Skip to main content

Cobalt Nanocrystals Organized in Mesoscopic Scale

  • Chapter
  • 1374 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The emergence of new methods and concepts for the organization of nanoparticles has rapidly induced great hopes in the world of magnetism. In fact, the organization of nanoscale ferromagnetic particles opens a new field of technologies through the controlled fabrication of mesoscopic materials with unique magnetic properties.1 In particular, these ferromagnetic nanoparticles are potential candidates for magnetic storage,2 where the idea is that each ferromagnetic particle corresponds to one bit of information.3 Thin granular films of ferromagnetic particles formed by sputtering deposition are already the basis of conventional rigid magnetic storage media. However, there are several problems remaining to be solved before their application to the storage industry becomes feasible. Devices based on magnetic nanocrystals are limited by thermal fluctuations of the magnetization: Because of their reduced sizes, ferromagnetic nanocrystals become superparamagnetic at room temperature. The dipolar magnetic interaction between nanocrystals ordered in arrays is also an important limiting factor for their use in magnetic storage media. A detailed understanding of the magnetic properties of assemblies of nanocrystals is therefore essential to the development of magnetic recording technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. X. Batlle and A. Labarta, Finite-size effects in fine particles: magnetic and transport properties, J. Phys. D 35, R15–R42 (2002).

    Article  CAS  Google Scholar 

  2. S. A. M. Tofail, I. Z. Rahman, and M. A. Rahman, Patterned nanostructured arrays for high-density magnetic recording, App. Organometal. Chem. 15, 373–382 (2001).

    Article  CAS  Google Scholar 

  3. D. N. Lambeth, E. M. T. Velu, G. H. Bellesis, L. L. Lee, and D. E. Laughlin, Impact of new magnetroresistive materials on magnetic recording heads, J. Appl. Phys. 79, 4496–4501 (1996).

    Article  CAS  Google Scholar 

  4. S. Yamamuro, D. F. Farell, and S. A. Majetich, Direct imaging of self-assembled magnetic nanoparticle arrays: Phase stability and magnetic effects on morphology, Phys. Rev. B 65, 22, 4431 (2002).

    Article  CAS  Google Scholar 

  5. C. Petit, A. Taleb, and M. P. Pileni, Self-organization of magnetic nanosized cobalt particles, Adv. Mater. 10, 259–261 (1998).

    Article  CAS  Google Scholar 

  6. C. Petit, A. Taleb, and M. P. Pileni, Cobalt nanosized particles organized in a 2D superlattice: Synthesis, characterization and magnetic properties, J. Phys. Chem. B 103, 1805 (1999).

    Article  CAS  Google Scholar 

  7. V. F. Puntes, K. Krishnan, and P. Alivisatos, Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal e-Co nanoparticles, Appl. Phys. Lett. 78, 2187–2189 (2001).

    Article  CAS  Google Scholar 

  8. S. Sun and C. B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices, J. Appl. Phys. 85, 4235 (1999).

    Google Scholar 

  9. U. Wiedwald, M. Spasova, M. Farle, M. Hilgendorff, and M. Giersig, Ferromagnetic resonance of monodisperse Co particles, J. Vac. Sci. Technol. A 19, 1773–1776 (2001).

    Article  CAS  Google Scholar 

  10. F. Luis, F. Petroff, J. M. Torres, L. M. Garcia, J. Bartolomé, J. Carrey, and A. Vaurés, Magnetic relaxation of interacting Co clusters: Crossover from two- to three dimensional lattices, Phys. Rev. Lett. 88, 217, 205 (2002).

    Google Scholar 

  11. I. Lisiecki and M. P. Pileni, Synthesis of well-defined and low size distribution cobalt nanocrystals: The limited influence of reverse micelles, Langmuir, 19, 9486–9489 (2003).

