Striatal Grafts and Synaptic Plasticity

  • David Mazzocchi-Jones
  • Máté Döbrössy
  • Stephen Dunnett
Part of the Advances in Behavioral Biology book series (ABBI, volume 56)

6. Conclusion

Whilst it has been demonstrated previously that embryonic striatal grafts restore the ability of the lesioned striatum to learn new tasks, it has only been recently speculated that this is due to restoration of cellular correlates of learning and memory. We demonstrate that embryonic striatal grafts not only restore baseline transmission, but also display synaptic plasticity, appropriate to that observed within the normal striatum. Our data provides further evidence supporting the hypothesis that embryonic striatal tissue becomes ‘functionally integrated’ into the host neuronal circuitry, and in doing so restores synaptic plasticity, which we believe to facilitate striatal transplants to restore the ability to learn new tasks that are lost following striatal lesions.


Synaptic Plasticity Quinolinic Acid High Frequency Stimulation Ibotenic Acid Nose Poke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Bjorklund, A., 1994, Long distance axonal growth in the adult central nervous system, J Neurol. 242:S33.PubMedCrossRefGoogle Scholar
  2. Bliss, T.V., and Collingridge, G.L., 1993, A synaptic model of memory: long-term potentiation in the hippocampus, Nature 361:31.PubMedCrossRefGoogle Scholar
  3. Brasted, P.J., Humby, T., Dunnett, S.B., and Robbins, T.W., 1997, Unilateral lesions of the dorsal striatum in rats disrupt responding in egocentric space, J. Neurosci. 17:8919.PubMedGoogle Scholar
  4. Brasted, P.J., Watts, C., Robbins, T.W., and Dunnett, S.B., 1999, Associative plasticity in striatal transplants, Proc Natl. Acad. Sci. U. S. A. 96:10524.PubMedCrossRefGoogle Scholar
  5. Calabresi, P., Pisani, A., Mercuri, N.B., and Bernardi, G., 1992, Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels, Eur. J. Neurosci. 4:929.PubMedCrossRefGoogle Scholar
  6. Carli, M., Evenden, J.L., and Robbins, T.W., 1985, Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention, Nature. 313:679.PubMedCrossRefGoogle Scholar
  7. Coffey, P.J., Lund, R.D., and Rawlins, J.N., 1989, Retinal transplant-mediated learning in a conditioned suppression task in rats, Proc. Natl. Acad. Sci. U. S. A. 86:7248.PubMedCrossRefGoogle Scholar
  8. Coffey, P.J., Lund, R.D., and Rawlins, J.N., 1990, Detecting the world through a retinal implant, Prog. Brain Res. 82:269.PubMedGoogle Scholar
  9. Coffey, P.J., Whiteley, S.J., and Lund, R.D., 2000, Preservation and restoration of vision following transplantation, Prog. Brain Res. 127:489.PubMedGoogle Scholar
  10. Coyle, J.T., and Schwarcz, R., 1976, Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea, Nature 263:244.PubMedCrossRefGoogle Scholar
  11. DiFiglia, M., Schiff, L., and Deckel, A.W., 1988, Neuronal organization of fetal striatal grafts in kainate-and sham-lesioned rat caudate nucleus: light-and electron-microscopic observations, J. Neurosci. 8:1112.PubMedGoogle Scholar
  12. Dobrossy, M.D., and Dunnett, S.B., 2001, The influence of environment and experience on neural grafts, Nat. Rev. Neurosci. 2:871.PubMedCrossRefGoogle Scholar
  13. Dobrossy, M.D., and Dunnett, S.B., 2003, Motor training effects on recovery of function after striatal lesions and striatal grafts, Exp. Neurol. 184:274.PubMedCrossRefGoogle Scholar
  14. Dobrossy, M.D., and Dunnett, S.B., 2005, Training specificity, graft development and graft mediated functional recovery in a rodent model of Huntington’s disease Neuroscience. In Press.Google Scholar
  15. Dunnett, S.B., 1995, Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction, Behav. Brain Res. 66:133.PubMedCrossRefGoogle Scholar
  16. Dunnett, S.B., Nathwani, F., and Bjorklund, A., 2000, The integration and function of striatal grafts, Prog. Brain Res. 127:345.PubMedCrossRefGoogle Scholar
  17. Fricker, R.A., Torres, E.M., and Dunnett, S.B., 1997a, The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. I. Morphological characteristics, Neuroscience 79:695.PubMedCrossRefGoogle Scholar
  18. Fricker, R.A., Torres, E.M., Hume, S.P., Myers, R., Opacka-Juffrey, J., Ashworth, S., Brooks, D.J., and Dunnett, S.B., 1997b, The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. II. Correlation between positron emission tomography and reaching behaviour. Neuroscience 79:711.PubMedCrossRefGoogle Scholar
  19. Graybiel, A.M., Liu, F.C., and Dunnett, S.B., 1989, Intrastriatal grafts derived from fetal striatal primordia. I. Phenotypy and modular organisation. J. Neurosci. 9:3250.PubMedGoogle Scholar
  20. Horner, P.J., and Gage, F.H., 2000, Regenerating the damaged central nervous system, Nature. 407:963.PubMedCrossRefGoogle Scholar
