Skip to main content

Neural Crest and Cranial Ectodermal Placodes

  • Chapter

Overall Summary

Hopefully, this chapter has succeeded in giving a flavor of the complexity that underlies the induction and development of the neural crest and cranial ectodermal placodes. The neural crest forms the entire PNS in the trunk, while placodes are essential for the formation of the paired peripheral sense organs and most cranial sensory neurons. Although for the most part they have been treated separately, it is important to realize that neural crest and placodes do not develop in isolation from one another. As discussed in the preceding sections, placode-derived neurons in cranial sensory ganglia are supported by neural crest-derived satellite glia. Neural crest-derived trigeminal neurons need placode-derived trigeminal neurons in order to make appropriate peripheral projections. Migrating streams of cranial neural crest cells are required for proper migration of epibranchial placode-derived neurons. Hence, both the formation and interaction of placodes and neural crest cells are essential for the development of a fully functional peripheral nervous system. The mutual interdependence of these two cell populations reflects their long evolutionary history together: Both neural crest and placodes are present in hagfish, the most primitive extant craniate.

Since the last edition of this book, in 1991, our understanding of the induction and development of both neural crest and cranial ectodermal placodes has advanced in leaps and bounds. It is to be hoped that the next decade will prove similarly fruitful.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abzhanov, A., Tzahor, E., Lassar, A.B., and Tabin, C.J., 2003, Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro, Development 130:4567–4579.

    Article  CAS  PubMed  Google Scholar 

  • Adams, R.H., Diella, F., Hennig, S., Helmbacher, F., Deutsch, U., and Klein, R., 2001, The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration, Cell 104:57–69.

    Article  CAS  PubMed  Google Scholar 

  • Adelmann, H.B., 1925, The development of the neural folds and cranial ganglia of the rat, J. Comp. Neurol. 39: 19–171.

    Article  Google Scholar 

  • Adlkofer, K. and Lai, C., 2000, Role of neuregulins in glial cell development, Glia 29: 104–111.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal, M. and Brauer, P.R., 1996, Urokinase-type plasminogen activator regulates cranial neural crest cell migration in vitro, Dev. Dyn. 207:281–290.

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen, M.S. and Saarma, M., 2002, The GDNF family: Signalling, biological functions and therapeutic value, Nat. Rev. Neurosci. 3:383–394.

    Article  CAS  PubMed  Google Scholar 

  • Akitaya, T. and Bronner-Fraser, M., 1992, Expression of cell adhesion molecules during initiation and cessation of neural crest cell migration, Dev. Dyn. 194:12–20.

    CAS  PubMed  Google Scholar 

  • Alfandari, D., Cousin, H., Gaultier, A., Smith, K., White, J.M., Darribère, T., and DeSimone, D.W., 2001, Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration, Curr. Biol. 11:918–930.

    Article  CAS  PubMed  Google Scholar 

  • Alfandari, D., Wolfsberg, T.G., White, J.M., and DeSimone, D.W., 1997, ADAM 13: A novel ADAM expressed in somitic mesoderm and neural crest cells during Xenopus laevis development, Dev. Biol. 182:314–330.

    Article  CAS  PubMed  Google Scholar 

  • Altmann, C.R., Chow, R.L., Lang, R.A., and Hemmati-Brivanlou, A., 1997, Lens induction by Pax-6 in Xenopus laevis, Dev. Biol. 185:119–123.

    Article  CAS  PubMed  Google Scholar 

  • Andermann, P., Ungos, J., and Raible, D.W., 2002, Neurogenin1 defines zebrafish cranial sensory ganglia precursors, Dev. Biol. 251:45–58.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D.J., 1993, Molecular control of cell fate in the neural crest: The sympathoadrenal lineage. Annu. Rev. Neurosci. 16:129–158.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D.J., 1997, Cellular and molecular biology of neural crest cell lineage determination, Trends Genet. 13:276–280.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D.J., 1999, Lineages and transcription factors in the specification of vertebrate primary sensory neurons, Curr. Opin. Neurobiol. 9:517–524.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D.J., 2000, Genes, lineages and the neural crest: A speculative review, Phil. Trans. R. Soc. Lond. B, 355:953–964.

    Article  CAS  Google Scholar 

  • Anderson, D.J. and Jan, Y.N., 1997, The determination of the neuronal phenotype, in Molecular and Cellular Approaches to Neural Development (W.M. Cowan, T.M. Jessell, and S.L. Zipursky, eds.), Oxford University Press, Oxford, pp. 26–63.

    Google Scholar 

  • Artinger, K.B. and Bronner-Fraser, M., 1992, Partial restriction in the developmental potential of late emigrating avian neural crest cells Dev. Biol. 149:149–157.

    Article  CAS  PubMed  Google Scholar 

  • Artinger, K.B., Chitnis, A.B., Mercola, M., and Driever, W., 1999, Zebrafish narrowminded suggests a genetic link between formation of neural crest and primary sensory neurons, Development 126:3969–3979.

    CAS  PubMed  Google Scholar 

  • Ashery-Padan, R. and Gruss, P., 2001, Pax6 lights-up the way for eye development, Curr. Opin. Cell Biol. 13:706–714.

    Article  CAS  PubMed  Google Scholar 

  • Ayer-Le Lièvre, C.S. and Le Douarin, N.M., 1982, The early development of cranial sensory ganglia and the potentialities of their component cells studied in quail-chick chimeras, Dev. Biol. 94:291–310.

    PubMed  Google Scholar 

  • Baker, C.V.H. and Bronner-Fraser, M., 1997, The origins of the neural crest. Part II: an evolutionary perspective, Mech. Dev. 69:13–29.

    CAS  PubMed  Google Scholar 

  • Baker, C.V.H. and Bronner-Fraser, M., 2000, Establishing neuronal identity in vertebrate neurogenic placodes, Development 127:3045–3056.

    CAS  PubMed  Google Scholar 

  • Baker, C.V.H. and Bronner-Fraser, M., 2001, Vertebrate cranial placodes I. Embryonic induction, Dev. Biol. 232:1–61.

    Article  CAS  PubMed  Google Scholar 

  • Baker, C.V.H., Bronner-Fraser, M., Le Douarin, N.M., and Teillet, M.-A., 1997, Early-and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo, Development 124:3077–3087.

    CAS  PubMed  Google Scholar 

  • Baker, C.V.H., Stark, M.R., and Bronner-Fraser, M., 2002, Pax3-expressing trigeminal placode cells can localize to trunk neural crest sites but are committed to a cutaneous sensory neuron fate, Dev. Biol. 249:219–236.

    Article  CAS  PubMed  Google Scholar 

  • Baker, C.V.H., Stark, M.R., Marcelle, C., and Bronner-Fraser, M., 1999, Competence, specification and induction of Pax-3 in the trigeminal placode, Development 126:147–156.

    CAS  PubMed  Google Scholar 

  • Baker, R.C. and Graves, G.O., 1939, The behaviour of the neural crest in the forebrain region of Amblystoma, J. Comp. Neurol. 71:389–415.

    Article  Google Scholar 

  • Bang, A.G., Papalopulu, N., Goulding, M.D., and Kintner, C., 1999, Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm, Dev. Biol. 212:366–380.

    Article  CAS  PubMed  Google Scholar 

  • Bang, A.G., Papalopulu, N., Kintner, C., and Goulding, M.D., 1997, Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm, Development 124:2075–2085.

    CAS  PubMed  Google Scholar 

  • Barald, K.F., 1988a, Antigen recognized by monoclonal antibodies to mesencephalic neural crest and to ciliary ganglion neurons is involved in the high affinity choline uptake mechanism in these cells, J. Neurosci. Res. 21:119–134.

    CAS  PubMed  Google Scholar 

  • Barald, K.F., 1988b, Monoclonal antibodies made to chick mesencephalic neural crest cells and to ciliary ganglion neurons identify a common antigen on the neurons and a neural crest subpopulation, J. Neurosci. Res. 21:107–118.

    CAS  PubMed  Google Scholar 

  • Baroffio, A., Dupin, E., and Le Douarin, N.M., 1988, Clone-forming ability and differentiation potential of migratory neural crest cells, Proc. Natl. Acad. Sci. USA 85:5325–5329.

    CAS  ADS  PubMed  Google Scholar 

  • Baroffio, A., Dupin, E., and Le Douarin, N.M., 1991, Common precursors for neural and mesectodermal derivatives in the cephalic neural crest, Development 112:301–305.

    CAS  PubMed  Google Scholar 

  • Barry, M.A. and Bennett, M.V.L., 1989, Specialised lateral line receptor systems in elasmobranchs: The spiracular organs and vesicles of Savi, in The Mechanosensory Lateral Line. Neurobiology and Evolution (S. Coombs, P. Görner, and H. Münz, eds.), Springer-Verlag, New York, pp. 591–606.

    Google Scholar 

  • Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J. et al., 2000, The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2:84–89.

    CAS  PubMed  Google Scholar 

  • Begbie, J., Brunet, J.-F., Rubenstein, J.L., and Graham, A., 1999, Induction of the epibranchial placodes, Development 126:895–902.

    CAS  PubMed  Google Scholar 

  • Begbie, J. and Graham, A., 2001a, The ectodermal placodes: A dysfunctional family, Phil. Trans. R. Soc. Lond. B 356:1655–1660.

    Article  CAS  Google Scholar 

  • Begbie, J. and Graham, A., 2001b, Integration between the epibranchial placodes and the hindbrain, Science 294:595–598.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Belecky-Adams, T.L., Adler, R., and Beebe, D.C., 2002, Bone morphogenetic protein signaling and the initiation of lens fiber cell differentiation, Development 129:3795–3802.

    CAS  PubMed  Google Scholar 

  • Bellmeyer, A., Krase, J., Lindgren, J., and LaBonne, C., 2003, The protooncogene c-Myc is an essential regulator of neural crest formation in Xenopus, Dev. Cell 4:827–839.

    Article  CAS  PubMed  Google Scholar 

  • Bermingham, N.A., Hassan, B.A., Price, S.D., Vollrath, M.A., Ben-Arie, N., Eatock, R.A. et al., 1999, Math1: An essential gene for the generation of inner ear hair cells, Science 284:1837–1841.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand, N., Castro, D.S., and Guillemot, F., 2002, Proneural genes and the specification of neural cell types, Nat. Rev. Neurosci. 3:517–530.

    Article  CAS  PubMed  Google Scholar 

  • Bixby, S., Kruger, G., Mosher, J., Joseph, N., and Morrison, S., 2002, Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity, Neuron 35:643–656.

    Article  CAS  PubMed  Google Scholar 

  • Blaschko, H., 1973, Catecholamine biosynthesis, Br. Med. Bull. 29:105–109.

    CAS  Google Scholar 

  • Blaugrund, E., Pham, T.D., Tennyson, V.M., Lo, L., Sommer, L., Anderson, D.J. et al., 1996, Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence, Development 122:309–320.

    CAS  PubMed  Google Scholar 

  • Bodznick, D., 1989, Comparisons between electrosensory and mechanosensory lateral line systems, in The Mechanosensory Lateral Line. Neurobiology and Evolution (S. Coombs, P. Görner, and H. Münz, eds.), Springer-Verlag, New York, pp. 655–678.

    Google Scholar 

  • Bodznick, D. and Northcutt, R.G., 1981, Electroreception in lampreys: Evidence that the earliest vertebrates were electroreceptive, Science 212:465–467.

    CAS  ADS  PubMed  Google Scholar 

  • Bonstein, L., Elias, S., and Frank, D., 1998, Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos, Dev. Biol. 193:156–168.

    Article  CAS  PubMed  Google Scholar 

  • Boorman, C.J. and Shimeld, S.M., 2002, Pitx homeobox genes in Ciona and amphioxus show left-right asymmetry is a conserved chordate character and define the ascidian adenohypophysis, Evol. Dev. 4:354–365.

    Article  CAS  PubMed  Google Scholar 

  • Borchers, A., David, R., and Wedlich, D., 2001, Xenopus cadherin-11 restrains cranial neural crest migration and influences neural crest specification, Development 128:3049–3060.

    CAS  PubMed  Google Scholar 

  • Bordzilovskaya, N.P., Dettlaff, T.A., Duhon, S.T., and Malacinski, G.M., 1989, Developmental-stage series of axolotl embryos, in Developmental Biology of the Axolotl (J.B. Armstrong and G.M. Malacinski, eds.), Oxford University Press, Oxford, pp. 176–186.

    Google Scholar 

  • Brachet, A., 1907, Recherches sur l’ontogénèse de la tête chez les Amphibiens, Arch. Biol. 23:165–257.

    Google Scholar 

  • Britsch, S., Goerich, D.E., Riethmacher, D., Peirano, R.I., Rossner, M., Nave, K.A. et al., 2001, The transcription factor Sox10 is a key regulator of peripheral glial development, Genes Dev. 15:66–78.

    Article  CAS  PubMed  Google Scholar 

  • Bronner-Fraser, M., 1986, Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1, Dev. Biol. 115:44–55.

    CAS  PubMed  Google Scholar 

  • Bronner-Fraser, M. and Fraser, S., 1989, Developmental potential of avian trunk neural crest cells in situ, Neuron 3:755–766.

    Article  CAS  PubMed  Google Scholar 

  • Bronner-Fraser, M. and Fraser, S.E., 1988, Cell lineage analysis reveals multipotency of some avian neural crest cells, Nature 335:161–164.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Bronner-Fraser, M. and Stern, C., 1991, Effects of mesodermal tissues on avian neural crest cell migration, Dev. Biol. 143:213–217.

    CAS  PubMed  Google Scholar 

  • Brunet, J.F. and Pattyn, A., 2002, Phox2 genes-from patterning to connectivity, Curr. Opin. Genet. Dev. 12:435–440.

    Article  CAS  PubMed  Google Scholar 

  • Burstyn-Cohen, T. and Kalcheim, C., 2002, Association between the cell cycle and neural crest delamination through specific regulation of G1/S transition, Dev. Cell 3:383–395.

    CAS  PubMed  Google Scholar 

  • Cai, H., Kratzschmar, J., Alfandari, D., Hunnicutt, G., and Blobel, C.P., 1998, Neural crest-specific and general expression of distinct metalloprotease-disintegrins in early Xenopus laevis development, Dev. Biol. 204:508–524.