    Article  CAS  Google Scholar 

  12. I. Lisiecki, P. A. Albouy, and M. P. Pileni, Face-centered-cubic “supracrystals” of cobalt nanocrystals, Adv. Mater. 15, 712–716 (2003).

    Article  CAS  Google Scholar 

  13. Q. Guo, X. Teng, S. Rahman, and H. Yanga, Patterned Langmuir–Blodgett films of monodisperse nanoparticles of iron oxide using soft lithography, J. Am. Chem. Soc. 125, 630–631 (2003).

    Article  CAS  Google Scholar 

  14. T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. Bin Na, Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process, J. Am. Chem. Soc. 123, 12, 798–12, 801 (2001).

    Article  CAS  Google Scholar 

  15. M. D. Bentzon, J. van Wonterghem, S. Morup, A. Tholen, and C. J. W. Koch, Ordered aggregates of ultrafine iron oxyde particles, Phil. Mag. B. 60, 169 (1989).

    Article  CAS  Google Scholar 

  16. P. Poddar, T. Telem-Shafir, T. Fried, and G. Markovich, Dipolar interactions in two and three-dimensional magnetic nanoparticle arrays, Phys. Rev. B 66, 60403–60407 (2002).

    Article  CAS  Google Scholar 

  17. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc. 126, 273–279 (2004).

    Article  CAS  Google Scholar 

  18. H. Zeng, P. M. Rice, S. X. Wang, and S. Sun, Shape-controlled synthesis and shapeinduced texture of MnFe2O4 nanoparticles, J. Am. Chem. Soc. 126, 11, 458–11, 459 (2004).

    Google Scholar 

  19. M. Angelakeris, O. Crisan, E. Papaioannoua, N. Vouroutzisa, I. Tsiaoussisa, E. Pavlidou, A. D. Crisana, I. Kosticc, N. Sobal, M. Giersig, and N. K. Flevaris, Fabrication of novel magnetic nanostructures by colloidal bimetallic nanocrystals and multilayers, Mater. Sci. Eng. C 23, 873 (2003).

    Article  CAS  Google Scholar 

  20. O. Crisan, M. Angelakeris, M. Nogues, Th. Kehagias, Ph. Komninou, N. Sobal, M. Giersig, and N. K. Flevaris, Observation of the domain structure in Fe-Au superlattices with perpendicular anisotropy, J. Magn. Magn. Mater. 272–276, e1253–e1254 (2004).

    Article  CAS  Google Scholar 

  21. J. I. Park and J. Cheon, Synthesis of “solid solution” and “core-shell” type cobalt–platinum magnetic nanoparticles via transmetalation reactions, J. Am. Chem. Soc. 123, 5743–5746 (2001).

    Article  CAS  Google Scholar 

  22. E. Shevchenko, D. Talapin, A. Rogach, A. Kornowski, M. Haase, and H. Weller, Colloidal synthesis and self-assembly of CoPt3 nanocrystals, J. Am. Chem. Soc. 124, 11, 480–11, 485 (2002).

    Google Scholar 

  23. E. Shevchenko, D. Talapin, H. Schnablegger, A. Kornowski, O. Festin, P. Svedlindh, M. Haase, and H. Weller, Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: The role of nucleation rate in size control of CoPt3 nanocrystals, J. Am. Chem. Soc. 125, 9090–9101 (2003).

    Article  CAS  Google Scholar 

  24. C. Petit, S. Rusponi, and H. Brune, Magnetic properties of cobalt and cobalt-platinum nanocrystals investigated by magneto-optical Kerr effect, J. Appl. Phys. 95, 4251–4260 (2004).

    Article  CAS  Google Scholar 

  25. E. Shevshenko, D. Talapin, A. Kornowski, F. Wiekhorst, J. Kötzler, M. Haase, A. Rogach, and H. Weller, Colloidal crystals of monodisperse FePt nanoparticles grown by a three-layer technique of controlled oversaturation, Adv. Mater. 14, 287–290 (2002).