  21. Isacson, O., Dunnett, S.B., and Bjorklund, A., 1986, Graft-induced behavioral recovery in an animal model of Huntington disease, Proc. Natl. Acad. Sci. U. S. A. 83:2728.PubMedCrossRefGoogle Scholar
  22. Isacson, O., Pritzel, M., Dawbarn, D., Brundin, P., Kelly, P.A., Wiklund, L., Emson, P.C., Gage, F.H., Dunnett, S.B., and Bjorklund, A., 1987, Striatal neural transplants in the ibotenic acid-lesioned rat neostriatum. Cellular and functional aspects, Ann. N. Y. Acad. Sci. 495:537.PubMedGoogle Scholar
  23. Mayer, E., Brown, V.J., Dunnett, S.B., and Robbins, T.W., 1992, Striatal graft-associated recovery of a Lesion-Induced performance deficit in the rat requires learning to use the transplant, Eur. J. Neurosci. 4:119.PubMedCrossRefGoogle Scholar
  24. McAllister, J.P., Walker, P.D., Zemanick, M.C., Weber, A.B., Kaplan, L.I., and Reynolds, M.A., 1985, Morphology of embryonic neostriatal cell suspensions transplanted into adult neostriata, Brain Res. 355:282.PubMedGoogle Scholar
  25. Pritzel, M., Isacson, O., Brundin, P., Wiklund, L., and Bjorklund, A., 1986, Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum in adult rats, Exp. Brain Res. 65:112.PubMedCrossRefGoogle Scholar
  26. Roberts, R.C., and DiFiglia, M., 1990, Long-term survival of GABA-, enkephalin-, NADPH-diaphorase-and calbindin-d28k-containing neurons in fetal striatal grafts, Brain Res. 532:151.PubMedCrossRefGoogle Scholar
  27. Rutherford, A., Garcia-Munoz, M., Dunnett, S.B., and Arbuthnott, G.W., 1987, Electrophysiological demonstration of host cortical inputs to striatal grafts, Neurosci. Lett. 83:275.PubMedCrossRefGoogle Scholar
  28. Sirinathsinghji, D.J., Dunnett, S.B., Isacson, O., Clarke, D.J., Kendrick, K., and Bjorklund, A., 1988, Striatal grafts in rats with unilateral neostriatal lesions—II. In vivo monitoring of GABA release in globus pallidus and substantia nigra, Neuroscience. 24:803.PubMedCrossRefGoogle Scholar
  29. Siviy, S.M., Walsh, J.P., Radisavljevic, Z., Cohen, R.W., Buchwald, N.A., and Levine, M.S., 1993, Evidence for enhanced synaptic excitation in transplanted neostriatal neurons, Exp. Neurol. 123:222.PubMedCrossRefGoogle Scholar
  30. Taub, E., Uswatte, G., and Elbert, T., 2002, New treatments in neurorehabilitation founded on basic research, Nat. Rev. Neurosci. 3:228.PubMedCrossRefGoogle Scholar
  31. Walsh, J.P., Zhou, F.C., Hull, C.D., Fisher, R.S., Levine, M.S., and Buchwald, N.A., 1988, Physiological and morphological characterization of striatal neurons transplanted into the striatum of adult rats, Synapse. 2:37.PubMedCrossRefGoogle Scholar
  32. Wictorin, K., 1992, Anatomy and connectivity of intrastriatal striatal transplants, Prog. Neurobiol. 38:611.PubMedCrossRefGoogle Scholar
  33. Wictorin, K., and Bjorklund, A., 1989, Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum—II. Cortical afferents, Neuroscience 30:297.PubMedCrossRefGoogle Scholar
  34. Wictorin, K., Clarke, D.J., Bolam, J.P., and Bjorklund, A., 1989a, Host Corticostriatal Fibres Establish Synaptic Connections with Grafted Striatal Neurons in the Ibotenic Acid Lesioned Striatum, Eur. J. Neurosci. 1:189.PubMedCrossRefGoogle Scholar
  35. Wictorin, K., Clarke, D.J., Bolam, J.P., and Bjorklund, A., 1990, Fetal striatal neurons grafted into the ibotenate lesioned adult striatum: efferent projections and synaptic contacts in the host globus pallidus, Neuroscience 37:301.PubMedCrossRefGoogle Scholar
  36. Wictorin, K., Isacson, O., Fischer, W., Nothias, F., Peschanski, M., and Bjorklund, A., 1988, Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum—I. Subcortical afferents, Neuroscience 27:547.PubMedCrossRefGoogle Scholar
  37. Wictorin, K., Simerly, R.B., Isacson, O., Swanson, L.W., and Bjorklund, A., 1989b, Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum—III. Efferent projecting graft neurons and their relation to host afferents within the grafts, Neuroscience 30:313.PubMedCrossRefGoogle Scholar
  38. Wilson, C.J., and Groves, P.M., 1981, Spontaneous firing patterns of identified spiny neurons in the rat neostriatum, Brain Res. 220:67.PubMedCrossRefGoogle Scholar
  39. Xu, Z.C., Wilson, C.J., and Emson, P.C., 1991, Synaptic potentials evoked in spiny neurons in rat neostriatal grafts by cortical and thalamic stimulation, J. Neurophysiol. 65:477.PubMedGoogle Scholar
  40. Xu, Z.C., Wilson, C.J., and Emson, P.C., 1992, Morphology of intracellularly stained spiny neurons in rat striatal grafts, Neuroscience 48:95.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • David Mazzocchi-Jones
  • Máté Döbrössy
  • Stephen Dunnett
    • 1
  1. 1.The Brain Repair Group, Cardiff School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations