Skip to main content

Mechanical Signaling and the Cardiac Renin-angiotensin

  • Conference paper
  • 400 Accesses

Part of the book series: Basic Science for the Cardiologist ((volume 20))

Summary

Cardiac hypertrophy is a common outcome of hypertension or myocardial infarction and a major contributor to cardiovascular morbidity and mortality. Under conditions of increased hemodynamic load, the heart compensates by undergoes compensatory hypertrophy, a response that restores lost function and normalizes wall stress. It is thus very important to understand the molecular mechanisms responsible for the development of cardiac hypertrophy. In isolated cardiac myocytes, mechanical stretch induces activation of several protein kinases, fetal gene expression, upregulation of renin-angiotensin system components and cellular hypertrophy. Pretreatment with an angiotensin II (Ang II) type II receptor blockers significantly attenuates all of the mechanical stretch induced events. Many animal and clinical studies have shown that blockade of the RAS with AT1 receptor blocker or angiotensin converting enzyme inhibitor induce regression of cardiac hypertrophy and prevent progression of heart failure, resulting in a reduction in cardiac morbidity and mortality. These studies indicate that the local RAS is activated by hemodynamic overload and that the AT1 receptor has a crucial role in the development of load-induced cardiac hypertrophy. Although it is evident that mechanical stress is the primary trigger of cardiac hypertrophy, it is not clear how mechanical stimuli is sensed and converted into intracellular signals. Integrins and associated signaling machinery have been reported to be sensors for mechanical stress. Below, we focus on evidence for integrins as the mechanosensors and mechanotransduction systems responsible for cardiac hypertrophy and activators of the cardiac RAS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sadoshima J, Xu Y, Slayter HS, Izumo S: Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–84, 1993

    Article  CAS  PubMed  Google Scholar 

  2. Lin C, Baker KM, Thekkumkara TJ, Dostal DE: Sensitive bioassay for the detection and quantification of angiotensin II in tissue culture medium. Biotechniques 18:1014–20, 1995

    CAS  PubMed  Google Scholar 

  3. Liu Y, Leri A, Li B, Wang X, Cheng W, Kajstura J, Anversa P: Angiotensin II stimulation in vitro induces hypertrophy of normal and postinfarcted ventricular myocytes. Circ Res 82:1145–59, 1998

    CAS  PubMed  Google Scholar 

  4. Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P: Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 101:1326–42, 1998

    CAS  PubMed  Google Scholar 

  5. Miyata S, Haneda T, Osaki J, Kikuchi K: Renin-angiotensin system in stretch-induced hypertrophy of cultured neonatal rat heart cells. Eur J Pharmacol 307:81–8, 1996

    Article  CAS  PubMed  Google Scholar 

  6. Sadoshima J, Izumo S: Autocrine secretion of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Contrib Nephrol 118:214–21, 1996

    CAS  PubMed  Google Scholar 

  7. Lijnen P, Petrov V: Renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. J Mol Cell Cardiol 31:949–70, 1999

    Article  CAS  PubMed  Google Scholar 

  8. Dostal DE, Rothblum KN, Chernin MI, Cooper GR, Baker KM: Intracardiac detection of angiotensinogen and renin: a localized renin-angiotensin system in neonatal rat heart. Am J Physiol 263:C838–50, 1992

    CAS  PubMed  Google Scholar 

  9. Dostal DE, Rothblum KN, Conrad KM, Cooper GR, Baker KM: Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol 263:C851–63, 1992

    CAS  PubMed  Google Scholar 

  10. Dostal DE, Rothblum KN, Baker KM: An improved method for absolute quantification of mRNA using multiplex polymerase chain reaction: determination of renin and angiotensinogen mRNA levels in various tissues. Anal Biochem 223:239–50, 1994

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Dostal DE, Reiss K, Cheng W, Kajstura J, Li P, Huang H, Sonnenblick EH, Meggs LG, Baker KM, et al.: Identification and activation of autocrine renin-angiotensin system in adult ventricular myocytes. Am J Physiol 269:H1791–802, 1995

