. and Sanfaçon, H. (2003). Tomato ringspot virus proteins containing the nucleotide triphosphate binding domain are transmembrane proteins that associate with the endoplasmic reticulum and cofractionate with replication complexes. J. Virol. 77, 523–534.PubMedGoogle Scholar
  39. Heijden, M.W. v. d., Carette, J.E., Reinhoud, P.J., Haegi, A., and Bol, J.F. (2001). Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane. J. Virol. 75, 1879–1887.Google Scholar
  40. Heinlein, M., Padgett, H.S., Gens, J.S., Pickard, B.G., Casper, S.J., Epel, B.L. et al. (1998). Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10, 1107–1120.PubMedGoogle Scholar
  41. Hofer, P., Bedford, I.D., Markham, P.G., Jeske, H., and Frischmuth, T. (1997). Coat protein gene replacement results in whitefly transmission of an insect non-transmissible geminivirus isolate. Virology 236, 288–295.PubMedGoogle Scholar
  42. Hofmann, K. and Stoffel, W. (1993). TMbase—a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374, 166.Google Scholar
  43. Hohnle, M., Hofer, P., Bedford, I.D., Briddon, R.W., Markham, P.G., and Frischmuth, T. (2001). Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible Abutilon mosaic virus isolate. Virology 290, 164–171.PubMedGoogle Scholar
  44. Isogai, M., Uyeda, I., and Lee, B.-C. (1998). Detection and assignment of proteins encoded by rice black streaked dwarf fijivius S7, S8, S9 and S10. J. Gen. Virol. 79, 1487–1494.PubMedGoogle Scholar
  45. Jacobi, V., Peerenboom, E., Schenk, P.M., Antoniw, J.F., Steinbiss, H.-H., and Adams, M.J. (1995). Cloning and sequence analysis of RNA-2 of a mechanically-transmitted UK isolate of barley mild mosaic bymovirus (BaMMV). Virus Res. 37, 99–111.PubMedGoogle Scholar
  46. Jansen, K.A.J., Wolfs, C.J.A.M., Lohuis, H., Goldbach, R., and Verduin, B.J.M. (1998). Characterization of the brome mosaic virus movement protein expressed in E. coli. Virology 242, 387–394.Google Scholar
  47. Kanyuka, K., Ward, E., and Adams, M.J. (2003). Polymyxa graminis and the cereal viruses it transmits: A research challenge. Mol. Plant Pathol., 4, 393–406.Google Scholar
  48. Kikkert, M., Verschoor, A., Kormelink, R., Rottier, P., and Goldbach, R. (2001). Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. J. Virol. 75, 1004–1012.PubMedGoogle Scholar
  49. Lawrence, D.M. and Jackson, A.O. (2001). Interactions of the TGB1 protein during cell-to-cell movement of Barley stripe mosaic virus. J. Virol. 75, 8712–8723.PubMedGoogle Scholar
  50. Lee, S.K., Dabney-Smith, C., Hacker, D.L., and Bruce, B.D. (2001). Membrane activity of the southern cowpea mosaic virus coat protein: The role of basic amino acids, helix-forming potential, and lipid composition. Virology 291, 299–310.PubMedGoogle Scholar
  51. Medina, V., Peremyslov, V.V., Hagiwara, Y., and Dolja, V.V. (1999). Subcellular localization of the HSP70-homolog encoded by beet yellows closterovirus. Virology 260, 173–181.PubMedGoogle Scholar
  52. Mei, H. and Lee, Z. (1999). Association of the movement protein of alfalfa mosaic virus with the endoplasmic reticulum and its trafficking in epidermal cells of onion bulb scales. Mol. Plant-Microbe Interact. 12, 680–690.Google Scholar
  53. Meideros, R.B., Ullman, D.E., Sherwood, J.L., and German, T.L. (2000). Immunoprecipitation of a 50 kDa protein: A candidate receptor for tomato spotted wilt virus topsovirus (Bunyaviridae) in its main vector, Frankliniella occidentalis. Virus Res. 67, 109–118.Google Scholar
  54. Melcher, U. (2000). The “30K” superfamily of viral movement proteins. J. Gen. Virol. 81, 257–266.PubMedGoogle Scholar
  55. Merits, A., Rajamaki, M.L., Lindholm, P., Runeberg-Roos, P., Kekarainen, T., Puustinen, P. et al. (2002). Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J. Gen. Virol. 83, 1211–1221.PubMedGoogle Scholar
