Advertisement

Do Systemically Administered Glutamate Antagonists Affect Subthalamic Nucleus Activity?

Relevance to pharmacotherapy of Parkinson’s disease
  • Kelly A. Allers
  • Debra A. Bergstrom
  • Leyla J. Ghazi
  • Deborah S. Kreiss
  • Judith R. Walters
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 56)

Keywords

NMDA Receptor Deep Brain Stimulation Globus Pallidus Subthalamic Nucleus NMDA Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Allers, K.A., Kreiss, D.S., and Walters, J.R., 2000, Multisecond oscillations in the subthalamic nucleus: effects of apomorphine and dopamine cell lesion, Synapse 38:38.PubMedCrossRefGoogle Scholar
  2. Allers, K.A., Ruskin, D.N., Bergstrom, D.A., Freeman, L.E., Ghazi, L.J., Tierney, P.L., and Walters, J.R., 2002, Multisecond periodicities in basal ganglia firing rates correlate with theta bursts in transcortical and hippocampal EEG, J. Neurophysiol. 87:1118.PubMedGoogle Scholar
  3. Allers, K.A., Bergstrom, D.A., Ghazi, L.J., Kreiss, D.S., and Walters, J.R., 2005, MK801 and amantadine exert different effects on subthalamic neuronal activity in a rodent model of Parkinson’s disease, Exptl. Neurol. 191:104.CrossRefGoogle Scholar
  4. Aubert, I., Guigoni, C., Hakansson, K., Ki, Q., Dovero, S., Barthe, N., Bioulac, B.H., Gross, C.E., Fisone, G., Bloch, B., and Bezard, E., 2004, Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia, Ann. Neurol. 57:17.CrossRefGoogle Scholar
  5. Bailey, E.V., and Stone, T.W., 1975, The mechanism of action of amantadine in parkinsonism: a review, Arch. Int. Pharmacodyn. Ther. 216:246.PubMedGoogle Scholar
  6. Bergman, H., Wichmann, T., Karmon, B., and Delong, M.R., 1994, The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism, J. Neurophysiol. 72:507.PubMedGoogle Scholar
  7. B’ezard, E., Boraud, T., Bioulac, B., and Gross, C.E., 1999, Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms, Eur. J. Neurosci. 11:2167.CrossRefGoogle Scholar
  8. Blanchet, P.J., Papa, S.M., Metman, L.V., Mouradian, M.M., and Chase, T.N., 1997, Modulation of levodopa-induced motor response complications by NMDA antagonists in Parkinson’s disease, Neurosci. Biobehav. Rev. 21:447.PubMedCrossRefGoogle Scholar
  9. Blanchet, P.J., Konitsiotis, S., Whittemore, E.R., Zhou, Z.L., Woodward, R.M., and Chase, T.N., 1999, Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys, J. Pharmacol. Exp. Ther. 290:1034.PubMedGoogle Scholar
  10. Blanchet, P.J., 2003, The fluctuating parkinsonian patient — clinical and pathophysiological aspects, Can. J. Neurol. Sci. 30:S19.PubMedGoogle Scholar
  11. Blanchet, P.J., Metman, L.V., and Chase, T.N., 2003, Renaissance of amantadine in the treatment of Parkinson’s disease, Adv. Neurol. 91:251.PubMedGoogle Scholar
  12. Blanchini, F., Greenamyre, J.T., Fancellu, R., and Nappi, G., 2001, Blockade of subthalamic glutamatergic activity corrects changes in neuronal metabolism and motor behavior in rats with nigrostriatal lesions, Neurol. Sci. 22:49.CrossRefGoogle Scholar
  13. Breit, S., Bouali-Benazzouz, R., Benabid, A.L., and Benazzouz, A., 2001, Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat, Eur. J. Neurosci. 14:1833.PubMedCrossRefGoogle Scholar