    Article  CAS  PubMed  Google Scholar 

  • Calof, A.L., Mumm, J.S., Rim, P.C., and Shou, J., 1998, The neuronal stem cell of the olfactory epithelium, J. Neurobiol. 36:190–205.

    Article  CAS  PubMed  Google Scholar 

  • Cambronero, F. and Puelles, L., 2000, Rostrocaudal nuclear relationships in the avian medulla oblongata: A fate map with quail chick chimeras, J. Comp. Neurol. 427:522–545.

    Article  CAS  PubMed  Google Scholar 

  • Cameron-Curry, P., Dulac, C., and Le Douarin, N.M., 1993, Negative regulation of Schwann cell myelin protein gene expression by the dorsal root ganglionic microenvironment, Eur. J. Neurosci. 5:594–604.

    CAS  PubMed  Google Scholar 

  • Cano, A., Pérez-Moreno, M.A., Rodrigo, I., Locascio, A., Blanco, M.J., del Barrio, M.G. et al., 2000, The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression, Nat. Cell Biol. 2:76–83.

    Article  CAS  PubMed  Google Scholar 

  • Carl, T.F., Dufton, C., Hanken, J., and Klymkowsky, M.W., 1999, Inhibition of neural crest migration in Xenopus using antisense slug RNA, Dev. Biol. 213:101–115.

    Article  CAS  PubMed  Google Scholar 

  • Carr, V.M. and Simpson, S.B., Jr., 1978, Proliferative and degenerative events in the early development of chick dorsal root ganglia. I. Normal development, J. Comp. Neurol. 182:727–739.

    CAS  PubMed  Google Scholar 

  • Catala, M., Teillet, M.-A., De Robertis, E.M., and Le Douarin, M.L., 1996, A spinal cord fate map in the avian embryo: While regressing, Hensen’s node lays down the notochord and floor plate thus joining the spinal cord lateral walls, Development 122:2599–2610.

    CAS  PubMed  Google Scholar 

  • Catala, M., Ziller, C., Lapointe, F., and Le Douarin, N.M., 2000, The developmental potentials of the caudalmost part of the neural crest are restricted to melanocytes and glia, Mech. Dev. 95:77–87.

    Article  CAS  PubMed  Google Scholar 

  • Cau, E., Casarosa, S., and Guillemot, F., 2002, Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage, Development 129:1871–1880.

    CAS  PubMed  Google Scholar 

  • Cau, E., Gradwohl, G., Casarosa, S., Kageyama, R., and Guillemot, F., 2000, Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium, Development 127:2323–2332.

    CAS  PubMed  Google Scholar 

  • Cau, E., Gradwohl, G., Fode, C., and Guillemot, F., 1997, Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors, Development 124:1611–1621.

    CAS  PubMed  Google Scholar 

  • Chai, Y., Jiang, X., Ito, Y., Bringas, P., Han, J., Rowitch, D.H. et al., 2000, Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis, Development 127:1671–1679.

    CAS  PubMed  Google Scholar 

  • Chang, C. and Hemmati-Brivanlou, A., 1998, Neural crest induction by Xwnt7B in Xenopus, Dev. Biol. 194:129–134.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P., Johnson, J.E., Zoghbi, H.Y., and Segil, N., 2002, The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination, Development 129:2495–2505.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, M. and Briscoe, J., 2003, Neural crest development is regulated by the transcription factor Sox9, Development 130:5681–5693.

    Article  CAS  PubMed  Google Scholar 

  • Chibon, P., 1964, Analyse par la méthode de marquage nucléaire à la thymidine tritiée des dérivés de la crête neurale céphalique chez l’Urodèle Pleurodeles waltlii, C. R. Acad. Sci., Ser. III 259:3624–3627.

    CAS  Google Scholar 

  • Chibon, P., 1966, Analyse expérimentale de la régionalisation et des capacités morphogénétiques de la crête neurale chez l’Amphibien Urodèle Pleurodeles waltlii Michah, Mem. Soc. Fr. Zool. 36:1–107.

    Google Scholar 

  • Chibon, P., 1967a, Etude expérimentale par ablations, greffes et autoradiographie, de l’origine des dents chez l’Amphibien Urodèle Pleurodeles waltlii Michah, Arch. Oral Biol. 12:745–753.

    CAS  PubMed  Google Scholar 

  • Chibon, P., 1967b, Marquage nucléaire par la thymidine tritiée des dérivés de la crête neurale chez l’Amphibien Urodèle Pleurodeles waltlii Michah, J. Embryol. Exp. Morphol. 18:343–358.

    CAS  PubMed  Google Scholar 

  • Chow, R.L., Altmann, C.R., Lang, R.A., and Hemmati-Brivanlou, A., 1999, Pax6 induces ectopic eyes in a vertebrate, Development 126:4213–4222.

    CAS  PubMed  Google Scholar 

  • Christiaen, L., Burighel, P., Smith, W.C., Vernier, P., Bourrat, F., and Joly, J.S., 2002, Pitx genes in Tunicates provide new molecular insight into the evolutionary origin of pituitary, Gene 287:107–113.

    Article  CAS  PubMed  Google Scholar 

  • Ciment, G. and Weston, J.A., 1982, Early appearance in neural crest and crest-derived cells of an antigenic determinant present in avian neurons, Dev. Biol. 93:355–367.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, A.M. and Königsberg, I.R., 1975, A clonal approach to the problem of neural crest determination, Dev. Biol. 46:262–280.

    Article  CAS  PubMed  Google Scholar 

  • Collazo, A., Bronner-Fraser, M., and Fraser, S.E., 1993, Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration, Development 118:363–376.

    CAS  PubMed  Google Scholar 

  • Coombs, S., Görner, P., and Münz, H., 1989, The Mechanosensory Lateral Line. Neurobiology and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Cornell, R.A. and Eisen, J.S., 2000, Delta signaling mediates segregation of neural crest and spinal sensory neurons from zebrafish lateral neural plate, Development 127:2873–2882.

    CAS  PubMed  Google Scholar 

  • Cornell, R.A. and Eisen, J.S., 2002, Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function, Development 129:2639–2648.

    CAS  PubMed  Google Scholar 

  • Couly, G., Creuzet, S., Bennaceur, S., Vincent, C., and Le Douarin, N.M., 2002, Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head, Development 129:1061–1073.

    CAS  PubMed  Google Scholar 

  • Couly, G. and Le Douarin, N.M., 1988, The fate map of the cephalic neural primordium at the presomitic to the 3-somite stage in the avian embryo, Development 103:101–113.

    PubMed  Google Scholar 

  • Couly, G.F., Coltey, P.M., and Le Douarin, N.M., 1993, The triple origin of skull in higher vertebrates: A study in quail-chick chimeras, Development 117:409–429.

    CAS  PubMed  Google Scholar 

  • Couly, G.F. and Le Douarin, N.M., 1985, Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon, Dev. Biol. 110:422–439.

    Article  CAS  PubMed  Google Scholar 

  • Covell, D.A., Jr. and Noden, D.M., 1989, Embryonic development of the chick primary trigeminal sensory-motor complex, J. Comp. Neurol. 286:488–503.

    Article  PubMed  Google Scholar 

  • D’Amico-Martel, A. and Noden, D.M., 1980, An autoradiographic analysis of the development of the chick trigeminal ganglion, J. Embryol. Exp. Morphol. 55:167–182.

    CAS  PubMed  Google Scholar 

  • D’Amico-Martel, A. and Noden, D.M., 1983, Contributions of placodal and neural crest cells to avian cranial peripheral ganglia, Am. J. Anat. 166:445–468.

    CAS  PubMed  Google Scholar 

  • Dasen, J.S. and Rosenfeld, M.G., 2001, Signaling and transcriptional mechanisms in pituitary development, Annu. Rev. Neurosci. 24:327–355.

    Article  CAS  PubMed  Google Scholar 

  • David, R., Ahrens, K., Wedlich, D., and Schlosser, G., 2001, Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors, Mech. Dev. 103:189–192.

    Article  CAS  PubMed  Google Scholar 

  • Davis, R.J., Shen, W., Sandler, Y.I., Heanue, T.A., and Mardon, G., 2001, Characterization of mouse Dach2, a homologue of Drosophila dachshund, Mech. Dev. 102:169–179.

    Article  CAS  PubMed  Google Scholar 

  • Davis, R.L. and Turner, D.L., 2001, Vertebrate hairy and Enhancer of split related proteins: Transcriptional repressors regulating cellular differentiation and embryonic patterning, Oncogene 20:8342–8357.

    Article  CAS  PubMed  Google Scholar 

  • De Bellard, M., Ching, W., Gossler, A., and Bronner-Fraser, M., 2002, Disruption of segmental neural crest migration and ephrin expression in Delta-1 null mice, Dev. Biol. 249:121–130.

    PubMed  Google Scholar 

  • de Iongh, R.U., Lovicu, F.J., Overbeek, P.A., Schneider, M.D., Joya, J., Hardeman, E.D. et al., 2001, Requirement for TGFβ receptor signaling during terminal lens fiber differentiation, Development 128:3995–4010.

    PubMed  Google Scholar 

  • Deardorff, M.A., Tan, C., Saint-Jeannet, J.P., and Klein, P.S., 2001, A role for frizzled 3 in neural crest development, Development 128:3655–3663.

    CAS  PubMed  Google Scholar 

  • Debby-Brafman, A., Burstyn-Cohen, T., Klar, A., and Kalcheim, C., 1999, F-Spondin, expressed in somite regions avoided by neural crest cells, mediates inhibition of distinct somite domains to neural crest migration, Neuron 22:475–488.

    CAS  PubMed  Google Scholar 

  • del Barrio, M.G. and Nieto, M.A., 2002, Overexpression of Snail family members highlights their ability to promote chick neural crest formation, Development 129:1583–1593.

    PubMed  Google Scholar 

  • Derby, M.A. and Newgreen, D.F., 1982, Differentiation of avian neural crest cells in vitro: Absence of a developmental bias toward melanogenesis, Cell Tissue Res. 225:365–378.

    CAS  PubMed  Google Scholar 

  • Detwiler, S.R., 1937, Observations upon the migration of neural crest cells, and upon the development of the spinal ganglia and vertebral arches in Amblystoma, Am. J. Anat. 61:63–94.

    Article  Google Scholar 

  • Dickinson, M.E., Selleck, M.A., McMahon, A.P., and Bronner-Fraser, M., 1995, Dorsalization of the neural tube by the non-neural ectoderm, Development 121:2099–2106.

    CAS  PubMed  Google Scholar 

  • Dorsky, R.I., Moon, R.T., and Raible, D.W., 1998, Control of neural crest cell fate by the Wnt signalling pathway, Nature 396:370–373.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Dorsky, R.I., Moon, R.T., and Raible, D.W., 2000a, Environmental signals and cell fate specification in premigratory neural crest, Bioessays 22:708–716.

    Article  CAS  PubMed  Google Scholar 

  • Dorsky, R.I., Raible, D.W., and Moon, R.T., 2000b, Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway, Genes Dev. 14:158–162.

    CAS  PubMed  Google Scholar 

  • Dottori, M., Gross, M.K., Labosky, P., and Goulding, M., 2001, The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate, Development 128:4127–4138.

    CAS  PubMed  Google Scholar 

  • Du Shane, G., 1938, Neural fold derivatives in the Amphibia: Pigment cells, spinal ganglia and Rohon-Beard cells, J. Exp. Zool. 78:485–503.

    Google Scholar 

  • Dubois, E.A., Zandbergen, M.A., Peute, J., and Goos, H.J., 2002, Evolutionary development of three gonadotropin-releasing hormone (GnRH) systems in vertebrates, Brain Res. Bull. 57:413–418.

    Article  CAS  PubMed  Google Scholar 

  • Dulac, C. and Le Douarin, N.M., 1991, Phenotypic plasticity of Schwann cells and enteric glial cells in response to the microenvironment, Proc. Natl. Acad. Sci. USA 88:6358–6362.

    CAS  ADS  PubMed  Google Scholar 

  • Dunn, K.J., Williams, B.O., Li, Y., and Pavan, W.J., 2000, Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development, Proc. Natl. Acad. Sci. USA 97:10,050–10,055.

    Article  CAS  Google Scholar 

  • Dupin, E., Baroffio, A., Dulac, C., Cameron-Curry, P., and Le Douarin, N.M., 1990, Schwann-cell differentiation in clonal cultures of the neural crest, as evidenced by the anti-Schwann cell myelin protein monoclonal antibody, Proc. Natl. Acad. Sci. USA 87:1119–1123.

    CAS  ADS  PubMed  Google Scholar 

  • Durbec, P.L., Larsson-Blomberg, L.B., Schuchardt, A., Costantini, F., and Pachnis, V., 1996, Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts, Development 122:349–358.

    CAS  PubMed  Google Scholar 

  • DuShane, G.P., 1935, An experimental study of the origin of pigment cells in amphibia, J. Exp. Zool. 72:1–31.

    Article  Google Scholar 

  • Dutton, K.A., Pauliny, A., Lopes, S.S., Elworthy, S., Carney, T.J., Rauch, J. et al., 2001, Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates, Development 128:4113–4125.

    CAS  PubMed  Google Scholar 

  • Eagleson, G.W. and Harris, W.A., 1990, Mapping of the presumptive brain regions in the neural plate of Xenopus laevis, J. Neurobiol. 21:427–40.

    Article  CAS  PubMed  Google Scholar 

  • Eddison, M., Le Roux, I., and Lewis, J., 2000, Notch signaling in the development of the inner ear: Lessons from Drosophila, Proc. Natl. Acad. Sci. USA 97:11,692–11,699.

    Article  CAS  Google Scholar 

  • Eickholt, B.J., Mackenzie, S.L., Graham, A., Walsh, F.S., and Doherty, P., 1999, Evidence for collapsin-1 functioning in the control of neural crest migration in both trunk and hindbrain regions, Development 126:2181–2189.

    CAS  PubMed  Google Scholar 

  • Epperlein, H.-H., Meulemans, D., Bronner-Fraser, M., Steinbeisser, H., and Selleck, M.A.J., 2000, Analysis of cranial neural crest migratory pathways in axolotl using cell markers and transplantation, Development 127:2751–2761.

