Skip to main content

Limitations of the Isolated GP-STN Network

  • Conference paper
The Basal Ganglia VIII

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 56))

  • 863 Accesses

6. Conclusions

An in vitro mouse slice preparation from control and MPTP-treated mice in which functional reciprocal GP-STN connectivity is maintained, does not produce oscillatory bursting or synchronous activity neuronal activity. Pharmacological interventions that produce bursting activity do so without concomitant neuronal synchrony, or a requirement for glutamate or GABA transmission. Pre-treatment with MPTP did not alter this behaviour. Thus, we have no evidence that the functionally connected, but isolated, GP — STN network can act as a pacemaker for synchronous correlated activity in the basal ganglia and must conclude that other inputs such as those from cortex and/or striatum are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Albin, R.L., Young, A.B., and Penney, J.B., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci. 12:366–375.

    Article  PubMed  CAS  Google Scholar 

  • Araki, T., Mikami, T., Tanji, H., Matsubara, M., Imai, Y., Mizugaki, M., and Itoyama, Y., 2001, Biochemical and immunohistological changes in the brain of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse, Eur. J. Pharm. Sci. 12:231–8.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, H., Wichmann, T., Karmon, B., and Delong, M.R., 1994, The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism, J. Neurophysiol. 72:507–520.

    PubMed  CAS  Google Scholar 

  • Beurrier C., Congar P., Bioulac B., Hammond C., 1999, Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode, J. Neurosci. 19:599–609.

    PubMed  CAS  Google Scholar 

  • Bevan M.D., Wilson C.J., 1999, Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons, J. Neurosci. 19:7617–7628.

    PubMed  CAS  Google Scholar 

  • Bevan, M.D., Wilson, C.J., Bolam, J.P., Magill, P.J., 2000, Equilibrium potential of GABAA current and implications for rebound burst firing in rat subthalamic neurons in vitro, J. Neurophysiol. 83:3169–3172.

    PubMed  CAS  Google Scholar 

  • Bevan, M.D., Magill, P.J., Hallworth, N.E., Bolam, J.P., and Wilson, C.J. 2002, Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs, J. Neurophysiol. 87:1348–1362.

    PubMed  CAS  Google Scholar 

  • Cooper, A.J., Stanford, I.M., 2000, Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neuron in vitro, J. Physiol. 527.2:291–304.

    Article  Google Scholar 

  • DeLong, M., 1990, Primate models of movement disorders of basal ganglia origin, Trends Neurosci. 13(7):281–285.

    Article  PubMed  CAS  Google Scholar 

  • Filion, M., Tremblay, L., 1991, Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism, Brain Res. 547:142–151.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S.W, Seutin, V., 1997, Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents, Neurosci. Letts. 231:13–16.

    Article  CAS  Google Scholar 

  • Kaneoke, Y., Vitek, J.L., 1996, Burst and oscillation as disparate neuronal properties, J. Neurosci Methods, 68:211–223.

    Article  PubMed  CAS  Google Scholar 

  • Lisman J.E., 1997, Bursts as a unit of neural information: Making unreliable synapses reliable, Trends Neurosci. 20:38–43.

    Article  PubMed  CAS  Google Scholar 

  • Magill, P.J., Bolam, J.P., Bevan, M.D., 2000, Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram, J. Neurosci. 20:820–833.

    PubMed  CAS  Google Scholar 

  • Magill, P.J., Bolam, J.P., Bevan, M.D., 2001, Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network, Neurosci. 106:313–330.

    Article  CAS  Google Scholar 

  • Magnin, M., Morel, A., Jeanmonod, D., 2002, Single unit analysis of the pallidum, thalamus, and subthalamic nucleus in Parkinsonian patients, Neurosci. 96:549–564.

    Article  Google Scholar 

  • Nakanishi, H., Kita, H., Kitai, S.T. 1987, Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparation, Brain Res. 437:35–44.

    Article  PubMed  CAS  Google Scholar 

  • Nambu, A., Llinás, R., 1994, Electrophysiology of globus pallidus neurons in vitro, J. Neurophysiol. 72:1127–1139.

    CAS  Google Scholar 

  • Nini, A., Feingold, A., Slovin, H. & Bergman, H., 1995, Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol. 74:1800.

    PubMed  CAS  Google Scholar 

  • Plenz, D., Kitai, S.T. 1999, A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus, Nature 400:677–682.

    Article  PubMed  CAS  Google Scholar 

  • Seutin, V., Johnson, S.W., North, R.A., 1993, Apamin increases NMDA-induced burst-firing of rat mesencephalic dopamine neurons, Brain Res. 630:341–344.

    Article  PubMed  CAS  Google Scholar 

  • Wilson C.J., Weyrick A., Terman D., Hallworth N.E., Bevan M.D., 2004a, A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons, J. Neurophysiol. 91:1963–1980.

    Article  PubMed  Google Scholar 

  • Wilson C.L., Puntis M., Lacey M.G., 2004b, Overwhelmingly asynchronous firing of rat subthalamic nucleus neurons in brain slices provides little evidence for intrinsic connectivity, Neurosci. 123:187–200.

    Article  CAS  Google Scholar 

  • Raz, A., Vaadia, E., Bergman, H., 2000, Firing Patterns and Correlations of Spontaneous Discharge of Pallidal Neurons in the Normal and the Tremulous 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Vervet Model of Parkinsonism, J. Neurosci. 20:8559–8571.

    PubMed  CAS  Google Scholar 

  • Raz, A., Frechter-Mazar, V., Feingold, A., Abeles, M., Vaadia, E. & Bergman, H., 2001, Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. J. Neurosci. 21:RC128 (1–5).

    PubMed  CAS  Google Scholar 

  • Zhu, Z.T., Munhall, A., Shen, K.Z., Johnson, S.W., 2004, Calcium-dependent subthreshold oscillations determine bursting activity induced by N-methyl-D-aspartate in rat subthalamic neurons in vitro. Eur. J. Neurosci. 19:1296–1304.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Stanford, I.M., Loucif, K.C., Wilson, C.L., Cash, D., Lacey, M.G. (2005). Limitations of the Isolated GP-STN Network. In: Bolam, J.P., Ingham, C.A., Magill, P.J. (eds) The Basal Ganglia VIII. Advances in Behavioral Biology, vol 56. Springer, Boston, MA. https://doi.org/10.1007/0-387-28066-9_6

Download citation

Publish with us

Policies and ethics