Advertisement

Peptidergic Regulation of Cholinergic Transmission in the Dorsal Striatum

Peptides and acetylcholine in the striatum
  • Marie-Louise Kemel
  • Maritza Jabourian
  • Sylvie Pérez
  • Jacques Glowinski
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 56)

Keywords

Dorsal Striatum Cholinergic Transmission Delta Opioid Receptor Cholinergic Interneurones Tachykinin Receptor Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Apicella, P., 2002, Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events. Eur. J. Neurosci. 16:2017–2026.PubMedCrossRefGoogle Scholar
  2. Anderson, J.J., Kuo, S., Chase, T.N., and Engber, T.M., 1994, Dopamine D1 receptor-stimulated release of acetylcholine in rat striatum is mediated indirectly by activation of striatal neurokinin1 receptors. J. Pharmac. Exp. Ther. 269:1144–1151.Google Scholar
  3. Anderson, J.J., Randall, S., and Chase, T., 1995, The neurokinin1 receptor antagonist CP-99,994 reduces catalespsy produced by the dopamine D2 receptor antagonist raclopride: correlation with extracellular acetylcholine levels in striatum. J. Pharmac. Exp. Ther. 274:928–936.Google Scholar
  4. Aosaki, T., Kimura, M., and Graybiel, A.M., 1995, Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J. Neurophysiol. 73:1234–1252.PubMedGoogle Scholar
  5. Beaujouan, J.C., Saffroy, M., Torrens, Y., and Glowinski, J., 2000, Different subtypes of tachykinin receptor binding sites are present in the rat brain. J. Neurochem. 75:1015–1026.PubMedCrossRefGoogle Scholar
  6. Beaujouan, J.C., Torrens, Y., Saffroy, M., Kemel, M.L., and Glowinski, J., 2004, A 25 year adventure in the field of tachykinins. Peptides. 25:339–357.PubMedCrossRefGoogle Scholar
  7. Berendse, H.W., Galis-de Graaf, Y., and Groenewegen, H.J., 1992, Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J. Comp. Neurol. 316:314–347.PubMedCrossRefGoogle Scholar
  8. Blanchet, F., Gauchy, C., Perez, S., Soubrié, P., Glowinski, J., and Kemel, M.L., 1998, Distinct modifications by neurokinin1 (SR140333) and neurokinin2 (SR48968) tachykinin receptor antagonists of the N-Methyl-DAspartate-evoked release of acetylcholine in striosomes and matrix of the rat striatum. Neuroscience. 85:1025–1036.PubMedCrossRefGoogle Scholar
  9. Blanchet, F., Kemel, M.L., Gauchy, C., Desban, M., Perez, S., and Glowinski, J., 1997, N-methyl-D-aspartateevoked release of [3H]-acetylcholine in striatal compartments of the rat: regulatory roles of dopamine and GABA. Neuroscience. 81:113–127.PubMedCrossRefGoogle Scholar
  10. Bolam, J.P., and Bennett, B.D., 1995, Microcircuitry of the neostriatum. In: Molecular and cellular mechanisms of neostriatal function (Ariano, M.A., Surmeier, D.J., Eds), pp. 1–19. Austin, TX: Landes.Google Scholar
  11. Bradshaw, J.L., and Sheppard, D.M. (2000) The neurodevelopmental frontostriatal disorders: evolutionary adaptiveness and anomalous lateralization. Brain Lang. 73:297–320.PubMedCrossRefGoogle Scholar
  12. Centonze, D., Pisani, A., Bonsi, P., Giacomini, P., Bernardi, G., and Calabresi, P., 2001, Stimulation of nitric oxide-cGMP pathway excites striatal cholinergic interneurons via protein kinase G activation. J. Neurosci. 21:1393–1400.PubMedGoogle Scholar
  13. Daugé, V., Mauborgne, A., Cesselin, F., Fournié-Zaluski, M.C., and Roques, B.P., 1996, The dual peptidase inhibitor RB101 induces a long-lasting increase in the extracellular level of Met-enkephalin-like material in the nucleus accumbens of freely moving rats. J. Neurochem. 67:1301–1308.PubMedCrossRefGoogle Scholar