    CAS  PubMed  Google Scholar 

  • Erickson, C.A., 1987, Behavior of neural crest cells on embryonic basal laminae, Dev. Biol. 120:38–49.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, C.A., Duong, T.D., and Tosney, K.W., 1992, Descriptive and experimental analysis of the dispersion of neural crest cells along the dorsolateral path and their entry into ectoderm in the chick embryo, Dev. Biol. 151:251–272.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, C.A. and Goins, T.L., 1995, Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes, Development 121:915–924.

    CAS  PubMed  Google Scholar 

  • Erickson, C.A., Loring, J.F., and Lester, S.M., 1989, Migratory pathways of HNK-1-immunoreactive neural crest cells in the rat embryo, Dev. Biol. 134:112–118.

    Article  CAS  PubMed  Google Scholar 

  • Etchevers, H.C., Vincent, C., Le Douarin, N.M., and Couly, G.F., 2001, The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain, Development 128:1059–1068.

    CAS  PubMed  Google Scholar 

  • Faber, S.C., Dimanlig, P., Makarenkova, H.P., Shirke, S., Ko, K., and Lang, R.A., 2001, Fgf receptor signaling plays a role in lens induction, Development 128:4425–4438.

    CAS  PubMed  Google Scholar 

  • Faber, S.C., Robinson, M.L., Makarenkova, H.P., and Lang, R.A., 2002, Bmp signaling is required for development of primary lens fiber cells, Development 129:3727–3737.

    CAS  PubMed  Google Scholar 

  • Farlie, P.G., Kerr, R., Thomas, P., Symes, T., Minichiello, J., Hearn, C.J. et al., 1999, A paraxial exclusion zone creates patterned cranial neural crest cell outgrowth adjacent to rhombomeres 3 and 5, Dev. Biol. 213:70–84.

    Article  CAS  PubMed  Google Scholar 

  • Fedtsova, N., Perris, R., and Turner, E.E., 2003, Sonic hedgehog regulates the position of the trigeminal ganglia, Dev. Biol. 261:456–469.

    Article  CAS  PubMed  Google Scholar 

  • Fekete, D.M. and Wu, D.K., 2002, Revisiting cell fate specification in the inner ear, Curr. Opin. Neurobiol. 12:35–42.

    Article  CAS  PubMed  Google Scholar 

  • Firnberg, N. and Neubüser, A., 2002, FGF signaling regulates expression of Tbx2, Erm, Pea3, and Pax3 in the early nasal region, Dev. Biol. 247:237–250.

    Article  CAS  PubMed  Google Scholar 

  • Fode, C., Gradwohl, G., Morin, X., Dierich, A., LeMeur, M., Goridis, C. et al., 1998, The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons, Neuron 20:483–494.

    Article  CAS  PubMed  Google Scholar 

  • Foley, A.C. and Stern, C.D., 2001, Evolution of vertebrate forebrain development: How many different mechanisms? J. Anat. 199:35–52.

    CAS  PubMed  Google Scholar 

  • Fontaine-Pérus, J., Halgand, P., Chéraud, Y., Rouaud, T., Velasco, M.E., Cifuentes Diaz, C. et al., 1997, Mouse-chick chimera: A developmental model of murine neurogenic cells, Development 124:3025–3036.

    PubMed  Google Scholar 

  • Fontaine-Pérus, J.C., Chanconie, M., and Le Douarin, N.M., 1982, Differentiation of peptidergic neurones in quail-chick chimaeric embryos, Cell Differ. 11:183–193.

    PubMed  Google Scholar 

  • Frame, M.C. and Brunton, V.G., 2002, Advances in Rho-dependent actin regulation and oncogenic transformation, Curr. Opin. Genet. Dev. 12:36–43.

    Article  CAS  PubMed  Google Scholar 

  • Frank, E. and Sanes, J.R., 1991, Lineage of neurons and glia in chick dorsal root ganglia: Analysis in vivo with a recombinant retrovirus, Development 111:895–908.

    CAS  PubMed  Google Scholar 

  • Fraser, S.E. and Bronner-Fraser, M., 1991, Migrating neural crest cells in the trunk of the avian embryo are multipotent, Development 112:913–920.

    CAS  PubMed  Google Scholar 

  • Frenz, D.A., Liu, W., Williams, J.D., Hatcher, V., Galinovic-Schwartz, V., Flanders, K.C. et al., 1994, Induction of chondrogenesis: Requirement for synergistic interaction of basic fibroblast growth factor and transforming growth factor-beta, Development 120:415–424.

    CAS  PubMed  Google Scholar 

  • Furuta, Y. and Hogan, B.L.M., 1998, BMP4 is essential for lens induction in the mouse embryo, Genes Dev. 12:3764–3775.

    CAS  PubMed  Google Scholar 

  • Gaiano, N. and Fishell, G., 2002, The role of Notch in promoting glial and neural stem cell fates, Annu. Rev. Neurosci. 25:471–490.

    Article  CAS  PubMed  Google Scholar 

  • Gammill, L.S. and Bronner-Fraser, M., 2002, Genomic analysis of neural crest induction, Development 129:5731–5741.

    Article  CAS  PubMed  Google Scholar 

  • Gammill, L.S. and Bronner-Fraser, M., 2003, Neural crest specification: Migrating into genomics, Nat. Rev. Neurosci. 4:795–805.

    Article  CAS  PubMed  Google Scholar 

  • Gans, C. and Northcutt, R.G., 1983, Neural crest and the origin of vertebrates: A new head, Science 220:268–274.

    ADS  CAS  PubMed  Google Scholar 

  • García-Castro, M.I., Marcelle, C., and Bronner-Fraser, M., 2002, Ectodermal Wnt function as a neural crest inducer, Science 297:848–851.

    ADS  PubMed  Google Scholar 

  • Garratt, A.N., Britsch, S., and Birchmeier, C., 2000, Neuregulin, a factor with many functions in the life of a schwann cell, Bioessays 22:987–996.

    Article  CAS  PubMed  Google Scholar 

  • Gavalas, A., Trainor, P., Ariza-McNaughton, L., and Krumlauf, R., 2001, Synergy between Hoxa1 and Hoxb1: The relationship between arch patterning and the generation of cranial neural crest, Development 128:3017–3027.

    CAS  PubMed  Google Scholar 

  • Gershon, M.D., 1999, Lessons from genetically engineered animal models. II. Disorders of enteric neuronal development: Insights from transgenic mice, Am. J. Physiol. 277:G262–G267.

    CAS  PubMed  Google Scholar 

  • Ghanbari, H., Seo, H., Fjose, A., and Brändli, A.W., 2001, Molecular cloning and embryonic expression of Xenopus Six homeobox genes, Mech. Dev. 101:271–277.

    Article  CAS  PubMed  Google Scholar 

  • Ghose, A. and Van Vactor, D., 2002, GAPs in Slit-Robo signaling, Bioessays 24:401–404.

    Article  CAS  PubMed  Google Scholar 

  • Gilmour, D.T., Maischein, H.M., and Nusslein-Volhard, C., 2002, Migration and function of a glial subtype in the vertebrate peripheral nervous system, Neuron 34:577–588.

    Article  CAS  PubMed  Google Scholar 

  • Girdlestone, J. and Weston, J.A., 1985, Identification of early neuronal subpopulations in avian neural crest cell cultures, Dev. Biol. 109:274–287.

    Article  CAS  PubMed  Google Scholar 

  • Gitelman, I., 1997, Twist protein in mouse embryogenesis, Dev. Biol. 189:205–214.

    Article  CAS  PubMed  Google Scholar 

  • Glimelius, B. and Weston, J.A., 1981, Analysis of developmentally homogeneous neural crest cell populations in vitro. III. Role of culture environment in cluster formation and differentiation, Cell Differ. 10:57–67.

    CAS  PubMed  Google Scholar 

  • Golding, J.P., Tidcombe, H., Tsoni, S., and Gassmann, M., 1999, Chondroitin sulphate-binding molecules may pattern central projections of sensory axons within the cranial mesenchyme of the developing mouse, Dev. Biol. 216:85–97.

    Article  CAS  PubMed  Google Scholar 

  • Golding, J.P., Trainor, P., Krumlauf, R., and Gassmann, M., 2000, Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4, Nat. Cell Biol. 2:103–109.

    CAS  PubMed  Google Scholar 

  • Goldstein, R.S. and Kalcheim, C., 1991, Normal segmentation and size of the primary sympathetic ganglia depend upon the alternation of rostrocaudal properties of the somites, Development 112:327–334.

    CAS  PubMed  Google Scholar 

  • Gompel, N., Cubedo, N., Thisse, C., Thisse, B., Dambly-Chaudière, C., and Ghysen, A., 2001, Pattern formation in the lateral line of zebrafish, Mech. Dev. 105:69–77.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Q. and Shipley, M.T., 1995, Evidence that pioneer olfactory axons regulate telencephalon cell cycle kinetics to induce the formation of the olfactory bulb, Neuron 14:91–101.

    Article  CAS  PubMed  Google Scholar 

  • Goridis, C. and Rohrer, H., 2002, Specification of catecholaminergic and serotonergic neurons, Nat. Rev. Neurosci. 3:531–541.

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan, V. and Overbeek, P.A., 2001, Secreted FGFR3, but not FGFR1, inhibits lens fiber differentiation, Development 128:1617–1627.

    CAS  PubMed  Google Scholar 

  • Graham, A., Heyman, I., and Lumsden, A., 1993, Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain, Development 119:233–245.

    CAS  PubMed  Google Scholar 

  • Graveson, A.C. and Armstrong, J.B., 1987, Differentiation of cartilage from cranial neural crest in the axolotl (Ambystoma mexicanum), Differentiation 35:16–20.

    CAS  PubMed  Google Scholar 

  • Graveson, A.C., Hall, B.K., and Armstrong, J.B., 1995, The relationship between migration and chondrogenic potential of trunk neural crest cells in Ambystoma mexicanum, Roux’s Arch. Dev. Biol. 204:477–483.

    Google Scholar 

  • Graveson, A.C., Smith, M.M., and Hall, B.K., 1997, Neural crest potential for tooth development in a urodele amphibian: Developmental and evolutionary significance, Dev. Biol. 188:34–42.

    Article  CAS  PubMed  Google Scholar 

  • Greenwood, A.L., Turner, E.E., and Anderson, D.J., 1999, Identification of dividing, determined sensory neuron precursors in the mammalian neural crest, Development 126:3545–3559.

    CAS  PubMed  Google Scholar 

  • Groves, A.K. and Bronner-Fraser, M., 2000, Competence, specification and commitment in otic placode induction, Development 127:3489–3499.

    CAS  PubMed  Google Scholar 

  • Groves, A.K., George, K.M., Tissier-Seta, J.-P., Engel, J.D., Brunet, J.-F., and Anderson, D.J., 1995, Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons, Development 121:887–901.

    CAS  PubMed  Google Scholar 

  • Guillemot, F., Lo, L.C., Johnson, J.E., Auerbach, A., Anderson, D.J., and Joyner, A.L., 1993, Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons, Cell 75:463–476.

    Article  CAS  PubMed  Google Scholar 

  • Guillory, G. and Bronner-Fraser, M., 1986, An in vitro assay for neural crest cell migration through the somites, J. Embryol. Exp. Morphol. 98:85–97.

    CAS  PubMed  Google Scholar 

  • Gurdon, J.B., Lemaire, P., and Kato, K., 1993, Community effects and related phenomena in development, Cell 75:831–834.

    Article  CAS  PubMed  Google Scholar 

  • Haddon, C., Jiang, Y.J., Smithers, L., and Lewis, J., 1998, Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: Evidence from the mind bomb mutant, Development 125:4637–4644.

    CAS  PubMed  Google Scholar 

  • Hagedorn, L., Floris, J., Suter, U., and Sommer, L., 2000a, Autonomic neurogenesis and apoptosis are alternative fates of progenitor cell communities induced by TGFβ, Dev. Biol. 228:57–72.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn, L., Paratore, C., Brugnoli, G., Baert, J.L., Mercader, N., Suter, U. et al., 2000b, The Ets domain transcription factor Erm distinguishes rat satellite glia from Schwann cells and is regulated in satellite cells by neuregulin signaling, Dev. Biol. 219:44–58.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn, L., Suter, U., and Sommer, L., 1999, P0 and PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGFβ family factors, Development 126:3781–3794.

    CAS  PubMed  Google Scholar 

  • Hall, B.K., 1999, The Neural Crest in Development and Evolution, Springer-Verlag, New York.

    Google Scholar 

  • Hamburger, V., 1961, Experimental analysis of the dual origin of the trigeminal ganglion in the chick embryo, J. Exp. Zool. 148:91–117.

    Article  CAS  PubMed  Google Scholar 

  • Hamburger, V. and Hamilton, H.L., 1951, A series of normal stages in the development of the chick embryo, J. Morphol. 88:49–92.

    Article  Google Scholar 

  • Hammond, K.L., Hill, R.E., Whitfield, T.T., and Currie, P.D., 2002, Isolation of three zebrafish dachshund homologues and their expression in sensory organs, the central nervous system and pectoral fin buds, Mech. Dev. 112:183–189.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, R.G., 1938, Die Neuralleiste Erganzheft, Anat. Anz. 85:3–30.

    Google Scholar 

  • Harrison, T.A., Stadt, H.A., Kumiski, D., and Kirby, M.L., 1995, Compensatory responses and development of the nodose ganglion following ablation of placodal precursors in the embryonic chick (Gallus domesticus), Cell Tissue Res. 281:379–385.

    CAS  PubMed  Google Scholar 

  • Heanue, T.A., Davis, R.J., Rowitch, D.H., Kispert, A., McMahon, A.P., Mardon, G. et al., 2002, Dach1, a vertebrate homologue of Drosophila dachshund, is expressed in the developing eye and ear of both chick and mouse and is regulated independently of Pax and Eya genes, Mech. Dev. 111:75–87.

    Article  CAS  PubMed  Google Scholar 

  • Heanue, T.A., Reshef, R., Davis, R.J., Mardon, G., Oliver, G., Tomarev, S. et al., 1999, Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation, Genes Dev. 13:3231–3243.

    Article  CAS  PubMed  Google Scholar 

  • Hearn, C.J., Murphy, M., and Newgreen, D., 1998, GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro, Dev. Biol. 197:93–105.