    CAS  PubMed  Google Scholar 

  12. Lee YA, Liang CS, Lee MA, Lindpaintner K: Local stress, not systemic factors, regulate gene expression of the cardiac renin-angiotensin system in vivo: a comprehensive study of all its components in the dog. Proc Natl Acad Sci U S A 93:11035–40, 1996

    Article  CAS  PubMed  Google Scholar 

  13. Shyu KG, Chen JJ, Shih NL, Chang H, Wang DL, Lien WP, Liew CC: Angiotensinogen gene expression is induced by cyclical mechanical stretch in cultured rat cardiomyocytes. Biochem Biophys Res Commun 211:241–8, 1995

    Article  CAS  PubMed  Google Scholar 

  14. Kawaguchi H, Kitabatake A: Renin-angiotensin system in failing heart. J Mol Cell Cardiol 27:201–9, 1995

    CAS  PubMed  Google Scholar 

  15. Balcells E, Meng QC, Hageman GR, Palmer RW, Durand JN, Dell’Italia LJ: Angiotensin II formation in dog heart is mediated by different pathways in vivo and in vitro. Am J Physiol 271:H417–21, 1996

    CAS  PubMed  Google Scholar 

  16. Luchner A, Stevens TL, Borgeson DD, Redfield MM, Bailey JE, Sandberg SM, Heublein DM, Burnett JC, Jr.: Angiotensin II in the evolution of experimental heart failure. Hypertension 28:472–7, 1996

    CAS  PubMed  Google Scholar 

  17. Danser AH, van Kats JP, Admiraal PJ, Derkx FH, Lamers JM, Verdouw PD, Saxena PR, Schalekamp MA: Cardiac renin and angiotensins. Uptake from plasma versus in situ synthesis [see comments]. Hypertension 24:37–48, 1994

    CAS  PubMed  Google Scholar 

  18. Nagano M, Higaki J, Nakamura F, Higashimori K, Nagano N, Mikami H, Ogihara T: Role of cardiac angiotensin II in isoproterenol-induced left ventricular hypertrophy. Hypertension 19:708–12, 1992

    CAS  PubMed  Google Scholar 

  19. Ishiye M, Umemura K, Uematsu T, Nakashima M: Effects of losartan, an angiotensin II antagonist, on the development of cardiac hypertrophy due to volume overload. Biol Pharm Bull 18:700–4, 1995

    CAS  PubMed  Google Scholar 

  20. Ruzicka M, Skarda V, Leenen FH: Effects of ACE inhibitors on circulating versus cardiac angiotensin II in volume overload-induced cardiac hypertrophy in rats. Circulation 92:3568–73, 1995

    CAS  PubMed  Google Scholar 

  21. Malhotra R, Sadoshima J, Brosius FC, 3rd, Izumo S: Mechanical stretch and angiotensin II differentially upregulate the renin-angiotensin system in cardiac myocytes In vitro. Circ Res 85:137–46, 1999

    CAS  PubMed  Google Scholar 

  22. Huang XC, Richards EM, Sumners C: Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J Biol Chem 271:15635–41, 1996

    Article  CAS  PubMed  Google Scholar 

  23. Liakos P, Bourmeyster N, Defaye G, Chambaz EM, Bottari SP: ANG II AT1 and AT2 receptors both inhibit bFGF-induced proliferation of bovine adrenocortical cells. Am J Physiol 273:C1324–34, 1997

    CAS  PubMed  Google Scholar 

  24. Yamada T, Akishita M, Pollman MJ, Gibbons GH, Dzau VJ, Horiuchi M: Angiotensin II type 2 receptor mediates vascular smooth muscle cell apoptosis and antagonizes angiotensin II type 1 receptor action: an in vitro gene transfer study. Life Sci 63:L289–95, 1998

    Article  Google Scholar 

  25. Dostal DE, Baker KM: The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res 85:643–50, 1999

    CAS  PubMed  Google Scholar 

  26. Lijnen P, Petrov V: Antagonism of the renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. Methods Find Exp Clin Pharmacol 21:363–74, 1999