    Article  Google Scholar 

  26. S. Wang, S. S. Kang, D. E. Nikles, J. W. Harrell, and X. W. Wu, Magnetic properties of self-organized L10 FePtAg nanoparticle arrays, J. Magn. Magn. Mater. 266, 49–56 (2003).

    Article  CAS  Google Scholar 

  27. H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, Exchange-coupled nanocomposite magnets by nanoparticle self-assembly, Nature 420, 395–398 (2002).

    Article  CAS  Google Scholar 

  28. S. Sun, C. B. Murray, D. Weller, L. Folk, and A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  29. M. H. Lu, T. Song, T. J. Zhou, P. P. Wang, S. N. Piramanayagam, W. W. Ma, and H. Gong, FePt and Fe nanocomposite by annealing self-assembled FePt nanoparticles, J. Appl. Phys. 95, 6735–6337 (2004).

    Article  CAS  Google Scholar 

  30. S. Kang, Z. Jia, D. E. Nikles, and J.W. Harrell, Synthesis and phase transition of selfassembled FePd and FePdPt nanoparticles, J. Appl. Phys. 95, 6744–6746 (2004).

    Article  CAS  Google Scholar 

  31. A. Philipse and D. Maas, Magnetic colloids from magnetotactic bacteria: Chain formation and colloidal stability, Langmuir 18, 9977–9984 (2002).

    Article  CAS  Google Scholar 

  32. L. Motte, F. Billoudet, and M. P. Pileni, Self-assembled monolayer of nanosized particles differing by their sizes, J. Phys. Chem. 99, 16, 425–16, 429 (1995).

    Article  Google Scholar 

  33. M. Maillard, L. Motte, A. T. Ngo, and M. P. Pileni, Rings and hexagons made of nanocrystals: A Marangoni effect, J. Phys. Chem. B 104, 11, 871–11, 877 (2000).

    Article  CAS  Google Scholar 

  34. M. Maillard, L. Motte, A. T. Ngo, and M. P. Pileni, Rings and hexagons made of nanocrystals, Adv. Mater. 13, 200–204 (2001).

    Article  CAS  Google Scholar 

  35. J. Legrand, C. Petit, and M. P. Pileni, Domain shapes and superlattices made of 8 nm cobalt nanocrystals: Fabrication and magnetic properties, J. Phys. Chem B 105, 5643–5646 (2001).

    Article  CAS  Google Scholar 

  36. Y. Lalatonne, J. Richardi, and M. P. Pileni, Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals, Nature Mater. 3, 121–125 (2004).

    Article  CAS  Google Scholar 

  37. C. Petit, J. Legrand, V. Russier, and M. P. Pileni, Three dimensional arrays of cobalt nanocrystals: Fabrication and magnetic properties, J. Appl. Phys. 91, 1502–1508 (2002).

    Article  CAS  Google Scholar 

  38. A. T. Ngo and M. P. Pileni, Nanoparticles of cobalt ferrite: Influence of the applied field on the organization of the nanocrystals on a substrate and on their magnetic properties, Adv. Mater. 12, 276–279 (2000).

    Article  CAS  Google Scholar 

  39. Y. Lalatonne, L. Motte, V. Russier, A. T. Ngo, P. Bonville, and M. P. Pileni, Mesoscopic structures of nanocrystals: Collective magnetic properties due to the alignment of nanocrystals, J. Phys. Chem. B 108, 1848–1854 (2004).

    Article  CAS  Google Scholar 

  40. J. Legrand, A. T. Ngo, C. Petit, and M. P. Pileni, Domain shapes and superlattices made of cobalt nanocrystals, Adv. Mater. 13, 58–62 (2001).

    Article  CAS  Google Scholar 

  41. V. Germain and M. P. Pileni, Mesostructures of cobalt nanocrystals. 2. mechanism, J. Phys. Chem. B 109, 5548–5553 (2005).