    Article  CAS  PubMed  Google Scholar 

  • Helbling, P.M., Tran, C.T., and Brändli, A.W., 1998, Requirement for EphA receptor signaling in the segregation of Xenopus third and fourth arch neural crest cells, Mech. Dev. 78:63–79.

    Article  CAS  PubMed  Google Scholar 

  • Henion, P.D., Blyss, G.K., Luo, R., An, M., Maynard, T.M., Cole, G.J. et al., 2000, Avian transitin expression mirrors glial cell fate restrictions during neural crest development, Dev. Dyn. 218:150–159.

    Article  CAS  PubMed  Google Scholar 

  • Henion, P.D. and Weston, J.A., 1997, Timing and pattern of cell fate restrictions in the neural crest lineage, Development 124:4351–4359.

    CAS  PubMed  Google Scholar 

  • Hirsch, M.R., Tiveron, M.C., Guillemot, F., Brunet, J.F., and Goridis, C., 1998, Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system, Development 125:599–608.

    CAS  PubMed  Google Scholar 

  • Hirsinger, E., Duprez, D., Jouve, C., Malapert, P., Cooke, J., and Pourquié, O., 1997, Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning, Development 124:4605–4614.

    CAS  PubMed  Google Scholar 

  • His, W., 1868, Untersuchungen über die erste Anlage des Wirbeltierleibes. Die erste Entwicklung des Hühnchens im Ei, F.C.W. Vogel, Leipzig.

    Google Scholar 

  • Honoré, S.M., Aybar, M.J., and Mayor, R., 2003, Sox10 is required for the early development of the prospective neural crest in Xenopus embryos, Dev. Biol. 260:79–96.

    PubMed  Google Scholar 

  • Howard, M., Foster, D.N., and Cserjesi, P., 1999, Expression of HAND gene products may be sufficient for the differentiation of avian neural crest-derived cells into catecholaminergic neurons in culture, Dev. Biol. 215:62–77.

    Article  CAS  PubMed  Google Scholar 

  • Howard, M.J., Stanke, M., Schneider, C., Wu, X., and Rohrer, H., 2000, The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification, Development 127:4073–4081.

    CAS  PubMed  Google Scholar 

  • Hunter, E., Begbie, J., Mason, I., and Graham, A., 2001, Early development of the mesencephalic trigeminal nucleus, Dev. Dyn. 222:484–493.

    Article  CAS  PubMed  Google Scholar 

  • Illing, N., Boolay, S., Siwoski, J.S., Casper, D., Lucero, M.T., and Roskams, A.J., 2002, Conditionally immortalized clonal cell lines from the mouse olfactory placode differentiate into olfactory receptor neurons, Mol. Cell. Neurosci. 20:225–243.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, Y., Abu-Elmagd, M., and Scotting, P.J., 2001, Sox3 expression defines a common primordium for the epibranchial placodes in chick, Dev. Biol. 236:344–353.

    Article  CAS  PubMed  Google Scholar 

  • Itoh, M. and Chitnis, A.B., 2001, Expression of proneural and neurogenic genes in the zebrafish lateral line primordium correlates with selection of hair cell fate in neuromasts, Mech. Dev. 102:263–266.

    Article  CAS  PubMed  Google Scholar 

  • Itoh, M., Kudoh, T., Dedekian, M., Kim, C.H., and Chitnis, A.B., 2002, A role for iro1 and iro7 in the establishment of an anteroposterior compartment of the ectoderm adjacent to the midbrain-hindbrain boundary, Development 129:2317–2327.

    CAS  PubMed  Google Scholar 

  • Iversen, S., Iversen, L., and Saper, C.B., 2000, The autonomic nervous system and the hypothalamus in Principles of Neural Science (E.R. Kandel, J.H. Schwartz, and T.M. Jessell, eds.), McGraw-Hill, New York, pp. 960–981.

    Google Scholar 

  • Jacobson, C.-O., 1959, The localization of the presumptive cerebral regions in the neural plate of the axolotl larva, J. Embryol. Exp. Morphol. 7:1–21.

    CAS  PubMed  Google Scholar 

  • Jessen, K.R. and Mirsky, R., 2002, Signals that determine Schwann cell identity, J. Anat. 200:367–376.

    Article  CAS  PubMed  Google Scholar 

  • Jesuthasan, S., 1996, Contact inhibition/collapse and pathfinding of neural crest cells in the zebrafish trunk, Development 122:381–389.

    CAS  PubMed  Google Scholar 

  • Jin, E.J., Erickson, C.A., Takada, S., and Burrus, L.W., 2001, Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo, Dev. Biol. 233:22–37.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, M.C., 1966, A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo, Anat. Rec. 156:143–155.

    Article  CAS  PubMed  Google Scholar 

  • Kalcheim, C., 1996, The role of neurotrophins in development of neural-crest cells that become sensory ganglia, Phil. Trans. R. Soc. Lond. B 351:375–381.

    CAS  ADS  Google Scholar 

  • Kalcheim, C., 2000, Mechanisms of early neural crest development: From cell specification to migration, Int. Rev. Cytol. 200:143–196.

    CAS  PubMed  Google Scholar 

  • Kalcheim, C. and Teillet, M.A., 1989, Consequences of somite manipulation on the pattern of dorsal root ganglion development, Development 106:85–93.

    CAS  PubMed  Google Scholar 

  • Kamachi, Y., Uchikawa, M., Tanouchi, A., Sekido, R., and Kondoh, H., 2001, Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development, Genes Dev. 15:1272–1286.

    Article  CAS  PubMed  Google Scholar 

  • Kanzler, B., Foreman, R.K., Labosky, P.A., and Mallo, M., 2000, BMP signaling is essential for development of skeletogenic and neurogenic cranial neural crest, Development 127:1095–1104.

    CAS  PubMed  Google Scholar 

  • Kardong, K.V., 1998, Vertebrates: Comparative Anatomy, Function, Evolution, WCB/McGraw-Hill, Boston.

    Google Scholar 

  • Katz, D.M. and Erb, M.J., 1990, Developmental regulation of tyrosine hydroxylase expression in primary sensory neurons of the rat, Dev. Biol. 137:233–242.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki, T., Bekku, Y., Suto, F., Kitsukawa, T., Taniguchi, M., Nagatsu, I. et al., 2002, Requirement of neuropilin 1-mediated Sema3A signals in patterning of the sympathetic nervous system, Development 129:671–680.

    CAS  PubMed  Google Scholar 

  • Keller, R.E. and Spieth, J., 1984, Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: Time-lapse cinemicrographic analysis of pigment cell movement in vivo and in culture, J. Exp. Zool. 229:109–126.

    Article  CAS  PubMed  Google Scholar 

  • Keynes, R.J. and Stern, C.D., 1984, Segmentation in the vertebrate nervous system, Nature 310:786–789.

    Article  CAS  PubMed  Google Scholar 

  • Kil, S.-H. and Collazo, A., 2001, Origins of inner ear sensory organs revealed by fate map and time-lapse analyses, Dev. Biol. 233:365–379.

    Article  CAS  PubMed  Google Scholar 

  • Kim, C.H., Oda, T., Itoh, M., Jiang, D., Artinger, K.B., Chandrasekharappa, S.C. et al., 2000, Repressor activity of Headless/Tcf3 is essential for vertebrate head formation, Nature 407:913–916.

    CAS  ADS  PubMed  Google Scholar 

  • Kim, J., Lo, L., Dormand, E., and Anderson, D.J., 2003, SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells, Neuron 38:17–31.

    CAS  PubMed  Google Scholar 

  • Kious, B.M., Baker, C.V., Bronner-Fraser, M., and Knecht, A.K., 2002, Identification and characterization of a calcium channel gamma subunit expressed in differentiating neurons and myoblasts, Dev. Biol. 243:249–259.

    Article  CAS  PubMed  Google Scholar 

  • Kirby, M.L., 1989, Plasticity and predetermination of mesencephalic and trunk neural crest transplanted into the region of the cardiac neural crest, Dev. Biol. 134:402–412.

    Article  CAS  PubMed  Google Scholar 

  • Kirby, M.L., Gale, T.F., and Stewart, D.E., 1983, Neural crest cells contribute to normal aorticopulmonary septation, Science 220:1059–1061.

    CAS  ADS  PubMed  Google Scholar 

  • Kitamura, K., Takiguchi-Hayashi, K., Sezaki, M., Yamamoto, H., and Takeuchi, T., 1992, Avian neural crest cells express a melanogenic trait during early migration from the neural tube: Observations with the new monoclonal antibody, “MEBL-1”, Development 114:367–378.

    Google Scholar 

  • Knecht, A.K. and Bronner-Fraser, M., 2002, Induction of the neural crest: A multigene process, Nat. Rev. Genet. 3:453–461.

    CAS  PubMed  Google Scholar 

  • Knecht, A.K. and Harland, R.M., 1997, Mechanisms of dorsal-ventral patterning in noggin-induced neural tissue, Development 124: 2477–2488.

    CAS  PubMed  Google Scholar 

  • Knouff, R.A., 1935, The developmental pattern of ectodermal placodes in Rana pipiens, J. Comp. Neurol. 62:17–71.

    Article  Google Scholar 

  • Köntges, G. and Lumsden, A., 1996, Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny, Development 122:3229–3242.

    PubMed  Google Scholar 

  • Korade, Z. and Frank, E., 1996, Restriction in cell fates of developing spinal cord cells transplanted to neural crest pathways, J. Neurosci. 16:7638–7648.

    CAS  PubMed  Google Scholar 

  • Kos, R., Reedy, M.V., Johnson, R.L., and Erickson, C.A., 2001, The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos, Development 128:1467–1479.

    CAS  PubMed  Google Scholar 

  • Köster, R.W., Kühnlein, R.P., and Wittbrodt, J., 2000, Ectopic Sox3 activity elicits sensory placode formation, Mech. Dev. 95:175–187.

    PubMed  Google Scholar 

  • Krotoski, D.M., Fraser, S.E., and Bronner-Fraser, M., 1988, Mapping of neural crest pathways in Xenopus laevis using inter-and intra-specific cell markers, Dev. Biol. 127:119–132.

    Article  CAS  PubMed  Google Scholar 

  • Kruger, G., Mosher, J., Bixby, S., Joseph, N., Iwashita, T., and Morrison, S., 2002, Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness, Neuron 35:657–669.

    Article  CAS  PubMed  Google Scholar 

  • Krull, C.E., 2001, Segmental organization of neural crest migration, Mech. Dev. 105:37–45.

    Article  CAS  PubMed  Google Scholar 

  • Krull, C.E., Collazo, A., Fraser, S.E., and Bronner-Fraser, M., 1995, Segmental migration of trunk neural crest: Time-lapse analysis reveals a role for PNA-binding molecules, Development 121:3733–3743.

    CAS  PubMed  Google Scholar 

  • Krull, C.E., Lansford, R., Gale, N.W., Collazo, A., Marcelle, C., Yancopoulos, G.D. et al., 1997, Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration, Curr. Biol. 7:571–580.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, Y. and Ito, K., 2000, Chemotactic migration of mesencephalic neural crest cells in the mouse, Dev. Dyn. 217:170–179.

    Article  CAS  PubMed  Google Scholar 

  • Kubu, C.J., Orimoto, K., Morrison, S.J., Weinmaster, G., Anderson, D.J., and Verdi, J.M., 2002, Developmental changes in Notch1 and Numb expression mediated by local cell-cell interactions underlie progressively increasing Delta sensitivity in neural crest stem cells, Dev. Biol. 244:199–214.

    Article  CAS  PubMed  Google Scholar 

  • Kulesa, P.M. and Fraser, S.E., 1998, Neural crest cell dynamics revealed by time-lapse video microscopy of whole embryo chick explant cultures, Dev. Biol. 204:327–344.

    Article  CAS  PubMed  Google Scholar 

  • Kulesa, P.M. and Fraser, S.E., 2000, In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches, Development 127:1161–1172.

    CAS  PubMed  Google Scholar 

  • Kullander, K. and Klein, R., 2002, Mechanisms and functions of Eph and ephrin signaling, Nat. Rev. Mol. Cell Biol. 3:475–486.

    Article  CAS  PubMed  Google Scholar 

  • Kuratani, S.C. and Kirby, M.L., 1991, Initial migration and distribution of the cardiac neural crest in the avian embryo: An introduction to the concept of the circumpharyngeal crest, Am. J. Anat. 191:215–227.

    Article  CAS  PubMed  Google Scholar 

  • LaBonne, C. and Bronner-Fraser, M., 1998, Neural crest induction in Xenopus: Evidence for a two-signal model, Development 125:2403–2414.

    CAS  PubMed  Google Scholar 

  • LaBonne, C. and Bronner-Fraser, M., 1999, Molecular mechanisms of neural crest formation, Annu. Rev. Cell Dev. Biol. 15:81–112.

    Article  CAS  PubMed  Google Scholar 

  • LaBonne, C. and Bronner-Fraser, M., 2000, Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration, Dev. Biol. 221:195–205.

    Article  CAS  PubMed  Google Scholar 

  • Ladher, R.K. Anakwe, K.U., Gurney, A.L., Schoenwolf, G.C., and Francis-West, P.H., 2000, Identification of synergistic signals initiating inner ear development, Science 290:1965–1968.

    Article  CAS  ADS  PubMed  Google Scholar 

  • LaMantia, A., Bhasin, N., Rhodes, K., and Heemskerk, J., 2000, Mesenchymal/epithelial induction mediates olfactory pathway formation, Neuron 28:411–425.

    Article  CAS  PubMed  Google Scholar 

  • LaMantia, A.S., Colbert, M.C., and Linney, E., 1993, Retinoic acid induction and regional differentiation prefigure olfactory pathway formation in the mammalian forebrain, Neuron 10:1035–1048.

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin, N.M., 1969, Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme ‘marquage biologique’ dans les recherches sur les interactions tissulaires et les migrations cellulaires au cours de l’ontogenèse, Bull. Biol. Fr. Belg. 103:435–452.

    PubMed  Google Scholar 

  • Le Douarin, N.M., 1973, A biological cell labelling technique and its use in experimental embryology, Dev. Biol. 30:217–222.

    PubMed  Google Scholar 

  • Le Douarin, N.M., 1986, Cell line segregation during peripheral nervous system ontogeny, Science 231:1515–1522.