    Article  CAS  PubMed  Google Scholar 

  27. Sadoshima J, Takahashi T, Jahn L, Izumo S: Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci U S A 89:9905–9, 1992

    Article  CAS  PubMed  Google Scholar 

  28. Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S: Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem 267:10551–60, 1992

    CAS  PubMed  Google Scholar 

  29. Liang F, Atakilit A, Gardner DG: Integrin dependence of brain natriuretic peptide gene promoter activation by mechanical strain. J Biol Chem 275:20355–60., 2000

    Article  CAS  PubMed  Google Scholar 

  30. Mazzolai L, Nussberger J, Aubert JF, Brunner DB, Gabbiani G, Brunner HR, Pedrazzini T: Blood pressure-independent cardiac hypertrophy induced by locally activated renin-angiotensin system. Hypertension 31:1324–30, 1998

    CAS  PubMed  Google Scholar 

  31. Hoffman S, Krause T, Pinto Y, Buikema H, Bohlender J, Nishimura H, Inagami T, Ganten D, Urata H: Cardiac-specific expression of the human AT1 receptor in transgenic rats. Hypertension 28:535 (Abstract), 1996

    Google Scholar 

  32. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Ueki K, Tobe K, et al.: Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res 77:258–65, 1995

    CAS  PubMed  Google Scholar 

  33. Tamura K, Umemura S, Nyui N, Hibi K, Ishigami T, Kihara M, Toya Y, Ishii M: Activation of angiotensinogen gene in cardiac myocytes by angiotensin II and mechanical stretch. Am J Physiol 275:R1–9, 1998

    CAS  PubMed  Google Scholar 

  34. Kijima K, Matsubara H, Murasawa S, Maruyama K, Mori Y, Ohkubo N, Komuro I, Yazaki Y, Iwasaka T, Inada M: Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. Circ Res 79:887–97, 1996

    CAS  PubMed  Google Scholar 

  35. McWhinney CD, Hunt RA, Conrad KM, Dostal DE, Baker KM: The type I angiotensin II receptor couples to Stat1 and Stat3 activation through Jak2 kinase in neonatal rat cardiac myocytes. J Mol Cell Cardiol 29:2513–24, 1997

    Article  CAS  PubMed  Google Scholar 

  36. McWhinney CD, Dostal D, Baker K: Angiotensin II activates Stat5 through Jak2 kinase in cardiac myocytes. J Mol Cell Cardiol 30:751–61, 1998

    Article  CAS  PubMed  Google Scholar 

  37. Kodama H, Fukuda K, Pan J, Makino S, Sano M, Takahashi T, Hori S, Ogawa S: Biphasic activation of the JAK/STAT pathway by angiotensin II in rat cardiomyocytes. Circ Res 82:244–50, 1998

    CAS  PubMed  Google Scholar 

  38. Mascareno E, Dhar M, Siddiqui MA: Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci U S A 95:5590–4, 1998

    Article  CAS  PubMed  Google Scholar 

  39. Pan J, Fukuda K, Kodama H, Makino S, Takahashi T, Sano M, Hori S, Ogawa S: Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 81:611–7, 1997

    CAS  PubMed  Google Scholar 

  40. Leri A, Fiordaliso F, Setoguchi M, Limana F, Bishopric NH, Kajstura J, Webster K, Anversa P: Inhibition of p53 function prevents renin-angiotensin system activation and stretch-mediated myocyte apoptosis. Am J Pathol 157:843–57, 2000

    CAS  PubMed  Google Scholar 

  41. Aplin AE, Howe A, Alahari SK, Juliano RL: Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50:197–263, 1998

    CAS  PubMed  Google Scholar 

  42. van der Flier A, Gaspar AC, Thorsteinsdottir S, Baudoin C, Groeneveld E, Mummery CL, Sonnenberg A: Spatial and temporal expression of the beta1D integrin during mouse development. Dev Dyn 210:472–86, 1997

