Skip to main content

Digital Holography: Recent Advancements and Prospective Improvements for Applications in Microscopy

  • Chapter
Optical Imaging Sensors and Systems for Homeland Security Applications

3.4. Conclusions

This chapter has reported a detailed description and discussion of the recent advances and improvements in the novel interferometric technique of Digital Holography. Numerous examples have been shown of applications in microscopy for inspection, characterization, and investigation of different materials and processes. It is believed that the progress achieved in the reconstruction methods will find useful applications in different areas of homeland security, and we hope they can provide inspiration for further investigations for conceptual developments of new methods and systems useful in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gabor D. (1948). “A new microscopic principle.” Nature, 161:777–778.

    Article  ADS  Google Scholar 

  2. Stetson KA and Powell RL. (1966). “Hologram interferometry.” J. Opt., Soc., Am., 54:1161.

    Article  ADS  Google Scholar 

  3. Vest CM. (1979). Holographic Interferometry. John Wiley, New York.

    Google Scholar 

  4. Rastogi PK. (1994). Holographic Interferometry. Springer-Verlag, Berlin.

    Google Scholar 

  5. Stetson KA and Brohinsky WR. (1985). “Electrooptic holography, its application to hologram interferometry.” App. Opt., 24:3631.

    Article  ADS  Google Scholar 

  6. Goodman JW and Lawrence RW. (1967). “Digital image formation from electronically detected holograms.” Appl. Phy. Lett., 11:77–79.

    Article  ADS  Google Scholar 

  7. Kronrod RW, Merzlyakov NS, and Yaroslavskii LP. (1972). “Reconstruction of a hologram with a computer.” Sov. Phys. Tech. Phys., 17:333–334.

    ADS  Google Scholar 

  8. Schnars U. (1994). “Direct phase determination in hologram interferometry with use of digitally recorded holograms.” J. Opt. Soc. Am. A., 11:2011–2015.

    Article  ADS  Google Scholar 

  9. Schanrs U and Juptner W. (1994). “Direct recording of holograms by a CCD target and numerical reconstruction.” Appl. Opt., 33:179–181.

    Article  ADS  Google Scholar 

  10. Kreis TM and Juüptner WPO. (1997). “Suppression of the dc term in digital holography.” Opt. Eng., 36:2357–2360.

    Article  ADS  Google Scholar 

  11. Schnars U and Juptner W. (2002). “Digital recording and numerical reconstruction of holograms.” Meas. Sci. Technol., 13:R85–R101.

    Article  ADS  Google Scholar 

  12. Allaria E, Brugioni S, DeNicola S, Ferraro P, Grilli S, and Meucci R. (2003). “Digital Holography at 10:6 µm.” Opt. Commun., 215:257–262.

    Article  ADS  Google Scholar 

  13. Leith E and Upatnieks J. (1965). “Microscopy by wavefront reconstruction.” J Opt. Soc. Am., 55:569–570.

    Article  Google Scholar 

  14. Goodman JW. (1996). Introduction to Fourier Optics. 2nd edn. McGraw-Hill, New York.

    Google Scholar 

  15. Kreis TM and Jüptner W. (1997). Principles of Digital Holography. In: Juüptner, Osten, ed. Fringe 97, Academic, Verlag, pp. 253–363.

    Google Scholar 

  16. Onural l. (2000). “Sampling of the diffraction field.” Appl. Opt., 39:5929–5935.

    Article  ADS  Google Scholar 

  17. Lei X, Xiaoyuan P, Asundi AK, and jianmin M. (2001). “Hybrid holographic microscope for interferometric measurement of microstructures.” Opt. Eng., 40:2533–2539.

    Article  Google Scholar 

  18. Lei X, Xiaoyuan P, Jianmin M, and Asundi AK. (2001). “Studies of digital microscopic holography with applications to microstructure testing.” Appl. Opt., 40:5046–5052.

    Article  Google Scholar 

  19. Kreis TM. (2002). “Frequency analysis of digital holography.” Opt. Eng., 41:771–778.

    Article  ADS  Google Scholar 

  20. Kreis TM. (2002). “Frequency analysis of digital holography with reconstruction by convolution.” Opt. Eng., 41:1829–1839.

    Article  ADS  Google Scholar 

  21. Yamaguchi I and Zhang T. (1997). “Phase-shifting digital holography.” Opt. Lett., 23:1268–1270.

    Article  ADS  Google Scholar 

  22. Lai S, King B, and Neifeld NA. (2000). “Wavefront reconstruction by means of phase-shifting digital in-line holography.” Opt. Comm., 173:155–160.