    ADS  PubMed  Google Scholar 

  • Le Douarin, N.M. and Kalcheim, C., 1999, The Neural Crest, Cambridge University Press, Cambridge.

    Google Scholar 

  • Le Douarin, N.M., Renaud, D., Teillet, M.-A., and Le Douarin, G.H., 1975, Cholinergic differentiation of presumptive adrenergic neuroblasts in interspecific chimeras after heterotopic transplantations, Proc. Natl. Acad. Sci. USA 72:728–732.

    ADS  PubMed  Google Scholar 

  • Le Douarin, N.M. and Teillet, M.-A., 1973, The migration of neural crest cells to the wall of the digestive tract in avian embryo, J. Embryol. Exp. Morphol. 30:31–48.

    PubMed  Google Scholar 

  • Le Douarin, N.M. and Teillet, M.-A., 1974, Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique, Dev. Biol. 41:162–184.

    PubMed  Google Scholar 

  • Le Lièvre, C.S. and Le Douarin, N.M., 1975, Mesenchymal derivatives of the neural crest: Analysis of chimaeric quail and chick embryos, J. Embryol. Exp. Morphol. 34:125–154.

    PubMed  Google Scholar 

  • Lee, J.S., Ray, R., and Chien, C.B., 2001, Cloning and expression of three zebrafish roundabout homologs suggest roles in axon guidance and cell migration, Dev. Dyn. 221:216–230.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.A., Shen, E.L., Fiser, A., Sali, A., and Guo, S., 2003, The zebrafish forkhead transcription factor Foxi1 specifies epibranchial placode-derived sensory neurons, Development 130:2669–2679.

    CAS  PubMed  Google Scholar 

  • Léger, S. and Brand, M., 2002, Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning, Mech. Dev. 119:91–108.

    PubMed  Google Scholar 

  • Leimeroth, R., Lobsiger, C., Lussi, A., Taylor, V., Suter, U., and Sommer, L., 2002, Membrane-bound neuregulin 1 type III actively promotes Schwann cell differentiation of multipotent progenitor cells, Dev. Biol. 246:245–258.

    Article  CAS  PubMed  Google Scholar 

  • Lele, Z., Folchert, A., Concha, M., Rauch, G.J., Geisler, R., Rosa, F. et al., 2002, Parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube, Development 129:3281–3294.

    CAS  PubMed  Google Scholar 

  • Liem, K.F., Jr., Jessell, T.M., and Briscoe, J., 2000, Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites, Development 127:4855–4866.

    CAS  PubMed  Google Scholar 

  • Liem, K.F., Jr., Tremml, G., Roelink, H., and Jessell, T.M., 1995, Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm, Cell 82:969–979.

    Article  CAS  PubMed  Google Scholar 

  • Lim, K.C., Lakshmanan, G., Crawford, S.E., Gu, Y., Grosveld, F., and Engel, J.D., 2000, Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system, Nat. Genet. 25:209–212.

    CAS  PubMed  Google Scholar 

  • Lim, T.M., Lunn, E.R., Keynes, R.J., and Stern, C.D., 1987, The differing effects of occipital and trunk somites on neural development in the chick embryo, Development 100:525–533.

    CAS  PubMed  Google Scholar 

  • Linker, C., Bronner-Fraser, M., and Mayor, R., 2000, Relationship between gene expression domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural crest of Xenopus, Dev. Biol. 224:215–225.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J.P. and Jessell, T.M., 1998, A role for rhoB in the delamination of neural crest cells from the dorsal neural tube, Development 125:5055–5067.

    CAS  PubMed  Google Scholar 

  • Lo, L., Dormand, E., Greenwood, A., and Anderson, D.J., 2002, Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultured neural progenitor cells, Development 129:1553–1567.

    CAS  PubMed  Google Scholar 

  • Lo, L., Tiveron, M.C., and Anderson, D.J., 1998, MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity, Development 125:609–620.

    CAS  PubMed  Google Scholar 

  • Löfberg, J., Ahlfors, K., and Fällström, C., 1980, Neural crest cell migration in relation to extracellular matrix organization in the embryonic axolotl trunk, Dev. Biol. 75:148–167.

    PubMed  Google Scholar 

  • Loosli, F., Mardon, G., and Wittbrodt, J., 2002, Cloning and expression of medaka Dachshund, Mech. Dev. 112:203–206.

    Article  CAS  PubMed  Google Scholar 

  • Lumsden, A., 1990, The cellular basis of segmentation in the developing hindbrain, Trends Neurosci. 13:329–335.

    Article  CAS  PubMed  Google Scholar 

  • Lumsden, A.G., 1988, Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ, Development 103:155–169.

    PubMed  Google Scholar 

  • Luo, T., Lee, Y.-H., Saint-Jeannet, J.-P., and Sargent, T.D., 2003, Induction of neural crest in Xenopus by transcription factor AP2α, Proc. Natl. Acad. Sci. USA 100:532–537.

    CAS  ADS  PubMed  Google Scholar 

  • Lwigale, P.Y., 2001, Embryonic origin of avian corneal sensory nerves. Dev. Biol. 239:323–337.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J.L., and Anderson, D.J., 1998, Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia, Neuron 20:469–482.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Q., Fode, C., Guillemot, F., and Anderson, D.J., 1999, NEUROGENIN1 and NEUROGENIN2 control two distinct waves of neurogenesis in developing dorsal root ganglia, Genes Dev. 13:1717–1728.

    CAS  PubMed  Google Scholar 

  • MacColl, G., Bouloux, P., and Quinton, R., 2002, Kallmann syndrome: Adhesion, afferents, and anosmia, Neuron 34:675–678.

    Article  CAS  PubMed  Google Scholar 

  • Maisey, J.G., 1986, Heads and tails: A chordate phylogeny, Cladistics 2:201–256.

    Google Scholar 

  • Mancilla, A. and Mayor, R., 1996, Neural crest formation in Xenopus laevis:Mechanisms of Xslug induction, Dev. Biol. 177:580–589.

    Article  CAS  PubMed  Google Scholar 

  • Manie, S., Santoro, M., Fusco, A., and Billaud, M., 2001, The RET receptor: Function in development and dysfunction in congenital malformation, Trends Genet. 17:580–589.

    Article  CAS  PubMed  Google Scholar 

  • Mansour, S.L., Goddard, J.M., and Capecchi, M.R., 1993, Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear, Development 117:13–28.

    CAS  PubMed  Google Scholar 

  • Mansouri, A., Pla, P., Larue, L., and Gruss, P., 2001, Pax3 acts cell autonomously in the neural tube and somites by controlling cell surface properties, Development 128:1995–2005.

    CAS  PubMed  Google Scholar 

  • Marcelle, C., Stark, M.R., and Bronner-Fraser, M., 1997, Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite, Development 124:3955–3963.

    CAS  PubMed  Google Scholar 

  • Marchant, L., Linker, C., Ruiz, P., Guerrero, N., and Mayor, R., 1998, The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient, Dev. Biol. 198:319–329.

    CAS  PubMed  Google Scholar 

  • Maroon, H., Walshe, J., Mahmood, R., Kiefer, P., Dickson, C., and Mason, I., 2002, Fgf3 and Fgf8 are required together for formation of the otic placode and vesicle, Development 129:2099–2108.

    CAS  PubMed  Google Scholar 

  • MartÍ, E., 2000, Expression of chick BMP-1/Tolloid during patterning of the neural tube and somites, Mech. Dev. 91:415–419.

    PubMed  Google Scholar 

  • Mayor, R. and Aybar, M.J., 2001, Induction and development of neural crest in Xenopus laevis, Cell Tissue Res. 305:203–209.

    Article  CAS  PubMed  Google Scholar 

  • Mayor, R., Guerrero, N., Young, R.M., Gomez-Skarmeta, J.L., and Cuellar, C., 2000, A novel function for the Xslug gene: Control of dorsal mesendoderm development by repressing BMP-4, Mech. Dev. 97:47–56.

    Article  CAS  PubMed  Google Scholar 

  • Mayor, R., Morgan, R., and Sargent, M.G., 1995, Induction of the prospective neural crest of Xenopus, Development 121:767–777.

    CAS  PubMed  Google Scholar 

  • McCallion, A.S. and Chakravarti, A., 2001, EDNRB/EDN3 and Hirschsprung disease type II, Pigment Cell Res. 14:161–169.

    Article  CAS  PubMed  Google Scholar 

  • McCauley, D.W. and Bronner-Fraser, M., 2002, Conservation of Pax gene expression in ectodermal placodes of the lamprey, Gene 287:129–139.

    Article  CAS  PubMed  Google Scholar 

  • McGonnell, I.M. and Graham, A., 2002, Trunk neural crest has skeletogenic potential, Curr. Biol. 12:767–771.

    Article  CAS  PubMed  Google Scholar 

  • McLarren, K.W., Litsiou, A., and Streit, A., 2003, DLX5 positions the neural crest and preplacode region at the border of the neural plate, Dev. Biol. 259:34–47.

    Article  CAS  PubMed  Google Scholar 

  • Mendonsa, E.S. and Riley, B.B., 1999, Genetic analysis of tissue interactions required for otic placode induction in the zebrafish, Dev. Biol. 206:100–112.

    Article  CAS  PubMed  Google Scholar 

  • Metscher, B.D., Northcutt, R.G., Gardiner, D.M., and Bryant, S.V., 1997, Homeobox genes in axolotl lateral line placodes and neuromasts, Dev. Genes Evol. 207:287–295.

    Article  CAS  Google Scholar 

  • Meyer, D., Yamaai, T., Garratt, A., Riethmacher-Sonnenberg, E., Kane, D., Theill, L.E. et al., 1997, Isoform-specific expression and function of neuregulin, Development 124:3575–3586.

    CAS  PubMed  Google Scholar 

  • Mikkola, I., Heavey, B., Horcher, M., and Busslinger, M., 2002, Reversion of B cell commitment upon loss of Pax5 expression, Science 297:110–113.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Mitsiadis, T.A., Cheraud, Y., Sharpe, P., and Fontaine-Perus, J., 2003, Development of teeth in chick embryos after mouse neural crest transplantations, Proc. Natl. Acad. Sci. USA 100:6541–6545.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Mombaerts, P., 2001, How smell develops, Nat. Neurosci. 4Suppl. 1:1192–1198.

    CAS  PubMed  Google Scholar 

  • Monsoro-Burq, A.H., Fletcher, R.B., and Harland, R.M., 2003, Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals, Development 130:3111–3124.

    Article  CAS  PubMed  Google Scholar 

  • Moody, S.A. and Heaton, M.B., 1983a, Developmental relationships between trigeminal ganglia and trigeminal motoneurons in chick embryos. I. Ganglion development is necessary for motoneuron migration, J. Comp. Neurol. 213:327–343.

    CAS  PubMed  Google Scholar 

  • Moody, S.A. and Heaton, M.B., 1983b, Developmental relationships between trigeminal ganglia and trigeminal motoneurons in chick embryos. II. Ganglion axon ingrowth guides motoneuron migration, J. Comp. Neurol. 213:344–349.

    CAS  PubMed  Google Scholar 

  • Moore, M.W., Klein, R.D., Farinas, I., Sauer, H., et al., 1996, Renal and neuronal abnormalities in mice lacking GDNF, Nature 382:76–79.

    CAS  ADS  PubMed  Google Scholar 

  • Mori-Akayama, Y., Akiyama, H., Rowitch, D., and de Crombrugghe, B., 2003, Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest, Proc. Natl. Acad. Sci. USA 100:9360–9365.

    ADS  Google Scholar 

  • Morin, X., Cremer, H., Hirsch, M.R., Kapur, R.P., Goridis, C., and Brunet, J.-F., 1997, Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a, Neuron 18:411–423.

    CAS  Google Scholar 

  • Morin-Kensicki, E.M. and Eisen, J.S., 1997, Sclerotome development and peripheral nervous system segmentation in embryonic zebrafish, Development 124:159–167.

    CAS  PubMed  Google Scholar 

  • Morrison, S.J., 2001, Neuronal potential and lineage determination by neural stem cells, Curr. Opin. Cell Biol. 13:666–672.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, S.J., Csete, M., Groves, A.K., Melega, W., Wold, B., and Anderson, D.J., 2000a, Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells, J. Neurosci. 20:7370–7376.

    CAS  PubMed  Google Scholar 

  • Morrison, S.J., Perez, S.E., Qiao, Z., Verdi, J.M., Hicks, C., Weinmaster, G. et al., 2000b, Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells, Cell 101:499–510.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, S.J., White, P.M., Zock, C., and Anderson, D.J., 1999, Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells, Cell 96:737–749.

    Article  CAS  PubMed  Google Scholar 

  • Moury, J.D. and Jacobson, A.G., 1989, Neural fold formation at newly created boundaries between neural plate and epidermis in the axolotl, Dev. Biol. 133:44–57.

    Article  CAS  PubMed  Google Scholar 

  • Moury, J.D. and Jacobson, A.G., 1990, The origins of neural crest cells in the axolotl, Dev. Biol. 141:243–253.

    Article  CAS  PubMed  Google Scholar 

  • Mowbray, C., Hammerschmidt, M., and Whitfield, T.T., 2001, Expression of BMP signalling pathway members in the developing zebrafish inner ear and lateral line, Mech. Dev. 108:179–184.

    Article  CAS  PubMed  Google Scholar 

  • Muhr, J., Graziano, E., Wilson, S., Jessell, T.M., and Edlund, T., 1999, Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos, Neuron 23:689–702.

    Article  CAS  PubMed  Google Scholar 

  • Muhr, J., Jessell, T.M., and Edlund, T., 1997, Assignment of early caudal identity to neural plate cells by a signal from caudal paraxial mesoderm, Neuron 19:487–502.

    Article  CAS  PubMed  Google Scholar 

  • Mujtaba, T., Mayer-Proschel, M., and Rao, M.S., 1998, A common neural progenitor for the CNS and PNS, Dev. Biol. 200:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Münchberg, S.R., Ober, E.A., and Steinbeisser, H., 1999, Expression of the Ets transcription factors erm and pea3 in early zebrafish development, Mech. Dev. 88:233–236.