  56. Miranda, J.R.d., Munoz, M., Wu, R., Hull, R., and Espinoza, A.M. (1996). Sequence of rice hoja blanca tenuivirus RNA-2. Virus Genes 12, 231–237.PubMedGoogle Scholar
  57. Morin, S., Ghanim, M., Sobol, I., and Czosnek, H. (2000). The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and non-transmissible begomoviruses in the yet two-hybrid system. Virology 276, 404–416.PubMedGoogle Scholar
  58. Morozov, S.Y. and Solovyev, A.G. (2003). Triple gene block: Modular design of a multifunctional machine for plant virus movement. J. Gen. Virol. 84, 1351–1366.PubMedGoogle Scholar
  59. Morozov, S.Y., Solovyev, A.G., Kalinina, N.O., Fedorkin, O.N., Samuilova, O.V., Schiemann, J. et al. (1999). Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology 260, 55–63.PubMedGoogle Scholar
  60. Morozov, S.Y., Miroshnichenko, N.A., Solovyev, A.G., Zelenina, D.A., Fedorkin, O.N., Lukasheva et al. (1991). In vitro Membrane-Binding of the Translation Products of the Carlavirus 7-Kda Protein Genes. Virology 183, 782–785.PubMedGoogle Scholar
  61. Mushegian, A.R. and Koonin, E.V. (1993). Cell-to-cell movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Arch. Virol. 133, 239–257.PubMedGoogle Scholar
  62. Norris, E., Vaira, A.M., Caciagli, P., Masenga, V., Gronenborn, B., and Accotto, G.P. (1998). Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J. Virol. 72, 10050–10057.Google Scholar
  63. Nurkiyanova, K.M., Ryabov, E.V., Kalinina, N.O., Fan, Y., Andreev, I., Fitzgerald, A.G. et al. (2001). Umbravirusencoded movement protein induces tubule formation on the surface of protoplasts and binds RNA incompletely and non-cooperatively. J. Gen. Virol. 82, 2579–2588.PubMedGoogle Scholar
  64. Omura, T., Yan, J., Zhong, B., Wada, M., Zhu, Y., Tomaru, M. et al. (1998). The P2 protein of rice dwarf phytoreovirus is required for adsorption of the virus to cells of the insect vector. J. Virol. 72, 9370–9373.PubMedGoogle Scholar
  65. Oparka, K.J., Prior, D.A.M., Santa Cruz, S., Padgett, H.S., and Beachy, R.N. (1997). Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J. 12, 781–789.PubMedGoogle Scholar
  66. Osman, T.A.M. and Buck, K.W. (1997). The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-Binding subunit of yeast eIF-3. J. Virol. 71, 6075–6082.PubMedGoogle Scholar
  67. Peerenboom, E., Jacobi, V., Antoniw, J.F., Schlichter, U.H.A., Cartwright, E.J., Steinbiss, H.-H. et al. (1996). The complete nucleotide sequence of RNA-2 of a fungally-transmitted UK isolate of barley mild mosaic bymovirus (BaMMV) and identification of amino acid combinations possibly involved in fungus transmission. Virus Res. 40, 149–159.PubMedGoogle Scholar
  68. Perbal, M.-C., Thomas, C.L., and Maule, A.J. (1993). Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts. Virology 195, 281–285.PubMedGoogle Scholar
  69. Peremyslov, V.V., Hagiwara, Y., and Dolja, V.V. (1999). HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc. Natl. Acad. Sci. USA 96, 14771–14776.PubMedGoogle Scholar
  70. Pouwels, J., Van der Krogt, G.N.M., Van Lent, J., Bisseling, T., and Wellink, J. (2002). The cytoskeleton and the secretory pathway are not involved in targeting the cowpea mosaic virus movement protein to the cell periphery. Virology 297, 48–56.PubMedGoogle Scholar
  71. Reavy, B. and Mayo, M.A. (2002). Persistent transmission of luteoviruses by aphids. In R.T. Plumb (ed.), Plant Virus Vector Interactions (Adv. Bot. Res. 36). Academic Press, San Diego, CA, pp. 21–46.Google Scholar
  72. Reavy, B., Arif, M., Cowan, G.H., and Torrance, L. (1998). Association of sequences in the coat protein/readthrough domain of potato mop-top virus with transmission by Spongospora subterranea. J. Gen. Virol. 79, 2343–2347.PubMedGoogle Scholar
  73. Reichel, C. and Beachy, R.N. (1998). Tobacco mosaic virus infection induces severe morphological changes of the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 95, 11169–11174.PubMedGoogle Scholar
