Striatal Acetylcholine Control of Reward-Related Dopamine Signalling

  • Stephanie J. Cragg
  • Richard Exley
  • Michael A. Clements
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 56)


Dopamine Release Release Probability Cholinergic Interneuron Phasic Burst Midbrain Dopamine Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. Aosaki, T., Graybiel, A.M., and Kimura, M., 1994a, Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys, Science 265:412.PubMedGoogle Scholar
  2. Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, A.M., and Kimura, M., 1994b, Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning, J. Neurosci. 14:3969.PubMedGoogle Scholar
  3. Avshalumov, M.V., Chen, B.T., Marshall, S.P., Pena, D.M., and Rice, M.E., 2003, Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2, J. Neurosci. 23:2744.PubMedGoogle Scholar
  4. Bennett, B.D., and Wilson, C.J., 1999, Spontaneous activity of neostriatal cholinergic interneurons in vitro, J. Neurosci. 19:5586.PubMedGoogle Scholar
  5. Bennett, B.D., and Wilson, C.J., 1998, Synaptic regulation of action potential timing in neostriatal cholinergic interneurons, J. Neurosci. 18:8539.PubMedGoogle Scholar
  6. Caggiula, A.R., Donny, E.C., White, A.R., Chaudhri, N., Booth, S., Gharib, M.A., Hoffman, A., Perkins, K.A., and Sved, A.F., 2001, Cue dependency of nicotine self-administration and smoking, Pharmacol. Biochem. Behav. 70:515.PubMedCrossRefGoogle Scholar
  7. Champtiaux, N., Gotti, C., Cordero-Erausquin, M., David, D.J., Przybylski, C., Lena, C., Clementi, F., Moretti, M., Rossi, F.M., Le Novere, N., McIntosh, J.M., Gardier, A.M., and Changeux, J.P., 2003, Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice, J. Neurosci. 23:7820.PubMedGoogle Scholar
  8. Chen, B.T., and Rice, M.E., 2001, Novel Ca2+ dependence and time course of somatodendritic dopamine release: substantia nigra versus striatum, J. Neurosci. 21:7841.PubMedGoogle Scholar
  9. Corrigall, W.A., Coen, K.M., and Adamson, K.L., 1994, Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area, Brain Res. 653:278.PubMedCrossRefGoogle Scholar
  10. Cragg, S.J., 2003, Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum, J. Neurosci. 23:4378.PubMedGoogle Scholar
  11. Cragg, S.J., and Greenfield, S.A., 1997, Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum, J. Neurosci. 17:5738.PubMedGoogle Scholar
  12. Cragg, S.J., Hille, C.J., and Greenfield, S.A., 2000, Dopamine release and uptake dynamics within nonhuman primate striatum in vitro, J. Neurosci. 20:8209.PubMedGoogle Scholar
  13. DeBoer, P., and Abercrombie, E.D., 1996, Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes, J. Pharmacol. Exp. Ther. 277:775.PubMedGoogle Scholar
  14. Di Chiara, G., and Imperato, A., 1988, Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats, Proc. Natl. Acad. Sci. U. S. A. 85:5274.PubMedCrossRefGoogle Scholar
  15. Drukarch, B., Schepens, E., Schoffelmeer, A.N., and Stoof, J.C., 1989, Stimulation of D-2 dopamine receptors decreases the evoked in vitro release of [3H]acetylcholine from rat neostriatum: role of K+ and Ca2+, J. Neurochem. 52:1680.PubMedGoogle Scholar
  16. Grace, A.A., and Bunney, B.S., 1984, The control of firing pattern in nigral dopamine neurons: single spike firing, J. Neurosci. 4:2866.PubMedGoogle Scholar
  17. Graybiel, A.M., Aosaki, T., Flaherty, A.W., and Kimura, M., 1994, The basal ganglia and adaptive motor control, Science 265:1826.PubMedGoogle Scholar
  18. Grenhoff, J., Aston-Jones, G., and Svensson, T.H., 1986, Nicotinic effects on the firing pattern of midbrain dopamine neurons, Acta. Physiol. Scand. 128:351.PubMedCrossRefGoogle Scholar
  19. Hyland, B.I., Reynolds, J.N.J., Hay, J., Perk, C.G., and Miller, R., 2002, Firing modes of midbrain dopamine cells in the freely moving rat, Neuroscience 114:475.PubMedCrossRefGoogle Scholar
  20. Jones, I.W., Bolam, J.P., and Wonnacott, S., 2001, Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones, J. Comp. Neurol. 439:235.PubMedCrossRefGoogle Scholar
  21. Katzenschlager, R., Sampaio, C., Costa, J., and Lees, A., 2003, Anticholinergics for symptomatic management of Parkinson’s disease, Cochrane. Database Syst. Rev. CD003735.Google Scholar
  22. Kimura, M., Rajkowski, J., and Evarts, E., 1984, Tonically discharging putamen neurons exhibit set-dependent responses, Proc. Natl. Acad. Sci. U. S. A. 81:4998.PubMedCrossRefGoogle Scholar
  23. Kitabatake, Y., Hikida, T., Watanabe, D., Pastan, I., and Nakanishi, S., 2003, Impairment of reward-related learning by cholinergic cell ablation in the striatum, Proc. Natl. Acad. Sci. U. S. A. 100:7965.PubMedCrossRefGoogle Scholar
  24. Klink, R., de Kerchove, D.A., Zoli, M., and Changeux, J.P., 2001, Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei, J. Neurosci. 21:1452.PubMedGoogle Scholar