  14. Campbell, B.M., and Walker, P.D., 2001, MK-801 prevents dopamine D1 but not serotonin 2A stimulation of striatal preprotachykinin mRNA expression, Neuroreport 12:953.PubMedCrossRefGoogle Scholar
  15. Clineschmidt, B.V., Martin, G.E., Bunting, P.R., and Papp, N.L., 1982, Central sympathomimetic activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties, Drug. Dev. Res. 2:135.CrossRefGoogle Scholar
  16. Danielczyk, W., 1995, Twenty-five years of amantadine therapy in Parkinson’s disease, J. Neural. Transm. Suppl. 46:399.PubMedGoogle Scholar
  17. Danysz, W., Parsons, C.G., Kornhuber, J., Schmidt, W.J., and Quack, G., 1997, Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents — preclinical studies, Neurosci. Biobehav. Rev. 21:455.PubMedCrossRefGoogle Scholar
  18. Dunah, A.W., Wang, Y.H., Yasuda, R.P., Kameyama, K., Huganir, R.L., Wolfe, B.B., and Standaert, D.G., 2000, Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-Daspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease, Mol. Pharmacol. 57:342.PubMedGoogle Scholar
  19. Engber, T.M., Anderson, J.J., Boldry, R.C., Papa, S.M., Kuo, S., and Chase, T.N., 1994a, Excitatory aminoacid receptor antagonists modify regional cerebral metabolic responses to levodopa in 6-hydroxydopaminelesioned rats, Neuroscience 59:389.PubMedCrossRefGoogle Scholar
  20. Engber, T.M., Papa, S.M., Boldry, R.C., and Chase, T.N., 1994b, NMDA receptor blockade reverses motor response alterations induced by levodopa, Neuroreport 5:2586.PubMedGoogle Scholar
  21. Greenamyre, J.T., and O’Brien, C.F., 1991, N-methyl-D-aspartate antagonists in the treatment of Parkinson’s disease, Arch. Neurol. 48:977.PubMedGoogle Scholar
  22. Hallett, P.J., and Standaert, D.G., 2004, Rationale for and use of NMDA receptor antagonists in Parkinson’s disease, Pharmacol. Therap. 102:155.CrossRefGoogle Scholar
  23. Hassani, O.K., Mouroux, M., and F’eger, J., 1996, Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus, Neuroscience 72:105.PubMedCrossRefGoogle Scholar
  24. Hollerman, J.R., and Grace, A.A., 1992, Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol, Brain. Res. 590:291.PubMedCrossRefGoogle Scholar
  25. Hu, D., Itoga C.A., Bergstrom, D.A., Parr-Brownlie, L.C., Ghiglieri V., and Walters, J.R., 2004, Increased patterned activity in basal ganglia outputs is organized by coordinated oscillations in the indirect pathway after dopamine loss in anesthetized rats, Soc. Neurosci. Abstr. 309:8.Google Scholar
  26. Huang, K.-X., and Walters, J.R., 1992, D1 receptor stimulation inhibits dopamine cell activity after reserpine treatment but not after chronic SCH 23390: an effect blocked by N-methyl-D-aspartate antagonists, J. Pharmacol. Exp. Ther. 260:409.PubMedGoogle Scholar
  27. Huang, K.-X., Bergstrom, D.A., Ruskin, D.N., and Walters, J.R., 1998, N-methyl-D-aspartate receptor blockade attenuates D1 dopamine receptor modulation of neuronal activity in rat substantia nigra, Synapse 30:18.PubMedCrossRefGoogle Scholar
  28. Hutchison, W.D., Lozano, A.M., Tasker, R.R., Lang, A.E., and Dostrovsky, J.O., 1997, Identification and characterization of neurons with tremor-frequency activity in human globus pallidus, Exp. Brain Res. 113:557.PubMedCrossRefGoogle Scholar
  29. Kaneoke, Y., and Vitek, J.L., 1996, Burst and oscillation as disparate neuronal properties, J. Neurosci. Methods 68:211.PubMedCrossRefGoogle Scholar