  74. Reichel, C., Mas, P., and Beachy, R.N. (1999). The role of the ER and cytoskeleton in plant viral trafficking. Trends Plant Sci. 4, 458–462.PubMedGoogle Scholar
  75. Restrepo-Hartwig, M. and Ahlquist, P. (1999). Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum. J. Virol. 73, 10303–10309.PubMedGoogle Scholar
  76. Restrepo-Hartwig, M.A. and Carrington, J.C. (1994). The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. J. Virol. 68, 2388–2397.PubMedGoogle Scholar
  77. Ritzenthaler, C., Laporte, C., Gaire, F., Dunoyer, P., Schmitt, C., Duval, S. et al. (2002). Grapevine fanleaf virus replication occurs on endoplasmic reticulum-derived membranes. J. Virol. 76, 8808–8819.PubMedGoogle Scholar
  78. Roberts, A.G. and Oparka, K.J. (2003). Plasmodesmata and the control of symplastic transport. Plant, Cell Environ. 26, 103–124.Google Scholar
  79. Rouze-Jouan, J., Terradot, L., Pasquer, F., Tanguy, S., and Ducray-Bourdin, D.G. (2001). The passage of Potato leafroll virus through Myzus persicae gut membrane regulates transmission efficiency. J. Gen. Virol. 82, 17–23.PubMedGoogle Scholar
  80. Rubino, L. and Russo, M. (1998). Membrane targeting sequences in Tombusvirus infections. Virology 252, 431–437.PubMedGoogle Scholar
  81. Rubino, L., Di Franco, A., and Russo, M. (2000). Expression of a plant virus non-structural protein in Saccharomyces cerevisiae causes membrane proliferation and altered mitochondrial morphology. J. Gen. Virol. 81, 279–286.PubMedGoogle Scholar
  82. Rubino, L., Weber-Lotfi, F., Dietrich, A., Stussi-Garaud, C., and Russo, M. (2001). The open reading frame 1-encoded (“36K”) protein of Carnation Italian ringspot virus localizes to mitochondria. J. Gen. Virol. 82, 29–34.PubMedGoogle Scholar
  83. Saldarelli, P., Minafra, A., Castellano, M.A., and Martelli, G.P. (2000). Immunodetection and subcellular localization of the proteins encoded by ORF 3 of grapevine viruses A and B. Arch. Virol. 145, 1535–1542.PubMedGoogle Scholar
  84. Schmitt, C., Balmori, E., Guilley, H., Richards, K., and Jonard, G. (1992). In vitro mutagenesis of biologically active transcripts of beet necrotic yellow vein virus RNA 2: Evidence that a domain of the 75 kDa readthrough protein is important for efficient virus assembly. Proc. Natl. Acad. Sci. USA 89, 5715–5719.PubMedGoogle Scholar
  85. Scholthof, K.B.G., Scholthof, H.B., and Jackson, A.O. (1995). The tomato bushy stunt virus replicase proteins are coordinately expressed and membrane associated. Virology 208, 365–369.PubMedGoogle Scholar
  86. Soellick, T.R., Uhrig, J.F., Bucher, G.L., Kellmann, J.W., and Schreier, P.H. (2000). The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc. Natl. Acad. Sci. USA 97, 2373–2378.PubMedGoogle Scholar
  87. Solovyev, A.G., Stroganova, T.A., Zamyatnin, A.A., Jr., Fedorkin, O.N., Schiemann, J., and Morozov, S.Y. (2000). Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269, 113–127.PubMedGoogle Scholar
  88. Sonnhammer, E.L.L., von Heijne, G., and Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings of the Sixth International Conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, CA, pp. 175–182.Google Scholar
  89. Takahashi, M., Toriyama, S., Hamamatsu, C., and Ishihama, A. (1993). Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. J. Gen. Virol. 74, 769–773.PubMedGoogle Scholar
  90. Tamada, T. and Kusume, T. (1991). Evidence that the 75K readthrough protein of beet necrotic yellow vein virus RNA-2 is essential for transmission by the fungus Polymyxa betae. J. Gen. Virol. 72, 1497–1504.PubMedGoogle Scholar
  91. Tamada, T., Schmitt, C., Saito, M., Guilley, H., Richards, K., and Jonard, G. (1996). High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: A KTER motif is important for efficient transmission of the virus by Polymyxa betae. J. Gen. Virol. 77, 1359–1367.PubMedGoogle Scholar
