Skip to main content

Lessons from Experimental Generation of Intracellular Angiotensinogen and AII

  • Conference paper
  • 371 Accesses

Part of the Basic Science for the Cardiologist book series (volume 20)

Keywords

  • CREB Phosphorylation
  • Enhance Cyan Fluorescent Protein
  • Human Fibroblast Growth Factor
  • Alternative Translation Start Site
  • Intracrine Action

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/0-387-27826-5_7
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-27826-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook JL, Giardina JF, Zhang Z, Re RN. Intracellular Angiotensin II Increases the Long Isoform of PDGF mRNA in Rat Hepatoma Cells. J Mol Cell Cardiol. 2002;34:1525–37.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Cook JL, Re R, Alam J, Hart M, Zhang Z. Intracellular angiotensin II fusion protein alters AT1 receptor fusion protein distribution and activates CREB. J Mol Cell Cardiol. 2004;36:75–90.

    CrossRef  PubMed  CAS  Google Scholar 

  3. Cook JL, Zhang Z, Re RN. In vitro evidence for an intracellular site of angiotensin action. Circ Res. 2001;89:1138–46.

    PubMed  CAS  Google Scholar 

  4. Re RN. The intracrine hypothesis and intracellular peptide hormone action. Bioessays. 2003;25:401–9.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Re RN. Tissue renin angiotensin systems. Med Clin North Am. 2004;88:19–38.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Lynch KR, Simnad VI, Ben-Ari ET, Garrison JC. Localization of preangiotensinogen messenger RNA sequences in the rat brain. Hypertension. 1986;8:540–3.

    PubMed  CAS  Google Scholar 

  7. Aronheim A, Engelberg D, Li N, al-Alawi N, Schlessinger J, Karin M. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell. 1994;78:949–61.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Hancock JF, Cadwallader K, Paterson H, Marshall CJ. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. Embo J. 1991;10:4033–9.

    PubMed  CAS  Google Scholar 

  9. Chui DH, Tang W, Orkin SH. cDNA cloning of murine Nrf 2 gene, coding for a p45 NF-E2 related transcription factor. Biochem Biophys Res Commun. 1995;209:40–6.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, Prats AC. A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol. 1999;19:505–14.

    PubMed  CAS  Google Scholar 

  11. Hann SR, Dixit M, Sears RC, Sealy L. The alternatively initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA-binding site. Genes Dev. 1994;8:2441–52.

    PubMed  CAS  Google Scholar 

  12. Kiefer P, Acland P, Pappin D, Peters G, Dickson C. Competition between nuclear localization and secretory signals determines the subcellular fate of a single CUG-initiated form of FGF3. Embo J. 1994;13:4126–36.

    PubMed  CAS  Google Scholar 

  13. Nguyen M, He B, Karaplis A. Nuclear forms of parathyroid hormone-related peptide are translated from non-AUG start sites downstream from the initiator methionine. Endocrinology. 2001;142:694–703.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Vagner S, Gensac MC, Maret A, Bayard F, Amalric F, Prats H, Prats AC. Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol. 1995;15:35–44.

    PubMed  CAS  Google Scholar 

  15. Martoglio B. Intramembrane proteolysis and post-targeting functions of signal peptides. Biochem Soc Trans. 2003;31:1243–7.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Nagai K, Oubridge C, Kuglstatter A, Menichelli E, Isel C, Jovine L. Structure, function and evolution of the signal recognition particle. Embo J. 2003;22:3479–85.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Campbell DJ, Bouhnik J, Coezy E, Menard J, Corvol P. Processing of rat and human angiotensinogen precursors by microsomal membranes. Mol Cell Endocrinol. 1985;43:31–40.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Campbell DJ, Bouhnik J, Menard J, Corvol P. Identity of angiotensinogen precursors of rat brain and liver. Nature. 1984;308:206–8.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Campbell DJ, Bouhnik J, Coezy E, Pinet F, Clauser E, Menard J, Corvol P. Characterization of precursor and secreted forms of rat angiotensinogen. Endocrinology. 1984;114:776–85.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Kozak M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol. 1989;9:5073–80.