    Article  PubMed  Google Scholar 

  43. Schwartz MA, Ginsberg MH: Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4:E65–8, 2002

    Article  CAS  PubMed  Google Scholar 

  44. Ross RS, Borg TK: Integrins and the myocardium. Circ Res 88:1112–9., 2001

    CAS  PubMed  Google Scholar 

  45. Maitra N, Flink IL, Bahl JJ, Morkin E: Expression of alpha and beta integrins during terminal differentiation of cardiomyocytes. Cardiovasc Res 47:715–25, 2000

    Article  CAS  PubMed  Google Scholar 

  46. Brancaccio M, Cabodi S, Belkin AM, Collo G, Koteliansky VE, Tomatis D, Altruda F, Silengo L, Tarone G: Differential onset of expression of alpha 7 and beta 1D integrins during mouse heart and skeletal muscle development. Cell Adhes Commun 5:193–205, 1998

    CAS  PubMed  Google Scholar 

  47. Thorsteinsdottir S, Roelen BA, Freund E, Gaspar AC, Sonnenberg A, Mummery CL: Expression patterns of laminin receptor splice variants alpha 6A beta 1 and alpha 6B beta 1 suggest different roles in mouse development. Dev Dyn 204:240–58, 1995

    CAS  PubMed  Google Scholar 

  48. Keller RS, Shai SY, Babbitt CJ, Pham CG, Solaro RJ, Valencik ML, Loftus JC, Ross RS: Disruption of integrin function in the murine myocardium leads to perinatal lethality, fibrosis, and abnormal cardiac performance. Am J Pathol 158:1079–90, 2001

    CAS  PubMed  Google Scholar 

  49. Zhidkova NI, Belkin AM, Mayne R: Novel isoform of beta 1 integrin expressed in skeletal and cardiac muscle. Biochem Biophys Res Commun 214:279–85., 1995

    Article  CAS  PubMed  Google Scholar 

  50. Kim YY, Lim CS, Song YH, Ahnn J, Park D, Song WK: Cellular localization of alpha3beta1 integrin isoforms in association with myofibrillogenesis during cardiac myocyte development in culture. Cell Adhes Commun 7:85–97, 1999

    Article  CAS  PubMed  Google Scholar 

  51. Ross RS: The extracellular connections: the role of integrins in myocardial remodeling. J Card Fail 8:S326–31, 2002

    Article  CAS  PubMed  Google Scholar 

  52. Wehrle-Haller B, Imhof BA: Integrin-dependent pathologies. J Pathol 200:481–7, 2003

    Article  CAS  PubMed  Google Scholar 

  53. Terracio L, Rubin K, Gullberg D, Balog E, Carver W, Jyring R, Borg TK: Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res 68:734–44., 1991

    CAS  PubMed  Google Scholar 

  54. Kim DJ, Park SH, Lim CS, Chun JS, Kim JK, Song WK: Cellular localization of integrin isoforms in phenylephrine-induced hypertrophic cardiac myocytes. Cell Biochem Funct 21:41–8, 2003

    Article  CAS  PubMed  Google Scholar 

  55. van der Flier A, Kuikman I, Baudoin C, van der Neut R, Sonnenberg A: A novel beta 1 integrin isoform produced by alternative splicing: unique expression in cardiac and skeletal muscle. FEBS Lett 369:340–4., 1995

    Article  PubMed  Google Scholar 

  56. Borg TK, Rubin K, Lundgren E, Borg K, Obrink B: Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol 104:86–96., 1984

    Article  CAS  PubMed  Google Scholar 

  57. Nagai T, Laser M, Baicu CF, Zile MR, Cooper Gt, Kuppuswamy D: Beta3-integrin-mediated focal adhesion complex formation: adult cardiocytes embedded in three-dimensional polymer matrices. Am J Cardiol 83:38H–43H., 1999

    Article  CAS  PubMed  Google Scholar 

  58. Graf K, Neuss M, Stawowy P, Hsueh WA, Fleck E, Law RE: Angiotensin II and alpha(v)beta(3) integrin expression in rat neonatal cardiac fibroblasts. Hypertension 35:978–84, 2000