  92. Tamai, A. and Meshi, T. (2001). Cell-to-cell movement of Potato virus X: The role of p12 and p8 encoded by the second and third open reading frames of the triple gene block. Mol. Plant-Microbe Interact. 14, 1158–1167.PubMedGoogle Scholar
  93. Tomaru, M., Maruyama, W., Kikuchi, A., Yan, J., Zhu, Y., Suzuki, N. et al. (1997). The loss of outer capsid protein P2 results in nontransmissibility by the insect vector of rice dwarf phytoreovirus. J. Gen. Virol. 71, 8019–8023.Google Scholar
  94. Tsujimoto, Y., Numaga, T., Ohshima, K., Yano, M., Ohsawa, R., Goto, D.B. et al. (2003). Arabidopsis Tobamovirus Multiplication (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J. 22, 335–343.PubMedGoogle Scholar
  95. Tusnády, G.E. and Simon, I. (1998). Principles governing amino acid composition of integral membrane proteins: Applications to topology prediction. J. Mol. Biol. 283, 489–506.PubMedGoogle Scholar
  96. Ullman, D.E., Meideros, R., Campbell, L.R., Whitfield, A.E., Sherwood, J.L., and German, T.L. (2002). Thrips as vectors of Tospoviruses. In R.T. Plumb (ed.), Plant Virus Vector Interactions (Adv. Bot. Res. 36). Academic Press, San Diego, CA, pp. 113–140.Google Scholar
  97. Van Lent, J., Storms, M., van der Meer, F., Wellink, J., and Goldbach, R. (1991). Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. J. Gen. Virol. 72, 2615–2623.PubMedGoogle Scholar
  98. Vilar, M., Sauri, A., Monne, M., Marcos, J.F., von Heijne, G., Perez-Paya, E. et al. (2002). Insertion and topology of a plant viral movement protein in the endoplasmic reticulum membrane. J. Biol. Chem. 277, 23447–23452.PubMedGoogle Scholar
  99. von Heijne, G. (1992). Membrane protein structure prediction, hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487–494.Google Scholar
  100. Wanitchakorn, R., Hafner, G.J., Harding, R.M., and Dale, J.L. (2000). Functional analysis of proteins encoded by banana bunchy top virus DNA-4 to-6. J. Gen. Virol. 81, 299–306.PubMedGoogle Scholar
  101. Weber-Lotfi, F., Dietrich, A., Russo, M., and Rubino, L. (2002). Mitochondrial targeting and membrane anchoring of a viral replicase in plant and yeast cells. J. Virol. 76, 10485–10496.PubMedGoogle Scholar
  102. Yamanaka, T., Ohta, T., Takahashi, M., Meshi, T., Schmidt, R., Dean, C. et al. (2000). TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc. Natl. Acad. Sci. USA 97, 10107–10112.PubMedGoogle Scholar
  103. Yamanaka, T., Imai, T., Satoh, R., Kawashima, A., Takahashi, M., Tomita, K. et al. (2002). Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J. Virol. 76, 2491–2497.PubMedGoogle Scholar
  104. Zamyatnin, A.A., Solovyev, A.G., Sablina, A.A., Agranovsky, A.A., Katul, L., Vetten, H.J. et al. (2002). Dual-colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells. J. Gen. Virol. 83, 651–662.PubMedGoogle Scholar
  105. Zhang, S.C., Ghosh, R., and Jeske, H. (2002). Subcellular targeting domains of Abutilon mosaic geminivirus movement protein BC1. Arch. Virol. 147, 2349–2363.PubMedGoogle Scholar
  106. Zhang, S.C., Wege, C., and Jeske, H. (2001). Movement proteins (BC1 and BV1) of Abutilon mosaic geminivirus are cotransported in and between cells of sink but not of source leaves as detected by green fluorescent protein tagging. Virology 290, 249–260.PubMedGoogle Scholar
  107. Zhou, G.Y., Lu, X.B., Lu, H.J., Lei, J.L., Chen, S.X., and Gong, Z.X. (1999). Rice Ragged Stunt Oryzavirus: Role of the viral spike protein in transmission by the insect vector. Ann. Appl. Biol. 135, 573–578.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2005

Authors and Affiliations

  • Michael J. Adams
    • 1
  • John F. Antoniw
    • 1
  1. 1.Plant Pathogen Interactions DivisionRothamsted ResearchHarpendenUK

Personalised recommendations