  14. Delfs, J.M., Kong, H., Mestek, A., Chen, Y., You, L., Reisine, T., and Chesselet, M.F., 1994, Expression of mu opioid receptor mRNA in rat brain: an in situ hybridization study at the single cell level. J. Comp. Neurol. 345:46–68.PubMedCrossRefGoogle Scholar
  15. Deniau, J.M., and Thierry, A.M., 1997, Anatomical segregation of information processing in the rat substantia nigra pars reticulata. In: Advances in Neurology, Lippincott-Raven Publishers, ed. Obeso, J.A., DeLong, M.R., Ohye, C., and Marsden, C.D., vol 74, Philadelphia, pp. 83–96.Google Scholar
  16. Desban, M., Gauchy, C., Glowinski, J., and Kemel, M.L, 1995, Heterogeneous topographical distribution of the striatonigral and striatopallidal neurons in the matrix compartment of the cat caudate nuclues. J. Comp. Neurol. 30:117–133.CrossRefGoogle Scholar
  17. Desban, M., Gauchy, C., Kemel, M.L, Besson, M.J., and Glowinski J., 1989, Three-dimensional organization of the striosomal compartment and patchy distribution of striato-nigral projections in the matrix of the cat caudate nucleus Neuroscience, 29:551–566.Google Scholar
  18. Desban, M., Kemel, M.L., Glowinski, J., and Gauchy, C., 1993, Spatial organization of patch and matrix compartments in the rat striatum. Neuroscience. 57:661–671.PubMedCrossRefGoogle Scholar
  19. Duvoisin, R., 1967, Cholinergic-anticholinergic antagonists in Parkinsonism. Arch. Neurol. 17:124–36.PubMedGoogle Scholar
  20. Eblen, F., and Graybiel, A.M., 1995, Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J. Neurosci. 15:5999–6013.PubMedGoogle Scholar
  21. Emonds-Alt, X., Proietto, V., Steinberg, R., Oury-Donat, F., Vigé, X., Vilain, P., Naline, E., Daoui, S., Advenier, C., Le Fur, G., Maffrand, J.P., Soubrié, P., and Pascal, M., 2002, SSR240600 [(R)-2-(1-2-[3,5-Bis(trifluotomethyl)-phenyl]acetyl-2-(3,4-dichlorophenyl)-2-morpholinyl]ethyl-4-piperidinyl)-2-methylpropanamide], a centrally active nonpeptide antagonist of the tachykinin neurokinin-1 receptor: I. Biochemical and pharmacological characterization. JPET 303:1171–1179.CrossRefGoogle Scholar
  22. Gerfen, C.R., and Wilson, C.J., 1996, The basal ganglia. In: Handbook of Chemical Neuroanatomy, Integrated systems of the CNS, Part III, vol 12, ed. Swanson, L.W., Bjorklund, A., and Hokfelt, T., Elsevier, Amsterdam pp. 371–468.Google Scholar
  23. Graybiel, A.M., 1990, Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 13:244–254.PubMedCrossRefGoogle Scholar
  24. Graybiel, A.M., Aosaki, T., Flaherty, A.W., and Kimura, M., 1994, The basal ganglia and adaptative motor control. Science. 265:1826–1831.PubMedGoogle Scholar
  25. Graybiel, A.M., and Ragsdale, C.W., 1978, Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining. Proc. Natl. Acad. Sci. USA. 75:5723–5726.PubMedCrossRefGoogle Scholar
  26. Graybiel, A.M., and Rauch, S.L., 2000, Toward a neurobiology of obsessive-compulsive disorder. Neuron. 28:343–347.PubMedCrossRefGoogle Scholar
  27. Guttenberg, N.D., Klop, H., Minami, M., Satoh, M., and Voorn, P., 1996, Co-localization of mu opioid receptor is greater with dynorphin than enkephalin in rat striatum. Neuroreport. 7:2119–2124.PubMedGoogle Scholar
  28. Herkenham, M., and Nauta, W.J.H., 1979, Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 187:19–48.PubMedCrossRefGoogle Scholar
  29. Herkenham, M., and Pert, C.B., 1981, Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature. 291:415–417.PubMedCrossRefGoogle Scholar
  30. Holt, D.J., Herman, M.M., Hyde, T.M., Kleinman, J.E., Sinton, C.M., German, D.C., Hersh, L.B., Graybiel, A.M., and Saper, C.B., 1999, Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience. 94:21–31.PubMedCrossRefGoogle Scholar