  30. Keefe, K.A., and Gerfen, C.R., 1996, D1 dopamine receptor-mediated induction of zif268 and c-fos in the dopamine-depleted striatum: differential regulation and independence from NMDA receptors, J. Comp. Neurol. 367:165.PubMedCrossRefGoogle Scholar
  31. Keefe, K.A., and Ganguly, A., 1998, Effects of NMDA receptor antagonists on D1 dopamine receptormediated changes in striatal immediate early gene expression: evidence for involvement of pharmacologically distinct NMDA receptors? Dev. Neurosci. 20:216.PubMedCrossRefGoogle Scholar
  32. Klockgether, T., and Turski, L., 1989, Excitatory amino acids and the basal ganglia-implications for the therapy of Parkinson’s disease, Trends. Neurosci. 12:285.PubMedCrossRefGoogle Scholar
  33. Kornhuber, J., Bormann, J., Hubers, M., Rusche, K., and Riederer, P., 1991, Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel-a human postmortem brain study, Eur. J. Pharmacol. — Molec. Pharmacol. 206:297.CrossRefGoogle Scholar
  34. Kornhuber, J., Schoppmeyer, K., and Riederer, P., 1993, Affinity of 1-aminoadamantanes for the sigma binding site in postmortem human frontalccortex, Neurosci. Lett. 163:129.PubMedCrossRefGoogle Scholar
  35. Kreiss, D.S., Anderson, L.A., and Walters, J.R., 1996, Apomorphine and dopamine D1 receptor agonists increase the firing rates of subthalamic nucleus neurons, Neuroscience 72:863.PubMedCrossRefGoogle Scholar
  36. Kreiss, D.S., Mastropietro, C.W., Rawji, S.S., and Walters, J.R., 1997, The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson’s disease, J. Neurosci. 17:6807.PubMedGoogle Scholar
  37. Lange, K.W., Kornhuber, J., and Riederer, P., 1997, Dopamine/glutamate interactions in Parkinson’s disease, Neurosci. Biobehav. Rev. 21:393.PubMedCrossRefGoogle Scholar
  38. Levy, R., Dostrovsky, J.O., Land, A.E., Sime, E., Hutchison, W.D., and Lozano, A.M., 2001, Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease, J. Neurophysiol. 86:249.PubMedGoogle Scholar
  39. Luginger, E., Wenning, G.K., Bosch, S., and Poewe, W., 2000, Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease, Mov. Disord. 15:873.PubMedCrossRefGoogle Scholar
  40. Magill, P.J., Bolam, J.P., and Bevan, M.D., 2001, Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network, Neuroscience 106:313.PubMedCrossRefGoogle Scholar
  41. Marin, C., Papa S., Engber, T.M., Bonastre, M., Tolosa, E., and Chase, T.N., 1996, MK-801 prevents levodopa-induced motor response alterations in parkinsonian rats, Brain Res. 736:202.PubMedCrossRefGoogle Scholar
  42. Matsubayashi, H., Swanson, K.L., and Albuquerque, E.X., 1997, Amantadine inhibits nicotinic acetylcholine receptor function in hippocampal neurons, J. Pharmacol. Exp. Ther. 281:834.PubMedGoogle Scholar
  43. Metman, L.V., Del Dotto, P., Blanchet, P.J., Van den Munckhof, P., and Chase, T.N., 1998a, Blockade of glutamatergic transmission as treatment for dyskinesias and motor fluctuations in Parkinson’s disease, Amino Acids 14:75.CrossRefGoogle Scholar
  44. Metman, L.V., Del Dotto, P., Van den Munckhof, P., Fang, J., Mouradian, M.M., and Chase, T.N., 1998b, Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease, Neurology 50:1323.Google Scholar