    PubMed  Google Scholar 

  • Muñoz-Sanjuán, I. and Hemmati-Brivanlou, A., 2002, Neural induction, the default model and embryonic stem cells, Nat. Rev. Neurosci. 3:271–280.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, P., Topilko, P., Schneider-Maunoury, S., Seitanidou, T., Baron-Van Evercooren, A., and Charnay, P., 1996, The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development, Development 122:2847–2857.

    CAS  PubMed  Google Scholar 

  • Nakagawa, S. and Takeichi, M., 1995, Neural crest cell-cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins, Development 121:1321–1332.

    CAS  PubMed  Google Scholar 

  • Nakagawa, S. and Takeichi, M., 1998, Neural crest emigration from the neural tube depends on regulated cadherin expression, Development 125:2963–2971.

    CAS  PubMed  Google Scholar 

  • Nakamura, H. and Ayer-Le Lièvre, C.S., 1982, Mesectodermal capabilities of the trunk neural crest of birds, J. Embryol. Exp. Morphol. 70:1–18.

    CAS  PubMed  Google Scholar 

  • Nakata, K., Koyabu, Y., Aruga, J., and Mikoshiba, K., 2000, A novel member of the Xenopus Zic family, Zic5, mediates neural crest development, Mech. Dev. 99:83–91.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan, C.H. and Narayanan, Y., 1978, Determination of the embryonic origin of the mesencephalic nucleus of the trigeminal nerve in birds, J. Embryol. Exp. Morphol. 43:85–105.

    CAS  PubMed  Google Scholar 

  • Narayanan, C.H. and Narayanan, Y., 1980, Neural crest and placodal contributions in the development of the glossopharyngeal-vagal complex in the chick, Anat. Rec. 196:71–82.

    Article  CAS  PubMed  Google Scholar 

  • Nataf, V., Lecoin, L., Eichmann, A., and Le Douarin, N.M., 1996, Endothelin-B receptor is expressed by neural crest cells in the avian embryo, Proc. Natl. Acad. Sci. USA 93:9645–9650.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Neidert, A.H., Virupannavar, V., Hooker, G.W., and Langeland, J.A., 2001, Lamprey Dlx genes and early vertebrate evolution, Proc. Natl. Acad. Sci. USA 98:1665–1670.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Newgreen, D.F. and Gooday, D., 1985, Control of the onset of migration of neural crest cells in avian embryos. Role of Ca++-dependent cell adhesions, Cell Tissue Res. 239:329–336.

    Article  CAS  PubMed  Google Scholar 

  • Newgreen, D.F. and Minichiello, J., 1995, Control of epitheliomesenchymal transformation. I. Events in the onset of neural crest cell migration are separable and inducible by protein kinase inhibitors, Dev. Biol. 170:91–101.

    Article  CAS  PubMed  Google Scholar 

  • Newgreen, D.F. and Minichiello, J., 1996, Control of epitheliomesenchymal transformation. II. Cross-modulation of cell adhesion and cytoskeletal systems in embryonic neural cells, Dev. Biol. 176:300–312.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, V.H., Schmid, B., Trout, J., Connors, S.A., Ekker, M., and Mullins, M.C., 1998, Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes, Dev. Biol. 199:93–110.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, D.H., 1981, Neural crest formation in the head of the mouse embryo as observed using a new histological technique, J. Embryol. Exp. Morphol. 64:105–120.

    CAS  PubMed  Google Scholar 

  • Nieto, M.A., 2002, The Snail superfamily of zinc-finger transcription factors, Nat. Rev. Mol. Cell Biol. 3:155–166.

    Article  CAS  PubMed  Google Scholar 

  • Nieto, M.A., Sargent, M.G., Wilkinson, D.G., and Cooke, J., 1994, Control of cell behavior during vertebrate development by Slug, a zinc finger gene, Science 264:835–839.

    CAS  ADS  PubMed  Google Scholar 

  • Nieuwkoop, P.D. and Faber, J., 1967, Normal Table of Xenopus laevis (Daudin), North-Holland, Amsterdam.

    Google Scholar 

  • Noden, D.M., 1975, An analysis of migratory behavior of avian cephalic neural crest cells, Dev. Biol. 42:106–130.

    Article  CAS  PubMed  Google Scholar 

  • Noden, D.M., 1978a, The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues, Dev. Biol. 67:296–312.

    CAS  PubMed  Google Scholar 

  • Noden, D.M., 1978b, The control of avian cephalic neural crest cytodifferentiation. II. Neural tissues, Dev. Biol. 67:313–329.

    CAS  PubMed  Google Scholar 

  • Noden, D.M., 1980, Somatotopic and functional organization of the avian trigeminal ganglion: An HRP analysis in the hatchling chick, J. Comp. Neurol. 190:405–428.

    CAS  PubMed  Google Scholar 

  • Noden, D.M., 1983, The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues, Dev. Biol. 96:144–165.

    Article  CAS  PubMed  Google Scholar 

  • Noden, D.M., 1991, Vertebrate craniofacial development: the relation between ontogenetic process and morphological outcome, Brain Behav. Evol. 38:190–225.

    CAS  ADS  PubMed  Google Scholar 

  • Noramly, S. and Grainger, R.M., 2002, Determination of the embryonic inner ear, J. Neurobiol. 53:100–128.

    Article  CAS  PubMed  Google Scholar 

  • Nordström, U., Jessell, T.M., and Edlund, T., 2002, Progressive induction of caudal neural character by graded Wnt signaling, Nat. Neurosci. 5:525–532.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt, R.G., 1997, Evolution of gnathostome lateral line ontogenies, Brain Behav. Evol. 50:25–37.

    CAS  PubMed  Google Scholar 

  • Northcutt, R.G., Brändle, K., and Fritzsch, B., 1995, Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls, Dev. Biol. 168:358–373.

    Article  CAS  PubMed  Google Scholar 

  • Northcutt, R.G. and Gans, C., 1983, The genesis of neural crest and epidermal placodes: A reinterpretation of vertebrate origins, Quart. Rev. Biol. 58:1–28.

    Article  CAS  PubMed  Google Scholar 

  • Oakley, R.A., Lasky, C.J., Erickson, C.A., and Tosney, K.W., 1994, Glycoconjugates mark a transient barrier to neural crest migration in the chicken embryo, Development 120:103–114.

    CAS  PubMed  Google Scholar 

  • Ogino, H. and Yasuda, K., 2000, Sequential activation of transcription factors in lens induction, Dev. Growth Differ. 42:437–448.

    Article  CAS  PubMed  Google Scholar 

  • Olsson, L., Falck, P., Lopez, K., Cobb, J., and Hanken, J., 2001, Cranial neural crest cells contribute to connective tissue in cranial muscles in the anuran amphibian, Bombina orientalis, Dev. Biol. 237:354–367.

    Article  CAS  PubMed  Google Scholar 

  • Olsson, L. and Hanken, J., 1996, Cranial neural-crest migration and chondrogenic fate in the Oriental fire-bellied toad Bombina orientalis: Defining the ancestral pattern of head development in anuran amphibians, J. Morph. 229:105–120.

    Google Scholar 

  • Osumi-Yamashita, N., Ninomiya, Y., Doi, H., and Eto, K., 1994, The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos, Dev. Biol. 164:409–419.

    Article  CAS  PubMed  Google Scholar 

  • Papan, C. and Campos-Ortega, J.A., 1994, On the formation of the neural keel and neural tube in the zebrafish Danio (Brachydanio) rerio, Roux’s Arch. Dev. Biol. 203:178–186.

    Google Scholar 

  • Paratore, C., Goerich, D.E., Suter, U., Wegner, M., and Sommer, L., 2001, Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling, Development 128:3949–3961.

    CAS  PubMed  Google Scholar 

  • Pattyn, A., Goridis, C., and Brunet, J.-F., 2000, Specification of the central noradrenergic phenotype by the homeobox gene Phox2b, Mol. Cell. Neurosci. 15:235–243.

    Article  CAS  PubMed  Google Scholar 

  • Pattyn, A., Morin, X., Cremer, H., Goridis, C., and Brunet, J.-F., 1997, Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis, Development 124:4065–4075.

    CAS  PubMed  Google Scholar 

  • Pattyn, A., Morin, X., Cremer, H., Goridis, C., and Brunet, J.F., 1999, The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives, Nature 399:366–370.

    CAS  ADS  PubMed  Google Scholar 

  • Perez, S.E., Rebelo, S., and Anderson, D.J., 1999, Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo, Development 126:1715–1728.

    CAS  PubMed  Google Scholar 

  • Perissinotto, D., Iacopetti, P., Bellina, I., Doliana, R., Colombatti, A., Pettway, Z. et al., 2000, Avian neural crest cell migration is diversely regulated by the two major hyaluronan-binding proteoglycans PG-M/versican and aggrecan, Development 127:2823–2842.

    CAS  PubMed  Google Scholar 

  • Perris, R., 1997, The extracellular matrix in neural crest-cell migration, Trends Neurosci. 20:23–31.

    Article  CAS  PubMed  Google Scholar 

  • Perris, R. and Perissinotto, D., 2000, Role of the extracellular matrix during neural crest cell migration, Mech. Dev. 95:3–21.

    Article  CAS  PubMed  Google Scholar 

  • Perris, R., von Boxberg, Y., and Lofberg, J., 1988, Local embryonic matrices determine region-specific phenotypes in neural crest cells, Science 241:86–89.

    CAS  ADS  PubMed  Google Scholar 

  • Pettway, Z., Domowicz, M., Schwartz, N.B., and Bronner-Fraser, M., 1996, Age-dependent inhibition of neural crest migration by the notochord correlates with alterations in the S103L chondroitin sulfate proteoglycan, Exp. Cell Res. 225:195–206.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, B.T., Bolding, K., and Riley, B.B., 2001, Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction, Dev. Biol. 235:351–365.

    Article  CAS  PubMed  Google Scholar 

  • Pickles, J.O. and Corey, D.P., 1992, Mechanoelectrical transduction by hair cells, Trends Neurosci. 15:254–259.

    Article  CAS  PubMed  Google Scholar 

  • Pisano, J.M., Colon-Hastings, F., and Birren, S.J., 2000, Postmigratory enteric and sympathetic neural precursors share common, developmentally regulated, responses to BMP2, Dev. Biol. 227:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Platt, C., 1993, Zebrafish inner ear sensory surfaces are similar to those in goldfish, Hear. Res. 65:133–140.

    Article  CAS  PubMed  Google Scholar 

  • Pohl, B.S. and Knöchel, W., 2001, Overexpression of the transcriptional repressor FoxD3 prevents neural crest formation in Xenopus embryos, Mech. Dev. 103:93–106.

    Article  CAS  PubMed  Google Scholar 

  • Pourquié, O., 2001, Vertebrate somitogenesis, Annu. Rev. Cell Dev. Biol. 17:311–350.

    PubMed  Google Scholar 

  • Raible, D.W. and Eisen, J.S., 1994, Restriction of neural crest cell fate in the trunk of the embryonic zebrafish, Development 120:495–503.

    CAS  PubMed  Google Scholar 

  • Raible, D.W. and Eisen, J.S., 1996, Regulative interactions in zebrafish neural crest, Development 122:501–507.

    CAS  PubMed  Google Scholar 

  • Raible, D.W., Wood, A., Hodsdon, W., Henion, P.D., Weston, J.A., and Eisen, J.S., 1992, Segregation and early dispersal of neural crest cells in the embryonic zebrafish, Dev. Dyn. 195:29–42.

    CAS  PubMed  Google Scholar 

  • Raible, F. and Brand, M., 2001, Tight transcriptional control of the ETS domain factors Erm and Pea3 by Fgf signaling during early zebrafish development, Mech. Dev. 107:105–117.

    Article  CAS  PubMed  Google Scholar 

  • Ramain, P., Heitzler, P., Haenlin, M., and Simpson, P., 1993, pannier, a negative regulator of achaete and scute in Drosophila, encodes a zinc finger protein with homology to the vertebrate transcription factor GATA-1, Development 119:1277–1291.

    CAS  PubMed  Google Scholar 

  • Rathjen, J., Haines, B.P., Hudson, K.M., Nesci, A., Dunn, S., and Rathjen, P.D., 2002, Directed differentiation of pluripotent cells to neural lineages: Homogeneous formation and differentiation of a neurectoderm population, Development 129:2649–2661.

    CAS  PubMed  Google Scholar 

  • Raven, C.P., 1931, Zur Entwicklung der Ganglienleiste. I: Die Kinematik der Ganglienleisten Entwicklung bei den Urodelen, Wilhelm Roux Arch. EntwMech. Org. 125:210–293.

    Article  Google Scholar 

  • Raven, C.P., 1936, Zur Entwicklung der Ganglienleiste. V: Uber die Differenzierung des Rumpfganglienleistenmaterials, Wilhelm Roux Arch. EntwMech. Org. 134:122–145.

    Article  Google Scholar 

  • Raven, C.P. and Kloos, J., 1945, Induction by medial and lateral pieces of the archenteron roof with special reference to the determination of the neural crest, Acta. Néerl. Morph. 5:348–362.

    Google Scholar 

  • Rawls, J.F., Mellgren, E.M., and Johnson, S.L., 2001, How the zebrafish gets its stripes, Dev. Biol. 240:301–314.

    Article  CAS  PubMed  Google Scholar 

  • Reaume, A.G., Conlon, R.A., Zirngibl, R., Yamaguchi, T.P., and Rossant, J., 1992, Expression analysis of a Notch homologue in the mouse embryo, Dev. Biol. 154:377–387.

    Article  CAS  PubMed  Google Scholar 

  • Reedy, M.V., Faraco, C.D., and Erickson, C.A., 1998, Specification and migration of melanoblasts at the vagal level and in hyperpigmented Silkie chickens, Dev. Dyn. 213:476–485.

    Article  CAS  PubMed  Google Scholar 

  • Reissmann, E., Ernsberger, U., Francis-West, P.H., Rueger, D., Brickell, P.M., and Rohrer, H., 1996, Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons, Development 122:2079–2088.

    CAS  PubMed  Google Scholar 

  • Richardson, M.K. and Sieber-Blum, M., 1993, Pluripotent neural crest cells in the developing skin of the quail embryo, Dev. Biol. 157:348–358.

    Article  CAS  PubMed  Google Scholar 

  • Richman, J.M. and Lee, S.-H., 2003, About face: Signals and genes controlling jaw patterning and identity in vertebrates, Bioessays 25:554–568.