  31. Jabourian, M., Bourgoin, S., Perez, S., Godeheu, G., Glowinski, J., and Kemel, M.L., 2004, Mu opioid control of the N-methyl-D-aspartate-evoked release of [3H]-acetylcholine in the limbic/PF territory of the rat striatum in vitro: diurnal variations and implication of a dopamine link. Neuroscience. 123:733–742.PubMedCrossRefGoogle Scholar
  32. Jabourian, M., Venance, L., Bourgoin, S., Ozon, S., Perez, S., Godeheu, G., Glowinski, J., and Kemel, M.L., 2005, Functional mu opioid receptors are expressed in cholinergic interneurones of the rat dorsal striatum. Eur. J. Neurosci. In press.Google Scholar
  33. Kemel, M.L., Desban, M., Glowinski, J., and Gauchy, C., 1989, Distinct presynaptic control of dopamine release in striosomal and matrix areas of the cat caudate nucleus. Proc. Natl. Acad. Sci. USA. 86:9006–9010.PubMedCrossRefGoogle Scholar
  34. Kemel, M.L., Desban, M., Glowinski, J., and Gauchy, C., 1992, Functional heterogeneity of the matrix compartment in the cat caudate nucleus as demonstrated by the cholinergic presynaptic regulation of dopamine release. Neuroscience. 50:597–610.PubMedCrossRefGoogle Scholar
  35. Kemel, M.L., Pérez, S., Beaujouan, J.C., Jabourian, M., Soubrié, P., and Glowinski, J., 2003, The new neurokinin 1-sensitive receptor mediates the facilitation by endogenous tachykinins of the NMDA-evoked release of acetylcholine after suppression of dopaminergic transmission in the matrix of the rat striatum. J. Neurochem. 87:487–496.PubMedCrossRefGoogle Scholar
  36. Kemel, M.L., Pérez, S., Godeheu, G., Soubrié, P., and Glowinski, J., 2002, Facilitation by endogenous tachykinins of the NMDA-evoked release of acetylcholine after acute and chronic suppression of dopaminergic transmission in the matrix of the rat striatum. J. Neurosci. 22:1929–1936.PubMedGoogle Scholar
  37. Kitabatake, Y., Hikida, T., Watanabe, D., Pastan, I., and Nakanishi, S., 2003, Impairment of reward-related learning by cholinergic cell ablation in the striatum. Proc. Natl. Acad. Sci. USA. 100:7965–7970.PubMedCrossRefGoogle Scholar
  38. Krebs, M.O., Gauchy, C., Desban, M., Glowinski, J., and Kemel, M.L., 1994, Role of dynorphin and GABA in the inhibitory regulation of NMDA-induced dopamine release in striosome-and matrix-enriched areas of the rat striatum. J. Neurosci. 14:2435–2443.PubMedGoogle Scholar
  39. Kurumaji, A., Takashima, M., Ohi, K., and Takahashi, K., 1988, Circadian fluctuations in pain responsiveness and brain Met-enkephalin-like immunoreactivity in the rat. Pharmacol. Biochem. Behav. 29:595–599.PubMedCrossRefGoogle Scholar
  40. Lendvai, B., Sandor, N.T., and Sandor, A., 1993, Influence of selective opiate antagonists on striatal acetylcholine and dopamine release. Acta. Physiol. Hung. 81:19–28.PubMedGoogle Scholar
  41. Mallet, L., Mesnage, V., Houeto, J.L., Pelissolo, A., Yelnik, J., Behar, C., Gargiulo, M., Welter, M.L., Bonnet, A.M., Pillon, B., Cornu, P., Dormont, D., Pidoux, B., Allilaire, J.F., and Agid, Y., 2002, Compulsions, Parkinson’s disease, and stimulation. Lancet. 360:1302–1204.PubMedCrossRefGoogle Scholar
  42. McDougle, C.J., Barr, L.C., Goodman, W.K., and Price, L.H., 1999, Possible role of neuropeptides in obsessive compulsive disorder. Psychoneuroendocrinology. 24:1–24.PubMedCrossRefGoogle Scholar
  43. McGeorge, A.J., and Faull, R.L.M., 1989, The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience. 29:503–537.PubMedCrossRefGoogle Scholar
  44. Le Moine, C., Kieffer, B., Gaveriaux-Ruff, C., Befort, K., and Bloch, B., 1994, Delta-opioid receptor gene expression in the mouse forebrain: localization in cholinergic neurons of the striatum. Neuroscience. 62:635–640.PubMedCrossRefGoogle Scholar
