Pitx3 is Necessary for Survival of Midbrain Dopaminergic Neuron Subsets Relevant to Parkinson’s Disease

  • Abbas F. Sadikot
  • Kelvin C. Luk
  • Pepijn van den Munckhof
  • Vladimir V. Rymar
  • Kenneth Leung
  • Rina Gandhi
  • Jacques Drouin
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 56)


Tyrosine Hydroxylase Relative Spare Midbrain Dopaminergic Neuron Pitx3 Gene Pitx3 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Airaksinen, M.S., Thoenen, H., and Meyer, M., 1997, Vulnerability of midbrain dopaminergic neurons in calbindin-D28k-deficient mice, Eur. J. Neurosci. 9:120–127.PubMedCrossRefGoogle Scholar
  2. Baimbridge, K.G., Celio, M.R., and Rogers, J.H., 1992, Calcium-binding proteins in the nervous system, Trends Neurosci. 15:303–308.PubMedCrossRefGoogle Scholar
  3. Bayer, S.A., Wills, K.V., Triarhou, L.C., and Ghetti, B., 1995, Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse, Exp. Brain Res. 105:191–199.PubMedGoogle Scholar
  4. Coté, P.Y., Sadikot, A.F., and Parent, A., 1991, Complementary Distribution of Calbindin D-28k and Parvalbumin in the Basal Forebrain and Midbrain of the Squirrel Monkey, Eur. J. Neurosci. 3:1316–1329.PubMedCrossRefGoogle Scholar
  5. Counihan, T.J., and Penney, J.B., Jr., 1998, Regional dopamine transporter gene expression in the substantia nigra from control and Parkinson’s disease brains, J. Neurol. Neurosurg. Psychiatry. 65:164–169.PubMedCrossRefGoogle Scholar
  6. Drouin, J., Lamolet, B., Lamonerie, T., Lanctot, C., and Tremblay, J.J., 1998, The PTX family of homeodomain transcription factors during pituitary developments, Mol. Cell Endocrinol. 140:31–36.PubMedCrossRefGoogle Scholar
  7. Gerfen, C.R., Baimbridge, K.G., and Thibault, J., 1987, The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems, J. Neurosci. 7:3935–3944.PubMedGoogle Scholar
  8. German, D.C., Manaye, K.F., Sonsalla, P.K., and Brooks, B.A., 1992, Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells, Ann. N Y Acad. Sci. 648:42–62.PubMedGoogle Scholar
  9. Gonzalez-Hernandez, T., and Rodriguez, M., 2000, Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat, J. Comp. Neurol. 421:107–135.PubMedCrossRefGoogle Scholar
  10. Gundersen, H.J., Bagger, P., Bendtsen, T.F., Evans, S.M., Korbo, L., Marcussen, N., Moller, A., Nielsen, K., Nyengaard, J.R., and Pakkenberg, B., 1988, The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis, Apmis. 96:857–881.PubMedCrossRefGoogle Scholar
  11. Harvey, R.P., 1998, Links in the left/right axial pathway, Cell 94:273–276.PubMedCrossRefGoogle Scholar
  12. Hassler, R., 1938, Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus, J. Psychol. Neurol. 48:387–476.Google Scholar
  13. Hökfelt, T., Martensson, R., Bjorklund, A., Kleinau, S., and Goldstein, M., 1984, Distributional maps of tyrosinehydroxylase-immunoreactive neurons in the rat brain, in: Classical transmitters in the CNS, part 1, Bjorklund A, Hökfelt T, eds, Elsevier, Amsterdam, pp 277–378.Google Scholar
  14. Hwang, D.Y., Ardayfio, P., Kang, U.J., Semina, E.V., and Kim, K.S., 2003, Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice, Brain Res. Mol. Brain Res. 114:123–131.PubMedCrossRefGoogle Scholar
  15. Jackson-Lewis, V., Vila, M., Djaldetti, R., Guegan, C., Liberatore, G., Liu, J., O’Malley, K.L., Burke, R.E., and Przedborski, S., 2000, Developmental cell death in dopaminergic neurons of the substantia nigra of mice, J. Comp. Neurol. 424:476–488.PubMedCrossRefGoogle Scholar
  16. Jellinger, K.A., 2001, The pathology of Parkinson’s disease, Adv. Neurol. 86:55–72.PubMedGoogle Scholar
  17. Lanctot, C., Moreau, A., Chamberland, M., Tremblay, M.L., and Drouin, J., 1999, Hindlimb patterning and mandible development require the Ptx1 gene, Development 126:1805–1810.PubMedGoogle Scholar
  18. Lavoie, B., and Parent, A., 1991, Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys, Neuroreport 2:601–604.PubMedGoogle Scholar
  19. Liang, C.L., Sinton, C.M., and German, D.C., 1996, Midbrain dopaminergic neurons in the mouse: colocalization with Calbindin-D28K and calretinin, Neuroscience 75:523–533.PubMedCrossRefGoogle Scholar
  20. Matsunaga, E., Katahira, T., and Nakamura, H., 2002, Role of Lmx1b and Wnt1 in mesencephalon and metencephalon development, Development 129:5269–5277.PubMedGoogle Scholar
  21. McRitchie, D.A., Hardman, C.D., and Halliday, G.M., 1996, Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans, J. Comp. Neurol. 364:121–150.PubMedCrossRefGoogle Scholar