    Article  CAS  PubMed  Google Scholar 

  • Rickmann, M., Fawcett, J.W., and Keynes, R.J., 1985, The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite, J. Embryol. Exp. Morphol. 90:437–455.

    CAS  PubMed  Google Scholar 

  • Riley, B.B. and Phillips, B.T., 2003, Ringing in the new ear: Resolution of cell interactions in otic development, Dev. Biol. 261:289–312.

    Article  CAS  PubMed  Google Scholar 

  • Riley, B.B., Zhu, C., Janetopoulos, C., and Aufderheide, K.J., 1997, A critical period of ear development controlled by distinct populations of ciliated cells in the zebrafish, Dev. Biol. 191:191–201.

    Article  CAS  PubMed  Google Scholar 

  • Rinkwitz, S., Bober, E., and Baker, R., 2001, Development of the vertebrate inner ear, Ann. N. Y. Acad. Sci. 942:1–14.

    CAS  PubMed  Google Scholar 

  • Robinson, M.L., MacMillan-Crow, L.A., Thompson, J.A., and Overbeek, P.A., 1995, Expression of a truncated FGF receptor results in defective lens development in transgenic mice, Development 121:3959–3967.

    CAS  PubMed  Google Scholar 

  • Robinson, V., Smith, A., Flenniken, A.M., and Wilkinson, D.G., 1997, Roles of Eph receptors and ephrins in neural crest pathfinding, Cell Tissue Res. 290:265–274.

    Article  CAS  PubMed  Google Scholar 

  • Roehl, H. and Nüsslein-Volhard, C., 2001, Zebrafish pea3 and erm are general targets of FGF8 signaling, Curr. Biol. 11:503–507.

    Article  CAS  PubMed  Google Scholar 

  • Rollhäuser-ter Horst, J., 1979, Artificial neural crest formation in amphibia, Anat. Embryol. 157:113–120.

    Article  PubMed  Google Scholar 

  • Rollhäuser-ter Horst, J., 1980, Neural crest replaced by gastrula ectoderm in amphibia. Effect on neurulation, CNS, gills and limbs, Anat. Embryol. 160:203–211.

    PubMed  Google Scholar 

  • Ronnett, G.V. and Moon, C., 2002, G proteins and olfactory signal transduction, Annu. Rev. Physiol. 64:189–222.

    Article  CAS  PubMed  Google Scholar 

  • Rosenquist, G.C., 1981, Epiblast origin and early migration of neural crest cells in the chick embryo, Dev. Biol. 87:201–211.

    Article  CAS  PubMed  Google Scholar 

  • Rothman, T.P., Sherman, D., Cochard, P., and Gershon, M.D., 1986, Development of the monoaminergic innervation of the avian gut: Transient and permanent expression of phenotypic markers, Dev. Biol. 116:357–380.

    Article  CAS  PubMed  Google Scholar 

  • Sadaghiani, B. and Thiébaud, C.H., 1987, Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy, Dev. Biol. 124:91–110.

    Article  CAS  PubMed  Google Scholar 

  • Santagati, F. and Rijli, F.M., 2003, Cranial neural crest and the building of the vertebrate head, Nat. Rev. Neurosci. 4:806–818.

    Article  CAS  PubMed  Google Scholar 

  • Saint-Jeannet, J.P., He, X., Varmus, H.E., and Dawid, I.B., 1997, Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a, Proc. Natl. Acad. Sci. USA 94:13,713–13,718.

    Article  CAS  Google Scholar 

  • Santiago, A. and Erickson, C.A., 2002, Ephrin-B ligands play a dual role in the control of neural crest cell migration, Development 129:3621–3632.

    CAS  PubMed  Google Scholar 

  • Sarkar, S., Petiot, A., Copp, A., Ferretti, P., and Thorogood, P., 2001, FGF2 promotes skeletogenic differentiation of cranial neural crest cells, Development 128:2143–2152.

    CAS  PubMed  Google Scholar 

  • Sasai, N., Mizuseki, K., and Sasai, Y., 2001, Requirement of FoxD3-class signaling for neural crest determination in Xenopus, Development 128:2525–2536.

    CAS  PubMed  Google Scholar 

  • Savagner, P., Yamada, K.M., and Thiery, J.P., 1997, The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition, J. Cell Biol. 137:1403–1419.

    Article  CAS  PubMed  Google Scholar 

  • Schebesta, M., Heavey, B., and Busslinger, M., 2002, Transcriptional control of B-cell development, Curr. Opin. Immunol. 14:216–223.

    Article  CAS  PubMed  Google Scholar 

  • Schilling, T.F. and Kimmel, C.B., 1994, Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo, Development 120:483–494.

    CAS  PubMed  Google Scholar 

  • Schilling, T.F., Prince, V., and Ingham, P.W., 2001, Plasticity in zebrafish hox expression in the hindbrain and cranial neural crest, Dev. Biol. 231:201–216.

    Article  CAS  PubMed  Google Scholar 

  • Schlosser, G., 2002a, Development and evolution of lateral line placodes in amphibians. I. Development, Zoology 105:119–146.

    PubMed  Google Scholar 

  • Schlosser, G., 2002b, Development and evolution of lateral line placodes in amphibians. II. Evolutionary diversification, Zoology 105:177–193.

    PubMed  Google Scholar 

  • Schlosser, G., Kintner, C., and Northcutt, R.G., 1999, Loss of ectodermal competence for lateral line placode formation in the direct developing frog Eleutherodactylus coqui, Dev. Biol. 213:354–369.

    Article  CAS  PubMed  Google Scholar 

  • Schlosser, G. and Northcutt, R.G., 2000, Development of neurogenic placodes in Xenopus laevis, J. Comp. Neurol. 418:121–146.

    Article  CAS  PubMed  Google Scholar 

  • Schlosser, G. and Northcutt, R.G., 2001, Lateral line placodes are induced during neurulation in the axolotl, Dev. Biol. 234:55–71.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz, B., Papan, C., and Campos-Ortega, J.A., 1993, Neurulation in the anterior trunk region of the zebrafish Brachydanio rerio, Roux’s Arch. Dev. Biol. 203:250–259.

    Google Scholar 

  • Schneider, R.A. and Helms, J.A., 2003, The cellular and molecular origins of beak morphology, Science 299:565–568.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Schneider, C., Wicht, H., Enderich, J., Wegner, M., and Rohrer, H., 1999, Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons, Neuron 24:861–870.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder, T.E., 1970, Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy, J. Embryol. Exp. Morphol. 23:427–462.

    CAS  PubMed  Google Scholar 

  • Schweizer, G., Ayer-Le Lièvre, C., and Le Douarin, N.M., 1983, Restrictions of developmental capacities in the dorsal root ganglia during the course of development, Cell Differ. 13:191–200.

    Article  CAS  PubMed  Google Scholar 

  • Scully, K.M. and Rosenfeld, M.G., 2002, Pituitary development: Regulatory codes in mammalian organogenesis, Science 295:2231–2235.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Sechrist, J., Serbedzija, G.N., Scherson, T., Fraser, S.E., and Bronner-Fraser, M., 1993, Segmental migration of the hindbrain neural crest does not arise from its segmental generation, Development 118:691–703.

    CAS  PubMed  Google Scholar 

  • Sela-Donenfeld, D. and Kalcheim, C., 1999, Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube, Development 126:4749–4762.

    CAS  PubMed  Google Scholar 

  • Sela-Donenfeld, D. and Kalcheim, C., 2000, Inhibition of noggin expression in the dorsal neural tube by somitogenesis: A mechanism for coordinating the timing of neural crest emigration, Development 127:4845–4854.

    CAS  PubMed  Google Scholar 

  • Selleck, M.A. and Bronner-Fraser, M., 1995, Origins of the avian neural crest: the role of neural plate-epidermal interactions, Development 121:525–538.

    CAS  PubMed  Google Scholar 

  • Serbedzija, G.N., Bronner-Fraser, M., and Fraser, S.E., 1989, A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration, Development 106:809–816.

    CAS  PubMed  Google Scholar 

  • Serbedzija, G.N., Bronner-Fraser, M., and Fraser, S.E., 1994, Developmental potential of trunk neural crest cells in the mouse, Development 120:1709–1718.

    CAS  PubMed  Google Scholar 

  • Serbedzija, G.N., Fraser, S.E., and Bronner-Fraser, M., 1990, Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling, Development 108:605–612.

    CAS  PubMed  Google Scholar 

  • Shah, N.M. and Anderson, D.J., 1997, Integration of multiple instructive cues by neural crest stem cells reveals cell-intrinsic biases in relative growth factor responsiveness, Proc. Natl. Acad. Sci. USA 94:11,369–11,374.

    CAS  Google Scholar 

  • Shah, N.M., Groves, A.K., and Anderson, D.J., 1996, Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members, Cell 85:331–343.

    Article  CAS  PubMed  Google Scholar 

  • Shah, N.M., Marchionni, M.A., Isaacs, I., Stroobant, P., and Anderson, D.J., 1994, Glial growth factor restricts mammalian neural crest stem cells to a glial fate, Cell 77:349–360.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, K., Korade, Z., and Frank, E., 1995, Late-migrating neuroepithelial cells from the spinal cord differentiate into sensory ganglion cells and melanocytes, Neuron 14:143–152.

    Article  CAS  PubMed  Google Scholar 

  • Shin, M.K., Levorse, J.M., Ingram, R.S., and Tilghman, S.M., 1999, The temporal requirement for endothelin receptor-B signalling during neural crest development, Nature 402:496–501.

    CAS  ADS  PubMed  Google Scholar 

  • Shoji, W., Yee, C.S., and Kuwada, J.Y., 1998, Zebrafish semaphorin Z1a collapses specific growth cones and alters their pathway in vivo, Development 125:1275–1283.

    CAS  PubMed  Google Scholar 

  • Shou, J., Murray, R.C., Rim, P.C., and Calof, A.L., 2000, Opposing effects of bone morphogenetic proteins on neuron production and survival in the olfactory receptor neuron lineage, Development 127:5403–5413.

    CAS  PubMed  Google Scholar 

  • Shou, J., Rim, P.C., and Calof, A.L., 1999, BMPs inhibit neurogenesis by a mechanism involving degradation of a transcription factor, Nat. Neurosci. 2:339–345.

    CAS  PubMed  Google Scholar 

  • Sieber-Blum, M., 1989, SSEA-1 is a specific marker for the spinal sensory neuron lineage in the quail embryo and in neural crest cell cultures, Dev. Biol. 134:362–375.

    CAS  PubMed  Google Scholar 

  • Sieber-Blum, M., 2000, Factors controlling lineage specification in the neural crest, Int. Rev. Cytol. 197:1–33.

    CAS  PubMed  Google Scholar 

  • Sieber-Blum, M. and Cohen, A.M., 1980, Clonal analysis of quail neural crest cells: they are pluripotent and differentiate in vitro in the absence of noncrest cells, Dev. Biol. 80:96–106.

    CAS  PubMed  Google Scholar 

  • Skaer, N., Pistillo, D., Gibert, J.M., Lio, P., Wulbeck, C., and Simpson, P., 2002, Gene duplication at the achaete-scute complex and morphological complexity of the peripheral nervous system in Diptera, Trends Genet. 18:399–405.

    Article  CAS  PubMed  Google Scholar 

  • Smith, A., Robinson, V., Patel, K., and Wilkinson, D.G., 1997, The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells, Curr. Biol. 7:561–570.

    CAS  PubMed  Google Scholar 

  • Smith, M., Hickman, A., Amanze, D., Lumsden, A., and Thorogood, P., 1994, Trunk neural crest origin of caudal fin mesenchyme in the zebrafish Brachydanio rerio, Proc. R. Soc. Lond. B 256:137–145.

    ADS  Google Scholar 

  • Solomon, K.S. and Fritz, A., 2002, Concerted action of two dlx paralogs in sensory placode formation, Development 129:3127–3136.

    CAS  PubMed  Google Scholar 

  • Solomon, K.S., Kudoh, T., Dawid, I.B., and Fritz, A., 2003, Zebrafish foxi1 mediates otic placode formation and jaw development, Development 130:929–940.

    Article  CAS  PubMed  Google Scholar 

  • Sommer, L., 2001, Context-dependent regulation of fate decisions in multipotent progenitor cells of the peripheral nervous system, Cell Tissue Res. 305:211–216.

    Article  CAS  PubMed  Google Scholar 

  • Spokony, R.F., Aoki, Y., Saint-Germain, N., Magner-Fink, E., and Saint-Jeannet, J.-P., 2002, The transcription factor Sox9 is required for cranial neural crest development in Xenopus, Development 129:421–432.

    CAS  PubMed  Google Scholar 

  • St. John, J.A., Clarris, H.J., and Key, B., 2002, Multiple axon guidance cues establish the olfactory topographic map: How do these cues interact? Int. J. Dev. Biol. 46:639–647.

    PubMed  Google Scholar 

  • Stanke, M., Junghans, D., Geissen, M., Goridis, C., Ernsberger, U., and Rohrer, H., 1999, The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons, Development 126:4087–4094.

    CAS  PubMed  Google Scholar 

  • Stark, M.R., Biggs, J.J., Schoenwolf, G.C., and Rao, M.S., 2000, Characterization of avian frizzled genes in cranial placode development, Mech. Dev. 93:195–200.

    Article  CAS  PubMed  Google Scholar 

  • Stark, M.R., Sechrist, J., Bronner-Fraser, M., and Marcelle, C., 1997, Neural tube-ectoderm interactions are required for trigeminal placode formation, Development 124:4287–4295.

    CAS  PubMed  Google Scholar 

  • Stemple, D.L. and Anderson, D.J., 1992, Isolation of a stem cell for neurons and glia from the mammalian neural crest, Cell 71:973–985.

    Article  CAS  PubMed  Google Scholar 

  • Stern, C.D., Artinger, K.B., and Bronner-Fraser, M., 1991, Tissue interactions affecting the migration and differentiation of neural crest cells in the chick embryo, Development 113:207–216.

    CAS  PubMed  Google Scholar 

  • Stockdale, F.E., Nikovits, W., Jr., and Christ, B., 2000, Molecular and cellular biology of avian somite development, Dev. Dyn. 219:304–321.