  45. Monteleone, P., Catapano, F., Del Buono, G., and Maj, M., 1994, Circadian rhythms of melatonin, cortisol and prolactin in patients with obsessive-compulsive disorder. Acta. Psychiatr. Scand. 89:411–415.PubMedGoogle Scholar
  46. Olanow, C.W., and Koller, W.C., 1998, An algorithm (decision tree) for the management of Parkinson’s disease: treatment guidelines. Neurology. 50:S1–57.PubMedGoogle Scholar
  47. Pacchierotti, C., Iapichino, S., Bossini, L., Pieraccini, F., and Castrogiovanni, P., 2001, Melatonin in psychiatric disorders: a review on the melatonin involvement in psychiatry. Front Neuroendocrinol. 22:18–32.PubMedCrossRefGoogle Scholar
  48. Preston, Z., Richardson, P.J., Pinnock, R.D., and Lee, K., 2000, NK-3 receptors are expressed on mousse striatal gamma-aminobutyric acid-ergic interneurones and evoke [(3)H]gamma-aminobutyric acid release. Neurosci. Lett. 284:89–92.PubMedCrossRefGoogle Scholar
  49. Rajakumar, N., Elisevich, K., and Flumerfelt, B.A., 1993, Compartmental origin of the striato-entopeduncular projection in the rat. J. Comp. Neurol. 331:286–296.PubMedCrossRefGoogle Scholar
  50. Reisine, T.D., Soubrie, P., Artaud, F., and Glowinski, J., 1982, Involvement of lateralhabenula-dorsal raphe neurons in the differential regulation of striatal and nigral serotonineregic transmission cats. J. Neurosci. 2:1062–1071.PubMedGoogle Scholar
  51. Rupniak, N.M., and Kramer, M.S., 1999, Discovery of the antidepressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. Trends Pharmacol. Sci. 20:485–490.PubMedCrossRefGoogle Scholar
  52. Saka, E., and Graybiel, A.M., 2003, Pathophysiology of Tourette’s syndrome: striatal pathways revisited. Brain Dev. 25:S15–S19.PubMedCrossRefGoogle Scholar
  53. Sharif, N.A., and Hughes, J., 1989, Discrete mapping of brain mu and delta opioid receptors using selective peptides: quantitative autoradiography, species differences and comparison with kappa receptors. Peptides. 10:499–522.PubMedCrossRefGoogle Scholar
  54. Steinberg, R., Souilhac, J., Rodier, D., Alonso, X., Emonds-Alt, X., Le Fur, G., and Soubrié, P., 1998, Facilitation of striatal acetylcholine release by dopamine D1 receptor stimulation: involvement of enhanced nitric oxide production via neurokinin-2 receptor activation. Neuroscience. 84:511–518.PubMedCrossRefGoogle Scholar
  55. Tang, F., Tang, J., Chou, J., and Costa, E., 1984, Age-related and diurnal changes in Met5-Enk-Arg6-Phe7 and Met5-enkephalin contents of pituitary and rat brain structures. Life Sci. 35:1005–1014.PubMedCrossRefGoogle Scholar
  56. Tremblay, L., Kemel, M.L., Desban, M., Gauchy, C., and Glowinski, J., 1992, Distinct presynaptic control of dopamine release in striosomal-and matrix-enriched areas of the rat striatum by selective agonists of NK1, NK2, and NK3 tachykinin receptors. Proc. Natl. Acad. Sci. USA, 89:11214–11218.PubMedCrossRefGoogle Scholar
  57. Wang, H., Gracy, K.N., and Pickel, V.M., 1999, Mu-opioid and NMDA-type glutamate receptors are often colocalized in spiny neurons within patches of the caudate-putamen nucleus. J. Comp. Neurol. 412:132–146.PubMedCrossRefGoogle Scholar
  58. Werling, L.L., Frattali, A., Portoghese, P.S., Takemori, A.E., and Cox, B.M., 1988, Kappa receptor regulation of dopamine release from striatum and cortex of rats and guinea pigs. J. Pharmacol. Exp. Ther. 246:282–286.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Marie-Louise Kemel
    • 1
  • Maritza Jabourian
    • 1
  • Sylvie Pérez
    • 1
  • Jacques Glowinski
    • 2
  1. 1.INSERM U667Collège de FranceParisFrance
  2. 2.Chaire de Neuropharmacologie, INSERM U114Collège de FranceParisFrance

Personalised recommendations