    PubMed  CAS  Google Scholar 

  21. Mehdi H, Ono E, Gupta KC. Initiation of translation at CUG, GUG, and ACG codons in mammalian cells. Gene. 1990;91:173–8.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Tewksbury DA, Pan N, Kaiser SJ. Detection of a receptor for angiotensinogen on placental cells. Am J Hypertens. 2003;16:59–62.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Mercure C, Ramla D, Garcia R, Thibault G, Deschepper CF, Reudelhuber TL. Evidence for intracellular generation of angiotensin II in rat juxtaglomerular cells. FEBS Lett. 1998;422:395–9.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Peters J, Farrenkopf R, Clausmeyer S, Zimmer J, Kantachuvesiri S, Sharp MG, Mullins JJ. Functional significance of prorenin internalization in the rat heart. Circ Res. 2002;90:1135–41.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Heldin CH, Ericsson J. Signal transduction. RIPping tyrosine kinase receptors apart. Science. 2001;294:2111–3.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Waugh MG, Hsuan JJ. EGF receptors as transcription factors: ridiculous or sublime? Nat Cell Biol. 2001;3:E209–11.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Wells A, Marti U. Signalling shortcuts: cell-surface receptors in the nucleus? Nat Rev Mol Cell Biol. 2002;3:697–702.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Lu D, Yang H, Shaw G, Raizada MK. Angiotensin II-induced nuclear targeting of the angiotensin type 1 (AT1) receptor in brain neurons. Endocrinology. 1998;139:365–75.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Nikiforovich GV, Marshall GR. 3D model for TM region of the AT-1 receptor in complex with angiotensin II independently validated by site-directed mutagenesis data. Biochem Biophys Res Commun. 2001;286:1204–11.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Wilkes BC, Masaro L, Schiller PW, Carpenter KA. Angiotensin II vs its type I antagonists: conformational requirements for receptor binding assessed from NMR spectroscopic and receptor docking experiments. J Med Chem. 2002;45:4410–8.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Tzakos AG, Bonvin AM, Troganis A, Cordopatis P, Amzel ML, Gerothanassis IP, Van Nuland NA. On the molecular basis of the recognition of angiotensin II (AII). Eur J Biochem. 2003;270:849–860.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Hunyady L, Baukal AJ, Gaborik Z, Olivares-Reyes JA, Bor M, Szaszak M, Lodge R, Catt KJ, Balla T. Differential PI 3-kinase dependence of early and late phases of recycling of the internalized AT1 angiotensin receptor. J Cell Biol. 2002;157:1211–22.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Yadav SP, Karnick S, Shen WZ, Zhang J. Characterization of Rhodamine Conjugated Agiotensin II Peptide: Synthesis, Analysis and Receptor Binding and Internalization. Protein Pept Lett. 2002;9:465–76.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Betsholtz C, Johnsson A, Heldin CH, Westermark B, Lind P, Urdea MS, Eddy R, Shows TB, Philpott K, Mellor AL. cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines. Nature. 1986;320:695–9.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Pierce GF, Tarpley JE, Tseng J, Bready J, Chang D, Kenney WC, Rudolph R, Robson MC, Vande Berg J, Reid P. Detection of platelet-derived growth factor (PDGF)-AA in actively healing human wounds treated with recombinant PDGF-BB and absence of PDGF in chronic nonhealing wounds. J Clin Invest. 1995;96:1336–50.

    CrossRef  PubMed  CAS  Google Scholar 

  36. Tong BD, Auer DE, Jaye M, Kaplow JM, Ricca G, McConathy E, Drohan W, Deuel TF. cDNA clones reveal differences between human glial and endothelial cell platelet-derived growth factor A-chains. Nature. 1987;328:619–21.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Funakoshi Y, Ichiki T, Takeda K, Tokuno T, Iino N, Takeshita A. Critical role of cAMP-response element-binding protein for angiotensin II-induced hypertrophy of vascular smooth muscle cells. J Biol Chem. 2002;277:18710–7.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Reddy MA, Thimmalapura PR, Lanting L, Nadler JL, Fatima S, Natarajan R. The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin II effects. J Biol Chem. 2002;277:9920–8.

    CrossRef  PubMed  CAS  Google Scholar 

  39. Cammarota M, Bevilaqua LR, Dunkley PR, Rostas JA. Angiotensin II promotes the phosphorylation of cyclic AMP-responsive element binding protein (CREB) at Ser133 through an ERK1/2-dependent mechanism. J Neurochem. 2001;79:1122–8.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Re RN. Intracellular renin and the nature of intracrine enzymes. Hypertension. 2003;42:117–22.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Re RN. Toward a theory of intracrine hormone action. Regul Pept. 2002;106:1–6.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Mittelman JM, Gudkov AV. Generation of p53 suppressor peptide from the fragment of p53 protein. Somat Cell Mol Genet. 1999;25:115–28.

    CrossRef  PubMed  CAS  Google Scholar 

  43. Sherrod M, Liu X, Zhang X, Sigmund CD. Nuclear Localization of Angiotensinogen in Astrocytes. Am J Physiol Regul Integr Comp Physiol. 2005;288:R539–546.

    PubMed  CAS  Google Scholar 

  44. Baker KM, Chernin MI, Schreiber T, Sanghi S, Haiderzaidi S, Booz GW, Dostal DE, Kumar R. Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept. 2004;120:5–13.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Cook, J.L., Re, R.N. (2006). Lessons from Experimental Generation of Intracellular Angiotensinogen and AII. In: Frohlich, E.D., Re, R.N. (eds) The Local Cardiac Renin Angiotensin-Aldosterone System. Basic Science for the Cardiologist, vol 20. Springer, Boston, MA. https://doi.org/10.1007/0-387-27826-5_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-27826-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27825-4

  • Online ISBN: 978-0-387-27826-1

  • eBook Packages: MedicineMedicine (R0)