    Article  ADS  Google Scholar 

  23. De Nicola S, Ferraro P, Finizio A, and Pierattini G. (2002). “Wavefront reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography.” Opt. Laser Eng., 37:331–340.

    Article  Google Scholar 

  24. Cuche E, Marquet P, and Depeursinge C. (2000). “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography.” Appl. Opt., 39:4070–4075.

    Article  ADS  Google Scholar 

  25. Liu C, Li Y, Cheng X, Liu Z, Bo F, and Zhu J. (2002). “Elimination of zero-order diffraction in digital holography,” Opt. Eng., 41:2434–2437.

    Article  ADS  Google Scholar 

  26. Seebacker S, Osten, Baumbach T, and Juptner W. (2001). “The determination of materials parameters of microcomponents using digital holography.” Opt. Laser Eng., 36:103–126.

    Article  Google Scholar 

  27. Jueptner WP, Werner P, Kujawinska M, Osten W, Salbut LA, and Seebacher S. (1987). “Combined measurement of silicon microbeams by grating interferometry and digital holography.” In: International Conference on Applied Optical Metrology, Pramod K. Rastogi; Ferenc Gyimesi, eds, Proc. SPIE. Vol. 3407, pp. 348–357.

    Google Scholar 

  28. Seebacker S, Osten W, Baumbach T, and Juptner W. (2001). “The determination of materials parameters of microcomponents using digital holography.” Opt. Laser Eng., 36:103–126.

    Article  Google Scholar 

  29. Dubois F, Joannes L, Dupont O, Dewandel JL, and Legros JC. (1999). “An integrated optical setup for fluid-physics experiments under microgravity conditions.” Meas. Sci. Technol., 10:934–945.

    Article  ADS  Google Scholar 

  30. Ferraro P, De Nicola S, Finizio A, Grilli S, and Pierattini G. (2001). “Digital holographic interferometry for characterization of transparent materials.” In: Optical Measurement Systems for Industrial Inspection II: Applications in Production Engineering, R. Hoefling; WP Jueptner; M Kujawinska, eds., Proc. SPIE Vol. 4399, pp. 9–16.

    Google Scholar 

  31. Nilsson B and Carlsson T. (2000). “Simultaneous measurement of shape and deformation using digital light-in-flight recording by holography.” Opt. Eng., 39:244–253.

    Article  ADS  Google Scholar 

  32. Osten W, Baumbach T, and Juptner W. (2002). “Comparative digital holography.” Opt. Lett., 27:1764–1766.

    Article  ADS  Google Scholar 

  33. Cuche E, Marquet P, and Depeursinge C. (1999). “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms.” Appl. Opt., 38:6994–7001.

    Article  ADS  Google Scholar 

  34. Ferraro P, DeNicola S, Finizio A, Coppola G, Grilli S, Magro C, and Pierattini G. (2003). “Compensation of the inherent wavefront curvature in digital holographic coherent microscopy for quantitative phase contrast imaging.” Appl. Opt., 42(11):1936–1946.

    Article  ADS  Google Scholar 

  35. Grilli S, Ferraro P, De Nicola S, Finizio A, Pierattini G, and Meucci R. (2001). “Whole optical wave fields reconstruction by digital holography.” Opt. Exp., 9:294–302.

    Article  ADS  Google Scholar 

  36. De Nicola S, Ferraro P, Finizio A, and Pierattini G. (2001). “Correct-image reconstruction in the presence of severe anamorphism by means of digital holography.” Opt. Lett., 26:974–977.

    Article  ADS  Google Scholar 

  37. Grilli S, De Nicola S, Ferraro P, and Pierattini G. (2002). “Experimental demonstration of the longitudinal phase-shift in digital holography.” Submitted to Opt. Eng., (2002).

    Google Scholar 

  38. Stadelmaier A and Massig JH. (2000). “Compensation of lens aberrations in digital holography.” Opt. Lett., 25:1630–1633.

    Article  ADS  Google Scholar 

  39. Pedrini G, Schedin S, and Tiziani HJ. (2001). “Aberration compensation in digital holographic reconstruction of microscopic objects.” J. Mod. Opt., 48:1035–1041.

    Article  ADS  Google Scholar 

  40. Cuche E, Marquet P, and Depeursinge C. (1999). “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms.” Appl. Opt., 38:6994–7001.

    Article  ADS  Google Scholar 

  41. De Nicola S, Ferraro P, Finizio A, Grilli S, Coppola G, Iodice M, De Natale P, and Chiarini M. (2004). “Surface topography of microstructures in lithium niobate by digital holographic microscopy.” Meas. Sci. Technol., 15(5):961–968.