    Article  CAS  PubMed  Google Scholar 

  • Streit, A., 2002, Extensive cell movements accompany formation of the otic placode, Dev. Biol. 249:237–254.

    Article  CAS  PubMed  Google Scholar 

  • Streit, A. and Stern, C.D., 1999, Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity, Mech. Dev. 82:51–66.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Sumanas, S., Kim, H.J., Hermanson, S.B., and Ekker, S.C., 2002, Lateral line, nervous system, and maternal expression of Frizzled 7a during zebrafish embryogenesis, Mech. Dev. 115:107–111.

    Article  CAS  PubMed  Google Scholar 

  • Tan, C., Deardorff, M.A., Saint-Jeannet, J.P., Yang, J., Arzoumanian, A., and Klein, P.S., 2001, Kermit, a frizzled interacting protein, regulates frizzled 3 signaling in neural crest development, Development 128:3665–3674.

    CAS  PubMed  Google Scholar 

  • Taraviras, S., Marcos-Gutierrez, C.V., Durbec, P., Jani, H., Grigoriou, M., Sukumaran, M. et al., 1999, Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system, Development 126:2785–2797.

    CAS  PubMed  Google Scholar 

  • Teillet, M.-A., 1978, Evolution of the lumbo-sacral neural crest in the avian embryo: Origin and differentiation of the ganglionated nerve of Remak studied in interspecific quail-chick chimaerae, Roux’s Arch. Dev. Biol. 184:251–268.

    Google Scholar 

  • Teillet, M.-A., Kalcheim, C., and Le Douarin, N.M., 1987, Formation of the dorsal root ganglia in the avian embryo: Segmental origin and migratory behavior of neural crest progenitor cells, Dev. Biol. 120:329–347.

    Article  CAS  PubMed  Google Scholar 

  • Teillet, M.A. and Le Douarin, N.M., 1983, Consequences of neural tube and notochord excision on the development of the peripheral nervous system in the chick embryo, Dev. Biol. 98:192–211.

    Article  CAS  PubMed  Google Scholar 

  • Testaz, S., Jarov, A., Williams, K.P., Ling, L.E., Koteliansky, V.E., Fournier-Thibault, C. et al., 2001, Sonic hedgehog restricts adhesion and migration of neural crest cells independently of the Patched-Smoothened-Gli signaling pathway, Proc. Natl. Acad. Sci. USA 98: 12,521–12,526.

    Article  CAS  Google Scholar 

  • Thisse, C., Thisse, B., and Postlethwait, J.H., 1995, Expression of snail2, a second member of the zebrafish snail family, in cephalic mesendoderm and presumptive neural crest of wild-type and spadetail mutant embryos, Dev. Biol. 172:86–99.

    Article  CAS  PubMed  Google Scholar 

  • Torres, M. and Giraldez, F., 1998, The development of the vertebrate inner ear, Mech. Dev. 71:5–21.

    Article  CAS  PubMed  Google Scholar 

  • Tosney, K.W., 1978, The early migration of neural crest cells in the trunk region of the avian embryo: An electron microscopic study, Dev. Biol. 62:317–333.

    Article  CAS  PubMed  Google Scholar 

  • Tosney, K.W., 1982, The segregation and early migration of cranial neural crest cells in the avian embryo, Dev. Biol. 89:13–24.

    Article  CAS  PubMed  Google Scholar 

  • Trainor, P. and Krumlauf, R., 2000, Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm, Nat. Cell Biol. 2:96–102.

    CAS  PubMed  Google Scholar 

  • Trainor, P.A., Ariza-McNaughton, L., and Krumlauf, R., 2002a, Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning, Science 295:1288–1291.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Trainor, P.A., Sobieszczuk, D., Wilkinson, D., and Krumlauf, R., 2002b, Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways, Development 129:433–442.

    CAS  PubMed  Google Scholar 

  • Tremblay, P., Kessel, M., and Gruss, P., 1995, A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant Splotch, Dev. Biol. 171:317–329.

    Article  CAS  PubMed  Google Scholar 

  • Tucker, G.C., Ciment, G., and Thiery, J.P., 1986, Pathways of avian neural crest cell migration in the developing gut, Dev. Biol. 116:439–450.

    Article  CAS  PubMed  Google Scholar 

  • Tweedle, C.D., 1977, Ultrastructure of lateral line organs in aneurogenic amphibian larvae (Ambystoma), Cell Tissue Res. 185:191–197.

    Article  CAS  PubMed  Google Scholar 

  • Valinsky, J.E. and Le Douarin, N.M., 1985, Production of plasminogen activator by migrating cephalic neural crest cells, EMBO J. 4:1403–1406.

    CAS  PubMed  Google Scholar 

  • Vallin, J., Thuret, R., Giacomello, E., Faraldo, M.M., Thiery, J.-P., and Broders, F., 2001, Cloning and characterization of three Xenopus Slug promoters reveal direct regulation by Lef/β-catenin signaling, J. Biol. Chem. 276:30,350–30,358.

    Article  CAS  Google Scholar 

  • van Wijhe, J.W., 1883, Uber die Mesodermsegmente und die Entwicklung der Nerven des Selachierkopfes, Verhandelingen der Koninklijke Akademie van Wetenschappen (Amsterdam) 22(E):1–50.

    Google Scholar 

  • Veitch, E., Begbie, J., Schilling, T.F., Smith, M.M., and Graham, A., 1999, Pharyngeal arch patterning in the absence of neural crest, Curr. Biol. 9:1481–1484.

    Article  CAS  PubMed  Google Scholar 

  • Villanueva, S., Glavic, A., Ruiz, P., and Mayor, R., 2002, Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction, Dev. Biol. 241:289–301.

    Article  CAS  PubMed  Google Scholar 

  • Vitali, G., 1926, La façon de se comporter du placode de la première fente branchiale (placode épibranchial) dans la série des vertébrés, Arch. Ital. Biol. 76:94–106.

    Google Scholar 

  • Vogel, K.S. and Davies, A.M., 1993, Heterotopic transplantation of presumptive placodal ectoderm changes the fate of sensory neuron precursors, Development 119:263–276.

    CAS  PubMed  Google Scholar 

  • Vogel-Höpker, A., Momose, T., Rohrer, H., Yasuda, K., Ishihara, L., and Rapaport, D.H., 2000, Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development, Mech. Dev. 94:25–36.

    PubMed  Google Scholar 

  • Vogt, W., 1929, Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung Vorwort über Wege une Ziele. II: Gastrulation und Mesodermbilding bei Urodelen und Anuren, Wilhelm Roux Arch. EntwMech. Org. 120:384–706.

    Article  Google Scholar 

  • von Kupffer, C., 1894, Ueber Monorhinie und Amphirhinie, Sitzungsberichte der mathematisch-physikalischen Classe der k. Bayerischen Akademie der Wissenschaften zu München 24:51–60.

    Google Scholar 

  • Wagner, G., 1949, Die Bedeutung der Neuralleiste für die Kopfgestaltung der Amphibienlarven. Untersuchungen an Chimaeren von Triton, Rev. Suisse Zool. 56:519–620.

    Google Scholar 

  • Wakamatsu, Y., Maynard, T.M., and Weston, J.A., 2000, Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis, Development 127:2811–2821.

    CAS  PubMed  Google Scholar 

  • Wang, H.U. and Anderson, D.J., 1997, Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth, Neuron 18:383–396.

    Article  CAS  PubMed  Google Scholar 

  • Wawersik, S. and Maas, R.L., 2000, Vertebrate eye development as modeled in Drosophila, Hum. Mol. Genet. 9:917–925.

    Article  CAS  PubMed  Google Scholar 

  • Wawersik, S., Purcell, P., Rauchman, M., Dudley, A.T., Robertson, E.J., and Maas, R., 1999, BMP7 acts in murine lens placode development, Dev. Biol. 207:176–188.

    Article  CAS  PubMed  Google Scholar 

  • Webb, J.F. and Noden, D.M., 1993, Ectodermal placodes: Contributions to the development of the vertebrate head, Amer. Zool. 33:434–447.

    Google Scholar 

  • Weston, J.A., 1963, A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick, Dev. Biol. 6:279–310.

    Article  CAS  PubMed  Google Scholar 

  • Wewetzer, K., Verdú, E., Angelov, D.N., and Navarro, X., 2002, Olfactory ensheathing glia and Schwann cells: Two of a kind? Cell Tissue Res. 309:337–345.

    Article  PubMed  Google Scholar 

  • White, P.M. and Anderson, D.J., 1999, In vivo transplantation of mammalian neural crest cells into chick hosts reveals a new autonomic sublineage restriction, Development 126:4351–4363.

    CAS  PubMed  Google Scholar 

  • White, P.M., Morrison, S.J., Orimoto, K., Kubu, C.J., Verdi, J.M., and Anderson, D.J., 2001, Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals, Neuron 29:57–71.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield, T.T., Granato, M., van Eeden, F.J., Schach, U., Brand, M., Furutani-Seiki, M. et al., 1996, Mutations affecting development of the zebrafish inner ear and lateral line, Development 123:241–254.

    CAS  PubMed  Google Scholar 

  • Whitfield, T.T., Riley, B.B., Chiang, M.Y., and Phillips, B., 2002, Development of the zebrafish inner ear, Dev. Dyn. 223:427–458.

    Article  PubMed  Google Scholar 

  • Whitlock, K.E. and Westerfield, M., 1998, A transient population of neurons pioneers the olfactory pathway in the zebrafish, J. Neurosci. 18:8919–8927.

    CAS  PubMed  Google Scholar 

  • Whitlock, K.E. and Westerfield, M., 2000, The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate, Development 127:3645–3653.

    CAS  PubMed  Google Scholar 

  • Whitlock, K.E., Wolf, C.D., and Boyce, M.L., 2003, Gonadotropin-releasing hormone (GnRH) cells arise from cranial neural crest and adenohypophyseal regions of the neural plate in the zebrafish, Danio rerio, Dev. Biol. 257:140–152.

    Article  CAS  PubMed  Google Scholar 

  • Wicht, H. and Northcutt, R.G., 1995, Ontogeny of the head of the Pacific hagfish (Eptatretus stouti, Myxinoidea): Development of the lateral line system, Phil. Trans. R. Soc. Lond. B 349:119–134.

    CAS  ADS  Google Scholar 

  • Wilson, P.A. and Hemmati-Brivanlou, A., 1995, Induction of epidermis and inhibition of neural fate by Bmp-4, Nature 376:331–333.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Wilson, P.A., Lagna, G., Suzuki, A., and Hemmati-Brivanlou, A., 1997, Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1, Development 124:3177–3184.

    CAS  PubMed  Google Scholar 

  • Winklbauer, R., 1989, Development of the lateral line system in Xenopus, Prog. Neurobiol. 32:181–206.

    Article  CAS  PubMed  Google Scholar 

  • Woda, J.M., Pastagia, J., Mercola, M., and Artinger, K.B., 2003, Dlx proteins position the neural plate border and determine adjacent cell fates, Development 130:331–342.

    Article  CAS  PubMed  Google Scholar 

  • Wright, T.J. and Mansour, S.L., 2003, Fgf3 and Fgf10 are required for mouse otic placode induction, Development 130:3379–3390.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X. and Howard, M.J., 2001, Two signal transduction pathways involved in the catecholaminergic differentiation of avian neural crest-derived cells in vitro, Mol. Cell. Neurosci. 18:394–406.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Saint-Jeannet, J.-P., and Klein, P.S., 2003, Wnt-frizzled signaling in neural crest formation, Trends Neurosci. 26:40–45.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Firulli, A.B., Zhang, X., and Howard, M.J., 2003, HAND2 synergistically enhances transcription of dopamine-β-hydroxylase in the presence of Phox2a, Dev. Biol. 262:183–193.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Y.L., Miller, C.T., Nissen, R.M., Singer, A., Liu, D., Kirn, A. et al., 2002, A zebrafish sox9 gene required for cartilage morphogenesis, Development 129:5065–5079.

    CAS  PubMed  Google Scholar 

  • Yip, J.W., 1986, Migratory patterns of sympathetic ganglioblasts and other neural crest derivatives in chick embryos, J. Neurosci. 6:3465–3473.

    CAS  PubMed  Google Scholar 

  • Yntema, C.L., 1944, Experiments on the origin of the sensory ganglia of the facial nerve in the chick, J. Comp. Neurol. 81:147–167.

    Article  Google Scholar 

  • Young, H.M., Hearn, C.J., Farlie, P.G., Canty, A.J., Thomas, P.Q., and Newgreen, D.F., 2001, GDNF is a chemoattractant for enteric neural cells, Dev. Biol. 229:503–516.

    Article  CAS  PubMed  Google Scholar 

  • Young, H.M. and Newgreen, D., 2001, Enteric neural crest-derived cells: Origin, identification, migration, and differentiation, Anat. Rec. 262:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Yu, T.W. and Bargmann, C.I., 2001, Dynamic regulation of axon guidance, Nat. Neurosci. 4Suppl. 1:1169–1176.

    CAS  PubMed  Google Scholar 

  • Zhang, X., Friedman, A., Heaney, S., Purcell, P., and Maas, R.L., 2002, Meis homeoproteins directly regulate Pax6 during vertebrate lens morphogenesis, Genes Dev. 16:2097–2107.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J.L. and Gao, W.Q., 2000, Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears, Nat. Neurosci. 3:580–586.

    CAS  PubMed  Google Scholar 

  • Zheng, J.L., Shou, J., Guillemot, F., Kageyama, R., and Gao, W.Q., 2000, Hes1 is a negative regulator of inner ear hair cell differentiation, Development 127:4551–4560.

    CAS  PubMed  Google Scholar 

  • Zilian, O., Saner, C., Hagedorn, L., Lee, H.Y., Sauberli, E., Suter, U. et al., 2001, Multiple roles of mouse Numb in tuning developmental cell fates, Curr. Biol. 11:494–501.

    Article  CAS  PubMed  Google Scholar 

  • Zirlinger, M., Lo, L., McMahon, J., McMahon, A.P., and Anderson, D.J., 2002, Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate, Proc. Natl. Acad. Sci. USA 99:8084–8089.

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Baker, C. (2005). Neural Crest and Cranial Ectodermal Placodes. In: Rao, M.S., Jacobson†, M. (eds) Developmental Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/0-387-28117-7_4

Download citation

Publish with us

Policies and ethics