    CAS  PubMed  Google Scholar 

  59. Brooks PC, Clark RA, Cheresh DA: Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–71, 1994

    CAS  PubMed  Google Scholar 

  60. Fassler R, Rohwedel J, Maltsev V, Bloch W, Lentini S, Guan K, Gullberg D, Hescheler J, Addicks K, Wobus AM: Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J Cell Sci 109 ( Pt 13):2989–99, 1996

    PubMed  Google Scholar 

  61. Chen BM, Grinnell AD: Integrins and modulation of transmitter release from motor nerve terminals by stretch. Science 269:1578–80, 1995

    CAS  PubMed  Google Scholar 

  62. Grinnell AD, Chen BM, Kashani A, Lin J, Suzuki K, Kidokoro Y: The role of integrins in the modulation of neurotransmitter release from motor nerve terminals by stretch and hypertonicity. J Neurocytol 32:489–503, 2003

    Article  CAS  PubMed  Google Scholar 

  63. Wang N, Butler JP, Ingber DE: Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–7, 1993

    CAS  PubMed  Google Scholar 

  64. Browe DM, Baumgarten CM: Angiotensin II (AT1) receptors and NADPH oxidase regulate C1-current elicited by beta1 integrin stretch in rabbit ventricular myocytes. J Gen Physiol 124:273–87, 2004

    Article  CAS  PubMed  Google Scholar 

  65. Browe DM, Baumgarten CM: Stretch of beta 1 integrin activates an outwardly rectifying chloride current via FAK and Src in rabbit ventricular myocytes. J Gen Physiol 122:689–702, 2003

    Article  CAS  PubMed  Google Scholar 

  66. Valencik ML, McDonald JA: Cardiac expression of a gain-of-function alpha(5)-integrin results in perinatal lethality. Am J Physiol Heart Circ Physiol 280:H361–7, 2001

    CAS  PubMed  Google Scholar 

  67. Yang JT, Rayburn H, Hynes RO: Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121:549–60, 1995

    CAS  PubMed  Google Scholar 

  68. Pham CG, Harpf AE, Keller RS, Vu HT, Shai SY, Loftus JC, Ross RS: Striated muscle-specific beta(1D)-integrin and FAK are involved in cardiac myocyte hypertrophic response pathway. Am J Physiol Heart Circ Physiol 279:H2916–26, 2000

    CAS  PubMed  Google Scholar 

  69. Thorsteinsdottir S, Roelen BA, Goumans MJ, Ward-van Oostwaard D, Gaspar AC, Mummery CL: Expression of the alpha 6A integrin splice variant in developing mouse embryonic stem cell aggregates and correlation with cardiac muscle differentiation. Differentiation 64:173–84, 1999

    Article  CAS  PubMed  Google Scholar 

  70. Hierck BP, Poelmann RE, van Iperen L, Brouwer A, Gittenberger-de Groot AC: Differential expression of alpha-6 and other subunits of laminin binding integrins during development of the murine heart. Dev Dyn 206:100–11, 1996

    Article  CAS  PubMed  Google Scholar 

  71. Collo G, Domanico SZ, Klier G, Quaranta V: Gradient of integrin alpha 6A distribution in the myocardium during early heart development. Cell Adhes Commun 3:101–13, 1995

    CAS  PubMed  Google Scholar 

  72. Willey CD, Balasubramanian S, Rodriguez Rosas MC, Ross RS, Kuppuswamy D: Focal complex formation in adult cardiomyocytes is accompanied by the activation of beta3 integrin and c-Src. J Mol Cell Cardiol 35:671–83, 2003

    Article  CAS  PubMed  Google Scholar 

  73. Balasubramanian S, Kuppuswamy D: RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells. J Biol Chem 278:42214–24, 2003