    Article  ADS  Google Scholar 

  42. Ferraro P, Coppola G, De Nicola S, Finizio A, and Pierattini G. (2003). “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time.” Opt. Lett., 28:1257–1259.

    Article  ADS  Google Scholar 

  43. Coppola G, Ferraro P, Iodice M, De Nicola S, Finizio A, and Grilli S. (2004). “A digital holographic microscope for complete characterization of microelectromechanical systems.” Meas. Sci. Technol., 15:529–539.

    Article  ADS  Google Scholar 

  44. Ferraro P, Coppola G, DeNicola S, Finizio A, Grilli S, Iodice M, Magro C, and Pierattini G. (2002). “Digital holography for characterization and testing of MEMS structures.” In: Proceedings of IEEE/LEOS International Conference on Optical MEMS 2002 (IEEE, New York), pp. 125–126.

    Chapter  Google Scholar 

  45. Grilli S, Ferraro P, Paturzo M, Alfieri D, De Natale P, De Angelis M, De Nicola S, Finizio A, and Pierattini G. (2004). “In situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography.” Opt. Expr., 12(9):1832–1842.

    Article  ADS  Google Scholar 

  46. Demoli N, Vukicevic D, and Torzynski M. (2003). “Dynamic digital holographic interferometry with three wavelengths.” Opt. Expr., 11:767–774.

    Article  ADS  Google Scholar 

  47. Kato J, Yamaguchi I, and Matsumura T. (2003). “Multicolor digital holography with an achromatic phase shifter.” Opt. Lett., 27:1403.

    Article  ADS  Google Scholar 

  48. Yamaguchi I, Matsumura T, and Kato J. (2002). “Phase-shifting colour digital holography.” Opt. Lett., 27:1108–1110.

    Article  ADS  Google Scholar 

  49. Gass J, Dakoff A, and Kim MK. (2003). “Phase imaging without 2π ambiguity by multiwavelength digital holography.” Opt. Lett., 28:1141–1143.

    Article  ADS  Google Scholar 

  50. Kim M. (2000). “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography.” Opt. Expr., 7:305–310.

    Article  ADS  Google Scholar 

  51. Zhang F, Yamaguchi I, and Yaroslavsky LP. (2004). “Algorithm for reconstruction of digital holograms with adjustable magnification.” Opt. Lett., 29:1668–1670.

    Article  ADS  Google Scholar 

  52. Ferraro P, Coppola G, DeNicola S, Finizio A, Pierattini G, and Alfieri D. (2004). “Controlling image size as a function of distance and wavelength in Fresnel transform reconstruction of digital holograms.” Opt. Lett., 29(8):854–856.

    Article  ADS  Google Scholar 

  53. DeNicola S, Ferraro P, Coppola G, Finizio A, Pierattini G, and Grilli S. (2004). “Talbot self-image effect in digital holography and its application to spectrometry.” Opt. Lett., 29(1):104–106.

    Article  ADS  Google Scholar 

  54. Pedrini G, Tiziani HJ, and Zoa Y. (1996). “Speckle size of digitally reconstructed wavefronts of diffusely scattering objects.” J. Mod. Opt., 43:395–407.

    Article  ADS  Google Scholar 

  55. Indebetouw G and Klysubun P. (1999). “Space-time digital holography: A three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence.” Appl. Phys. Lett., 75:2017.

    Article  ADS  Google Scholar 

  56. Massig JH. (2002). “Digital off-axis holography with a synthetic aperture.” Opt. Lett., 27:2179.

    Article  ADS  Google Scholar 

  57. Liu C, Liu Z, Bo F, Wang Y, and Zhu J. (2002). “Superresolution digital holographic imaging method.” Appl. Phys. Lett., 81:3143–3145.

    Article  ADS  Google Scholar 

  58. Ferraro P, DeNicola S, Finizio A, Pierattini G, and Coppola G. (2004). “Recovering image resolution in reconstructing digital off-axis holograms by Fresnel-transform method.” Appl. Phys. Lett., 85:2709–2711.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ferraro, P., De Nicola, S., Coppola, G. (2006). Digital Holography: Recent Advancements and Prospective Improvements for Applications in Microscopy. In: Javidi, B. (eds) Optical Imaging Sensors and Systems for Homeland Security Applications. Advanced Sciences and Technologies for Security Applications, vol 2. Springer, New York, NY. https://doi.org/10.1007/0-387-28001-4_3

Download citation

Publish with us

Policies and ethics