    Article  CAS  Google Scholar 

  42. V. Germain and M. P. Pileni, Size distribution of cobalt nanocrystals: A key parameter in formation of columns and labyrinths in mesoscopic structures, Advanced materials 17, 1424–1429, (2005).

    Article  CAS  Google Scholar 

  43. L. Motte, F. Billoudet, E. Lacaze, and M. P. Pileni, Self-organization of size-selected, nanoparticles into three-dimensional superlattices, Adv. Mater. 8, 1018–1020 (1996).

    Article  CAS  Google Scholar 

  44. A. Courty, C. Fermon, and M. P. Pileni, “supra crystals” made of nanocrystals, Adv. Mater. 13, 254–258 (2001).

    Article  CAS  Google Scholar 

  45. A. Courty, O. Araspin, C. Fermon, and M. P. Pileni, “Supracrystals” made of nanocrystals. 2. Growth on HOPG substrate, Langmuir, 17, 1372–1380 (2001).

    Article  CAS  Google Scholar 

  46. I. Lisiecki, P. A. Albouy, and M. P. Pileni, “Supra” crystal: Control of the ordering of self-organization of cobalt nanocrystals at the mesoscopic scale, J. Phys. Chem. B, 108, 20050–20055 (2004).

    Article  CAS  Google Scholar 

  47. A. W. Adamson and A. P. Gast, Physical Chemistry of Surface, 6th ed., Wiley–Interscience, New York, 1997.

    Google Scholar 

  48. J. Mahanty and B. Ninham, Dispersion Forces, Academic Press, London, 1976.

    Google Scholar 

  49. J. Israelachvili, Intermolecular and Surfaces Forces, 2nd ed., Academic Press, New York, 1991.

    Google Scholar 

  50. H. Morimoto and T. Maekava, Dynamic Analysis of ferromagnetic colloidal systems, Int. J. Mod. Phys. B 13, 2085 (1999).

    Article  Google Scholar 

  51. J. A. Lewis, Colloidal processing of ceramics, J. Am. Ceram. Soc. 83, 2341–2359 (2000).

    Article  CAS  Google Scholar 

  52. R. E. Rosenweig, Ferrohydrodynamics, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  53. J. Israelachvili, Solvation forces and liquid structure, as probed by direct force measurements, Acc. Chem. Res. 20(11), 415–421 (1987).

    Article  CAS  Google Scholar 

  54. A. Courty, A. Mermé, P. A. Albouy, E. Duval, and M. P. Pileni, Vibrational coherence of self-organized silver nanocrystals in f.c.c. “supra” crystals, Nature materials, 4, 395–398 (2005).

    Article  CAS  Google Scholar 

  55. I. Lisiecki, P.A. Albouy, C. Andreazza, and M. P. Pileni, “Supra-crystals” of cobalt nanocrystals: Intrinsic properties via annealing processes, submitted for publication.

    Google Scholar 

  56. C. Petit, Z. L. Wang, and M. P. Pileni, Seven nanometer HCP cobalt nanocrystals for high temperature magnetic applications through a novel annealing process, J. Phys. Chem. B, in press.

    Google Scholar 

  57. B. O. Dabbousi, C. B. Murrau, M. F. Rubner, and M. G. Bawendi, Langmuir Blodgett manipulation of size selected CdSe nanocrystallites, Chem. Mater. 6, 216 (1994).

    Article  CAS  Google Scholar 

  58. J. R. Heath, C. M. Knobler, and D. Leff, Pressure–temperature phase diagram and superlattices of organically functionalized metal nanocrystals monolayers: The influence of particle, size distribution and surface passivation, J. Phys. Chem. B 101, 189 (1997).

    Article  CAS  Google Scholar 

  59. S. Huang, G. Tsutsui, H. Skaue, S. Shingubara, and T. Takahagi, Probing characteristics of proximity x ray lithography and comparison with optical lithography at 100 nm and 70 nm technology modes, J. Vac. Sci. Technol. B 19, 115 (2001).