  45. Metman, L.V., Del Dotto, P., LePoole, K., Konitsiotis, S., Fang, J., and Chase, T.N., 1999, Amantadine for levodopa-induced dyskinesias — a 1-year follow-up study, Arch. Neurol. 56:1383.PubMedCrossRefGoogle Scholar
  46. Miller, W.C., and Delong, M.R., 1987, Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MTPTP model of parkinsonism, in: The Basal Ganglia II, M.B. Carpenter and A. Jayaraman, eds., Plenum Press, New York, pp. 415–427.Google Scholar
  47. Ni, Z.G., Bouali-Benazzouz, R., Gao, D.M., Benabid, A.L., and Benazzouz, A., 2001, Time-course of changes in firing rates and firing patterns of subthalamic nucleus neuronal activity after 6-OHDA-induced dopamine depletion in rats, Brain Res. 899:142.PubMedCrossRefGoogle Scholar
  48. Oh, J.D., Russell, D., Vaughan, C.L., and Chase, T.N., 1998, Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration, Brain Res. 813:150.PubMedCrossRefGoogle Scholar
  49. Oh, J.D., Vaughan, C.L., and Chase, T.N., 1999, Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits, Brain Res. 821:433.PubMedCrossRefGoogle Scholar
  50. Orieux, G., Francois, C., Feger, J., Yelnik, J., Vila, M., Ruberg, M., Agid, Y., and Hirsch, E.C., 2000, Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease, Neuroscience 97:79.PubMedCrossRefGoogle Scholar
  51. Ossowska, K., 1994, The role of excitatory amino acids in experimental models of Parkinson’s disease, J. Neural. Transm. PD Sect. 8:39.CrossRefGoogle Scholar
  52. Papa, S.M., Engber, T.M., Boldry, R.C., and Chase, T.N., 1993, Opposite effects of NMDA and AMPA receptor blockade on catalepsy induced by dopamine receptor antagonists, Eur. J. Pharmacol. 232:247.PubMedCrossRefGoogle Scholar
  53. Papa, S.M., Boldry, R.C., Engber, T.M., Kask, A.M., and Chase, T.N., 1995, Reversal of levodopa-induced motor fluctuations in experimental parkinsonism by NMDA receptor blockade, Brain Res. 701:13.PubMedCrossRefGoogle Scholar
  54. Papa, S.M., and Chase, T.N., 1996, Levodopa-induced dyskinesias improved by a glutamate antagonist in parkinsonian monkeys, Ann. Neurol. 39:574.PubMedCrossRefGoogle Scholar
  55. Peeters, M., Romieu, P., Maurice, T., Su, T.P., Maloteaux, J.M., and Hermans, E., 2004, Involvement of the sigma1 receptor in the modulation of dopaminergic transmission by amantadine, Eur. J. Neurosci. 19:2212.PubMedCrossRefGoogle Scholar
  56. Pelled, G., Bergman, H., and Goelman, G., 2002, Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinson’s disease — a functional magnetic resonance imaging study, Eur. J. Neurosci. 15:389.PubMedCrossRefGoogle Scholar
  57. Perier, C., Agid, Y., Hirsch, E.C., and Feger, J., 2000, Ipsilateral and contralateral subthalamic activity after unilateral dopaminergic lesion, Neuroreport 11:3275.PubMedCrossRefGoogle Scholar
  58. Rogawski, M.A., and Wenk, G.L., 2003, The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease, CNS Drug Rev. 9:275.PubMedCrossRefGoogle Scholar
  59. Ruskin, D.N., Bergstrom, D.A., Kaneoke, Y., Patel, B.N., Twery, M.J., and Walters, J.R., 1999a, Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor and anesthesia., J. Neurophysiol. 81:2046.PubMedGoogle Scholar
  60. Ruskin, D.N., Bergstrom, D.A., and Walters, J.R., 1999b, Multisecond oscillations in firing rate in the globus pallidus: synergistic modulation by D1 nd D2 dopamine receptors, J. Pharmacol. Exp. Ther. 290:1493.PubMedGoogle Scholar