    Article  CAS  PubMed  Google Scholar 

  74. Frisch SM, Ruoslahti E: Integrins and anoikis. Curr Opin Cell Biol 9:701–6, 1997

    Article  CAS  PubMed  Google Scholar 

  75. Ross RS, Pham C, Shai SY, Goldhaber JI, Fenczik C, Glembotski CC, Ginsberg MH, Loftus JC: Beta1 integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res 82:1160–72, 1998

    CAS  PubMed  Google Scholar 

  76. Babbitt CJ, Shai SY, Harpf AE, Pham CG, Ross RS: Modulation of integrins and integrin signaling molecules in the pressure-loaded murine ventricle. Histochem Cell Biol 118:431–9, 2002

    CAS  PubMed  Google Scholar 

  77. Ogawa E, Saito Y, Harada M, Kamitani S, Kuwahara K, Miyamoto Y, Ishikawa M, Hamanaka I, Kajiyama N, Takahashi N, Nakagawa O, Masuda I, Kishimoto I, Nakao K: Outside-in signalling of fibronectin stimulates cardiomyocyte hypertrophy in cultured neonatal rat ventricular myocytes. J Mol Cell Cardiol 32:765–76, 2000

    Article  CAS  PubMed  Google Scholar 

  78. Nawata J, Ohno I, Isoyama S, Suzuki J, Miura S, Ikeda J, Shirato K: Differential expression of alpha 1, alpha 3 and alpha 5 integrin subunits in acute and chronic stages of myocardial infarction in rats. Cardiovasc Res 43:371–81, 1999

    Article  CAS  PubMed  Google Scholar 

  79. Sun M, Opavsky MA, Stewart DJ, Rabinovitch M, Dawood F, Wen WH, Liu PP: Temporal response and localization of integrins beta1 and beta3 in the heart after myocardial infarction: regulation by cytokines. Circulation 107:1046–52, 2003

    Article  CAS  PubMed  Google Scholar 

  80. Matsushita T, Oyamada M, Fujimoto K, Yasuda Y, Masuda S, Wada Y, Oka T, Takamatsu T: Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circ Res 85:1046–55, 1999

    CAS  PubMed  Google Scholar 

  81. Matsushita T, Oyamada M, Kurata H, Masuda S, Takahashi A, Emmoto T, Shiraishi I, Wada Y, Oka T, Takamatsu T: Formation of cell junctions between grafted and host cardiomyocytes at the border zone of rat myocardial infarction. Circulation 100:11262–8, 1999

    Google Scholar 

  82. Yamani MH, Yang J, Masri CS, Ratliff NB, Bond M, Starling RC, McCarthy P, Plow E, Young JB: Acute cellular rejection following human heart transplantation is associated with increased expression of vitronectin receptor (integrin alphavbeta3). Am J Transplant 2:129–33, 2002

    Article  CAS  PubMed  Google Scholar 

  83. Yamani MH, Masri CS, Ratliff NB, Bond M, Starling RC, Tuzcu EM, McCarthy PM, Young JB: The role of vitronectin receptor (alphavbeta3) and tissue factor in the pathogenesis of transplant coronary vasculopathy. J Am Coll Cardiol 39:804–10, 2002

    Article  CAS  PubMed  Google Scholar 

  84. Communal C, Singh M, Menon B, Xie Z, Colucci WS, Singh K: beta1 integrins expression in adult rat ventricular myocytes and its role in the regulation of beta-adrenergic receptor-stimulated apoptosis. J Cell Biochem 89:381–8, 2003

    Article  CAS  PubMed  Google Scholar 

  85. Zellner JL, Spinale FG, Eble DM, Hewett KW, Crawford FA, Jr.: Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ Res 69:590–600, 1991

    CAS  PubMed  Google Scholar 

  86. Towbin JA: The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol 10:131–9, 1998

    Article  CAS  PubMed  Google Scholar 

  87. Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, De Acetis M, Vecchione C, Marino G, Altruda F, Silengo L, Tarone G, Lembo G: Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 9:68–75, 2003