  25. Knowlton, B.J., Mangels, J.A., and Squire, L.R., 1996, A neostriatal habit learning system in humans, Science 273:1399.PubMedGoogle Scholar
  26. Mansvelder, H.D., Keath, J.R., and McGehee, D.S., 2002, Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas, Neuron. 33:905.PubMedCrossRefGoogle Scholar
  27. Matsumoto, N., Hanakawa, T., Maki, S., Graybiel, A.M., and Kimura, M., 1999, Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner, J. Neurophysiol. 82:978.PubMedGoogle Scholar
  28. Maurice, N., Mercer, J., Chan, C.S., Hernandez-Lopez, S., Held, J., Tkatch, T., and Surmeier, D.J., 2004, D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons, J. Neurosci. 24:10289.PubMedCrossRefGoogle Scholar
  29. Morris, G., Arkadir, D., Nevet, A., Vaadia, E., and Bergman, H., 2004, Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons, Neuron. 43:133.PubMedCrossRefGoogle Scholar
  30. Packard, M.G., and Knowlton, B.J., 2002, Learning and memory functions of the Basal Ganglia, Annu. Rev. Neurosci. 25:563.PubMedCrossRefGoogle Scholar
  31. Picciotto, M.R., Zoli, M., Rimondini, R., Lena, C., Marubio, L.M., Pich, E.M., Fuxe, K., and Changeux, J.P., 1998, Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine, Nature 391:173.PubMedCrossRefGoogle Scholar
  32. Pidoplichko, V.I., DeBiasi, M., Williams, J.T., and Dani, J.A., 1997, Nicotine activates and desensitizes midbrain dopamine neurons, Nature 390:401.PubMedCrossRefGoogle Scholar
  33. Pisani, A., Bonsi, P., Centonze, D., Calabresi, P., and Bernardi, G., 2000, Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons, J. Neurosci. 20:RC69.PubMedGoogle Scholar
  34. Pisani, A., Bonsi, P., Centonze, D., Gubellini, P., Bernardi, G., and Calabresi, P., 2003, Targeting striatal cholinergic interneurons in Parkinson’s disease: focus on metabotropic glutamate receptors, Neuropharmacology 45:45.PubMedCrossRefGoogle Scholar
  35. Reynolds, J.N., Hyland, B.I., and Wickens, J.R., 2001, A cellular mechanism of reward-related learning, Nature 413:67.PubMedCrossRefGoogle Scholar
  36. Reynolds, J.N.J., Hyland, B.I., and Wickens, J.R., 2004, Modulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons, J. Neurosci. 24:9870.PubMedCrossRefGoogle Scholar
  37. Rice, M.E., and Cragg, S.J., 2004, Nicotine amplifies reward-related dopamine signals in striatum, Nat. Neurosci. 7:583.PubMedCrossRefGoogle Scholar
  38. Salminen, O., Murphy, K.L., McIntosh, J.M., Drago, J., Marks, M.J., Collins, A.C., and Grady, S.R., 2004, Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice, Mol. Pharmacol. 65:1526.PubMedCrossRefGoogle Scholar
  39. Schmitz, Y., Benoit-Marand, M., Gonon, F., and Sulzer, D., 2003, Presynaptic regulation of dopaminergic neurotransmission, J. Neurochem. 87:273.PubMedCrossRefGoogle Scholar
  40. Schultz, W., 1986, Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey, J. Neurophysiol. 56:1439.PubMedGoogle Scholar
  41. Schultz, W., 2002, Getting formal with dopamine and reward, Neuron. 36:241.PubMedCrossRefGoogle Scholar
  42. Soliakov, L., and Wonnacott, S., 1996, Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes, J. Neurochem. 67:163.PubMedCrossRefGoogle Scholar
  43. Thomson, A.M., 2000, Molecular frequency filters at central synapses, Prog. Neurobiol. 62:159.PubMedCrossRefGoogle Scholar
  44. Wickens, J.R., Reynolds, J.N., and Hyland, B.I., 2003, Neural mechanisms of reward-related motor learning, Curr. Opin. Neurobiol. 13:685.PubMedCrossRefGoogle Scholar
  45. Zhang, H., and Sulzer, D., 2004, Frequency-dependent modulation of dopamine release by nicotine, Nat. Neurosci. 7:581.PubMedCrossRefGoogle Scholar
  46. Zhang, L., Zhou, F.M., and Dani, J.A., 2004, Cholinergic drugs for Alzheimer’s disease enhance in vitro dopamine release, Mol. Pharmacol. 66:538.PubMedCrossRefGoogle Scholar
  47. Zhou, F.M., Liang, Y., and Dani, J.A., 2001, Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum, Nat. Neurosci. 4:1224.PubMedCrossRefGoogle Scholar
  48. Zhou, F.M., Wilson, C.J., and Dani, J.A., 2002, Cholinergic interneuron characteristics and nicotinic properties in the striatum, J. Neurobiol. 53:590.PubMedCrossRefGoogle Scholar
  49. Zhou, F.M., Wilson, C.J., and Dani, J.A., 2003, Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems, Neuroscientist. 9:23.PubMedCrossRefGoogle Scholar
  50. Zoli, M., Moretti, M., Zanardi, A., McIntosh, J.M., Clementi, F., and Gotti, C., 2002, Identification of the Nicotinic Receptor Subtypes Expressed on Dopaminergic Terminals in the Rat Striatum, J. Neurosci. 22:8785.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Stephanie J. Cragg
    • 1
  • Richard Exley
    • 1
  • Michael A. Clements
    • 1
  1. 1.Dept. PharmacologyOxfordUK

Personalised recommendations