  22. Nemoto, C., Hida, T., and Arai, R., 1999, Calretinin and calbindin-D28k in dopaminergic neurons of the rat midbrain: a triple-labeling immunohistochemical study, Brain Res. 846:129–136.PubMedCrossRefGoogle Scholar
  23. Nunes, I., Tovmasian, L.T., Silva, R.M., Burke, R.E., and Goff, S.P., 2003, Pitx3 is required for development of substantia nigra dopaminergic neurons, Proc. Natl. Acad. Sci. U S A 100:4245–4250.PubMedCrossRefGoogle Scholar
  24. Parent, A., 1996, The Midbrain, in: Carpenter’s Human Neuroanatomy, Parent A, ed, Williams and Wilkins, Media, pp 527–582.Google Scholar
  25. Reisert, I., Schuster, R., Zienecker, R., and Pilgrim, C., 1990, Prenatal development of mesencephalic and diencephalic dopaminergic systems in the male and female rat, Brain Res. Dev. Brain Res. 53:222–229.PubMedCrossRefGoogle Scholar
  26. Rieger, D.K., Reichenberger, E., McLean, W., Sidow, A., and Olsen, B.R., 2001, A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice, Genomics. 72:61–72.PubMedCrossRefGoogle Scholar
  27. Rogers, J.H., and Resibois, A., 1992, Calretinin and calbindin-D28k in rat brain: patterns of partial colocalization, Neuroscience 51:843–865.PubMedCrossRefGoogle Scholar
  28. Rymar, V.V., Sasseville, R., Luk, K.C., and Sadikot, A.F., 2004, Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum, J. Comp. Neurol. 469:325–339.PubMedCrossRefGoogle Scholar
  29. Sanghera, M.K., Manaye, K., McMahon, A., Sonsalla, P.K., and German, D.C., 1997, Dopamine transporter mRNA levels are high in midbrain neurons vulnerable to MPTP, Neuroreport 8:3327–3331.PubMedGoogle Scholar
  30. Saucedo-Cardenas, O., Quintana-Hau, J.D., Le, W.D., Smidt, M.P., Cox, J.J., De Mayo, F., Burbach, J.P., and Conneely, O.M., 1998, Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons, Proc. Natl. Acad. Sci. U S A 95:4013–4018.PubMedCrossRefGoogle Scholar
  31. Semina, E.V., Murray, J.C., Reiter, R., Hrstka, R.F., and Graw, J., 2000, Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice, Hum. Mol. Genet. 9:1575–1585.PubMedCrossRefGoogle Scholar
  32. Simon, H.H., Saueressig, H., Wurst, W., Goulding, M.D., and O’Leary, D.D., 2001, Fate of midbrain dopaminergic neurons controlled by the engrailed genes, J. Neurosci. 21:3126–3134.PubMedGoogle Scholar
  33. Simon, H.H., Bhatt, L., Gherbassi, D., Sgado, P., and Alberi, L., 2003, Midbrain dopaminergic neurons: determination of their developmental fate by transcription factors, Ann. N Y Acad. Sci. 991:36–47.PubMedCrossRefGoogle Scholar
  34. Smidt, M.P., Smits, S.M., Bouwmeester, H., Hamers, F.P., van der Linden, A.J., Hellemons, A.J., Graw, J., and Burbach, J.P., 2004, Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3, Development 131:1145–1155.PubMedCrossRefGoogle Scholar
  35. Smidt, M.P., van Schaick, H.S., Lanctot, C., Tremblay, J.J., Cox, J.J., van der Kleij, A.A., Wolterink, G., Drouin, J., and Burbach, J.P., 1997, A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons, Proc. Natl. Acad. Sci. U S A 94:13305–13310.PubMedCrossRefGoogle Scholar
  36. Tan, Y., Williams, E.S., and Zahm, D.S., 1999, Calbindin-D 28kD immunofluorescence in ventral mesencephalic neurons labeled following injections of Fluoro-Gold in nucleus accumbens subterritories: inverse relationship relative to known neurotoxin vulnerabilities, Brain Res. 844:67–77.PubMedCrossRefGoogle Scholar
  37. van den Munckhof, P., Luk, K.C., Ste-Marie, L., Montgomery, J., Blanchet, P.J., Sadikot, A.F., and Drouin, J., 2003, Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons, Development 130:2535–2542.PubMedCrossRefGoogle Scholar
  38. Yamada, T., McGeer, P.L., Baimbridge, K.G., and McGeer, E.G., 1990, Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K, Brain Res. 526:303–307.PubMedCrossRefGoogle Scholar
  39. Zetterstrom, R.H., Solomin, L., Jansson, L., Hoffer, B.J., Olson, L., and Perlmann, T., 1997, Dopamine neuron agenesis in Nurr1-deficient mice, Science 276:248–250.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Abbas F. Sadikot
    • 1
  • Kelvin C. Luk
    • 1
  • Pepijn van den Munckhof
    • 2
  • Vladimir V. Rymar
    • 1
  • Kenneth Leung
    • 1
  • Rina Gandhi
    • 1
  • Jacques Drouin
    • 2
  1. 1.Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealCanada
  2. 2.Unité de recherche en génétique moléculaireInstitut de recherches cliniques de MontréalMontrealCanada

Personalised recommendations