    Article  CAS  PubMed  Google Scholar 

  88. Shai SY, Harpf AE, Babbitt CJ, Jordan MC, Fishbein MC, Chen J, Omura M, Leil TA, Becker KD, Jiang M, Smith DJ, Cherry SR, Loftus JC, Ross RS: Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res 90:458–64, 2002

    Article  CAS  PubMed  Google Scholar 

  89. Geiger B, Bershadsky A, Pankov R, Yamada KM: Transmembrane crosstalk between the extracellular matrix—cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805, 2001

    Article  CAS  PubMed  Google Scholar 

  90. van Kooyk Y, van Vliet SJ, Figdor CG: The actin cytoskeleton regulates LFA-1 ligand binding through avidity rather than affinity changes. J Biol Chem 274:26869–77, 1999

    Article  PubMed  Google Scholar 

  91. Shimizu Y: Intracellular signaling pathways and the regulation of cell adhesion. Hum Cell 9:175–80, 1996

    CAS  PubMed  Google Scholar 

  92. Schlaepfer DD, Hauck CR, Sieg DJ: Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71:435–78, 1999

    Article  CAS  PubMed  Google Scholar 

  93. Wary KK, Mariotti A, Zurzolo C, Giancotti FG: A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94:625–34, 1998

    Article  CAS  PubMed  Google Scholar 

  94. Aplin AE, Howe AK, Juliano RL: Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol 11:737–44, 1999

    Article  CAS  PubMed  Google Scholar 

  95. Ridley A: Rho GTPases. Integrating integrin signaling. J Cell Biol 150:F107–9, 2000

    Article  CAS  PubMed  Google Scholar 

  96. Ivaska J, Reunanen H, Westermarck J, Koivisto L, Kahari VM, Heino J: Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J Cell Biol 147:401–16., 1999

    Article  CAS  PubMed  Google Scholar 

  97. Kuppuswamy D, Kerr C, Narishige T, Kasi VS, Menick DR, Cooper Gt: Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophying myocardium. J Biol Chem 272:4500–8, 1997

    Article  CAS  PubMed  Google Scholar 

  98. MacKenna DA, Dolfi F, Vuori K, Ruoslahti E: Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 101:301–10, 1998

    Article  CAS  PubMed  Google Scholar 

  99. Wary KK, Dans M, Mariotti A, Giancotti FG: Biochemical analysis of integrin-mediated Shc signaling. Methods Mol Biol 129:35–49, 1999

    CAS  PubMed  Google Scholar 

  100. Mainiero F, Soriani A, Strippoli R, Jacobelli J, Gismondi A, Piccoli M, Frati L, Santoni A: RAC1/P38 MAPK signaling pathway controls beta1 integrin-induced interleukin-8 production in human natural killer cells. Immunity 12:7–16., 2000

    Article  CAS  PubMed  Google Scholar 

  101. Liang F, Wu J, Garami M, Gardner DG: Mechanical strain increases expression of the brain natriuretic peptide gene in rat cardiac myocytes. J Biol Chem 272:28050–6, 1997

    Article  CAS  PubMed  Google Scholar 

  102. Kawano H, Cody RJ, Graf K, Goetze S, Kawano Y, Schnee J, Law RE, Hsueh WA: Angiotensin II enhances integrin and alpha-actinin expression in adult rat cardiac fibroblasts. Hypertension 35:273–9, 2000

    CAS  PubMed  Google Scholar 

  103. Bouzegrhane F, Thibault G: Is angiotensin II a proliferative factor of cardiac fibroblasts? Cardiovasc Res 53:304–12, 2002

    Article  CAS  PubMed  Google Scholar 

  104. Burgess ML, Carver WE, Terracio L, Wilson SP, Wilson MA, Borg TK: Integrin-mediated collagen gel contraction by cardiac fibroblasts. Effects of angiotensin II. Circ Res 74:291–8, 1994

    CAS  PubMed  Google Scholar 

  105. Trueblood NA, Xie Z, Communal C, Sam F, Ngoy S, Liaw L, Jenkins AW, Wang J, Sawyer DB, Bing OH, Apstein CS, Colucci WS, Singh K: Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88:1080–7, 2001