  61. Ruskin, D.N., Bergstrom, D.A., Baek, D., Freeman, L.E., and Walters, J.R., 2001, Cocaine or selective block of dopamine transporters influences multisecond oscillations in firing rate in the globus pallidus, Neuropsychopharmacology 25:28.PubMedCrossRefGoogle Scholar
  62. Ruskin, D.N., Bergstrom, D.A., Tierney, P.L., and Walters, J.R., 2003, Correlated multisecond oscillations in firing rate in the basal ganglia: modulation by dopamine and the subthalamic nucleus, Neuroscience 117:427.PubMedCrossRefGoogle Scholar
  63. Schwab, R.S., England, A.C., Jr., Poskanzer, D.C., and Young, R.R., 1969, Amantadine in the treatment of Parkinson’s disease, JAMA. 208:1168.PubMedCrossRefGoogle Scholar
  64. Schwab, R.S., Poskanzer, D.C., England, A.C., Jr., and Young, R.R., 1972, Amantadine in Parkinson’s disease. Review of more than two years’ experience, JAMA. 222:792.PubMedCrossRefGoogle Scholar
  65. Shannon, K.M., Goetz, C.G., Carroll, V.S., Tanner, C.M., and Klawans, H.L., 1987, Amantadine and motor fluctuations in chronic Parkinson’s disease, Clin. Neuropharmacol. 10:522.PubMedCrossRefGoogle Scholar
  66. Starr, M.S., 1995, Antiparkinsonian actions of glutamate antagonists-alone and with L-DOPA: a review of evidence and suggestions for possible mechanisms, J. Neural. Transm — Park Dis. Dement Sect. 10:141.PubMedCrossRefGoogle Scholar
  67. Tahar, A.H., Gregoire, L., Darre, A., Belanger, N., Meltzer, L., and Bedard, P.J., 2004, Effect on a selective glutamate antagonist on 1-dopa-induced dyskinesias in drug-naïve parkinsonian monkeys, Neurobiol. Dis. 15:171.CrossRefGoogle Scholar
  68. Tai, C.H., Boraud, T., Bezard, E., Bioulac, B., Gross, C., and Benazzouz, A., 2003, Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata, FASEB J. 17:1820.PubMedCrossRefGoogle Scholar
  69. Vila, M., Perier, C., Feger, J., Yelnik, J., Faucheux, B., Ruberg, M., Raisman-Vozari, R., Agid, Y., and Hirsch, E.C., 2000, Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements, Eur. J. Neurosci. 12:337.PubMedCrossRefGoogle Scholar
  70. Walters, J.R., Ruskin, D.N., Allers, K.A., and Bergstrom, D.A., 2000, Pre-and postsynaptic aspects of dopamine-mediated transmission, Trends Neurosci. 23:S41.PubMedCrossRefGoogle Scholar
  71. Walters, J.R., Hu, D., Itoga, C.A., Parr-Brownlie, L.C., and Bergstrom, D.A., Do local field potentials reflect synchronized spiking activity of neuronal populations in the basal ganglia? Studies in a rodent model of Parkinson’s disease, in: The Basal Ganglia VIII, J.P. Bolam, P.J. Magill, and C. Ingham, eds., Springer Science and Business Media, New York, pp 37–46 (This volume).Google Scholar
  72. Wichmann, T., Kliem, M.A., and Soares, J., 2002, Slow oscillatory discharge in the primate basal ganglia, J. Neurophysiol. 87:1145.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Kelly A. Allers
    • 1
  • Debra A. Bergstrom
  • Leyla J. Ghazi
  • Deborah S. Kreiss
    • 2
  • Judith R. Walters
    • 3
  1. 1.Discovery BiologyPfizer Ltd.SandwichUK
  2. 2.Dept. of Biological and Environmental SciencesUniversity of Tennessee at ChattanoogaChattanoogaUSA
  3. 3.Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and StrokeNational Institutes of Health, Porter Neuroscience CenterBethesdaUSA

Personalised recommendations