    Article  CAS  Google Scholar 

  60. Q. Guo, X. Teng, S. Rahman, and H. Yang, Patterned Langmuir–Blodgett film of monodisperse nanoparticles of iron oxides using soft lithography, J. Am. Chem. Soc. 125, 630 (2003).

    Article  CAS  Google Scholar 

  61. L. Zhang and A. Manthiran, Experimental study of ferromagnetic chains composed of nanosize Fr spheres, Phys. Rev. B 54, 3462 (1996).

    Article  CAS  Google Scholar 

  62. Y. Lalatonne, L. Motte, J. Richardi, and M. P. Pileni, Mesoscopic structures of maghemite nanocrystals: Collective magnetic properties due to the alignment of nanocrystals, Phys. Rev. E 3, 121 (2004).

    CAS  Google Scholar 

  63. Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. P. Furlani, and P. N. Prasad, Field directed self assembly of magnetic nanoparticles, J. Phys. Chem. B 108, 3380 (2004).

    Article  CAS  Google Scholar 

  64. H. Niu, Q. Chen, M. Ning, Y. Jiay, and X. Wang, Synthesis of one dimensional selfassembly of acicular nickel nanocrystalllites under magnetic fields, J. Phys. Chem. B 108, 3996 (2004).

    Article  CAS  Google Scholar 

  65. A. T. Ngo and M. P. Pileni, Organization and magnetic properties of cigar-shaped ferrite nanocrystals, New J. Phys. 4, 87 (2002).

    Article  Google Scholar 

  66. J. Richardi, D. Ingert, and M. P. Pileni, Labyrinthine instability in magnetic fluids revisited, J. Phys. Chem. 106, 1521 (2002).

    CAS  Google Scholar 

  67. J. Richardi, D. Ingert, and M. P. Pileni, Theoretical study of the field-induced pattern formation in magnetic liquids, Phys. Rev. E 66, 46, 306 (2002).

    Article  CAS  Google Scholar 

  68. J. Richardi and M. P. Pileni, Nonlinear theory of pattern formation in ferrofluid films at high field strengths, Phys. Rev. E 69, 16, 304 (2004).

    Article  CAS  Google Scholar 

  69. J. P. Chen, C. M. Sorensen, K. J. Klabunde, and G. C. Hadjipanayis, Enhanced magnetization of nanoscale colloidal cobalt particles, Phys. Rev. B 51, 11,527 (1995).

    Google Scholar 

  70. V. Russier, C. Petit, J. Legrand, and M. P. Pileni, Collective magnetic properties of cobalt nanocrystals self-assembled in a hexagonal network: Theoretical model supported by experiments, Phys. Rev. B 62, 3910 (2000).

    Article  CAS  Google Scholar 

  71. J. L. Dormann, D. Fiorani, and E. Tronc, Magnetic relaxation in fine particles systems, Adv. Chem. Phys. 98, 283 (1997).

    Article  CAS  Google Scholar 

  72. R. W. Chantrell, N. Wamsley, J. Gore, and M. Maylin, Calculations of the susceptibility of interacting superparamagnetic particles, Phys. Rev. B 63, 024410 (2000).

    Article  Google Scholar 

  73. V. Russier, C. Petit, and M. P. Pileni, Hysteresis curve of magnetic nanocrystals monolayers: Influence of the structure, J. Appl. Phys. 93, 10,001-10,010 (2003).

    Article  CAS  Google Scholar 

  74. C. Petit, V. Russier, and M. P. Pileni, Effect of the structure of cobalt nanocrystal organization on the collective magnetic properties, J. Phys. Chem. B 107, 10, 333- 10, 336 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Pileni, MP. (2006). Cobalt Nanocrystals Organized in Mesoscopic Scale. In: Adachi, M., Lockwood, D.J. (eds) Self-Organized Nanoscale Materials. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/0-387-27976-8_8

Download citation

Publish with us

Policies and ethics