    CAS  PubMed  Google Scholar 

  106. Xie Z, Pimental DR, Lohan S, Vasertriger A, Pligavko C, Colucci WS, Singh K: Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species. J Cell Physiol 188:132–8, 2001

    Article  CAS  PubMed  Google Scholar 

  107. Collins AR, Schnee J, Wang W, Kim S, Fishbein MC, Bruemmer D, Law RE, Nicholas S, Ross RS, Hsueh WA: Osteopontin modulates angiotensin II-induced fibrosis in the intact murine heart. J Am Coll Cardiol 43:1698–705, 2004

    Article  CAS  PubMed  Google Scholar 

  108. Bouzeghrane F, Mercure C, Reudelhuber TL, Thibault G: Alpha8beta1 integrin is upregulated in myoflbroblasts of fibrotic and scarring myocardium. J Mol Cell Cardiol 36:343–53, 2004

    Article  CAS  PubMed  Google Scholar 

  109. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I: Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506, 2004

    Article  CAS  PubMed  Google Scholar 

  110. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H, Yazaki Y: Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 271:3221–8, 1996

    Article  CAS  PubMed  Google Scholar 

  111. Zou Y, Komuro I, Yamazaki T, Kudoh S, Uozumi H, Kadowaki T, Yazaki Y: Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J Biol Chem 274:9760–70, 1999

    Article  CAS  PubMed  Google Scholar 

  112. Miyamoto S, Teramoto H, Gutkind JS, Yamada KM: Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135:1633–42, 1996

    Article  CAS  PubMed  Google Scholar 

  113. Short SM, Boyer JL, Juliano RL: Integrins regulate the linkage between upstream and downstream events in G protein-coupled receptor signaling to mitogen-activated protein kinase. J Biol Chem 275:12970–7, 2000

    Article  CAS  PubMed  Google Scholar 

  114. Litvak V, Tian D, Shaul YD, Lev S: Targeting of PYK2 to focal adhesions as a cellular mechanism for convergence between integrins and G protein-coupled receptor signaling cascades. J Biol Chem 275:32736–46, 2000

    Article  CAS  PubMed  Google Scholar 

  115. Bergdahl A, Sward K: Caveolae-associated signalling in smooth muscle. Can J Physiol Pharmacol 82:289–99, 2004

    Article  CAS  PubMed  Google Scholar 

  116. Razani B, Schlegel A, Lisanti MP: Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy. J Cell Sci 113(Pt 12):2103–9, 2000

    CAS  PubMed  Google Scholar 

  117. Thyberg J: Caveolin-1 and caveolae act as regulators of mitogenic signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:1481–3, 2003

    Article  CAS  PubMed  Google Scholar 

  118. Ishizaka N, Griendling KK, Lassegue B, Alexander RW: Angiotensin II type 1 receptor: relationship with caveolae and caveolin after initial agonist stimulation. Hypertension 32:459–66, 1998

    CAS  PubMed  Google Scholar 

  119. Zuo L, Ushio-Fukai M, Hilenski LL, Alexander RW: Microtubules regulate angiotensin II type 1 receptor and Racl localization in caveolae/lipid rafts: role in redox signaling. Arterioscler Thromb Vasc Biol 24:1223–8, 2004

    Article  CAS  PubMed  Google Scholar 

  120. Wyse BD, Prior IA, Qian H, Morrow IC, Nixon S, Muncke C, Kurzchalia TV, Thomas WG, Parton RG, Hancock JF: Caveolin interacts with the angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane. J Biol Chem 278:23738–46, 2003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Sanghi, S., Dostal, D.E. (2006). Mechanical Signaling and the Cardiac Renin-angiotensin. In: Frohlich, E.D., Re, R.N. (eds) The Local Cardiac Renin Angiotensin-Aldosterone System. Basic Science for the Cardiologist, vol 20. Springer, Boston, MA. https://doi.org/10.1007/0-387-27826-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-27826-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27825-4

  • Online ISBN: 978-0-387-27826-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics