Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 469 Accesses

Conclusions

The study of protein import in plants is beginning to yield insight into not only the similarities with other kingdoms, but also the interesting differences that we have described throughout this Chapter. Plants are essential to all life on our planet and are the foundation for our food chain. Protein import processes and their role in development and environmental responses are essential to our understanding of plant biology, an important goal in itself. As our knowledge increases about nuclear protein import in plants, contributions to our general understanding of these processes in all organisms will increase.

Some of the important areas to be addressed in the future include:

  1. 1.

    The complete characterization of import components from higher plants as has been underway

  2. 2.

    Answers to the question, is there an importin β-independent pathway in plants?

  3. 3.

    The further investigation of plant NPCs

  4. 4.

    Taking full advantage of pathogens such as Agrobacterium and viruses in understanding pathogenesis and import and export pathways

  5. 5.

    A focus on the regulation of import in essential developmental pathways in plants such as photomorphogensis, stress responses, and perhaps phytohormone signaling

  6. 6.

    The molecular mechanism of import complex targeting to the NPCs for translocation including the development of a system to examine NLS protein movement along microtubules and a search for factors that may mediate complex association with the cytoskeleton

There is much to be learned and the future will surely present opportunities for new discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartke CA, Deng X-W. The cell biology of the CP/DET/FUS proteins. Regulating proteolysis in photomorphogenesis and beyond? Plant Physiol 2000; 124:1548–1557.

    Google Scholar 

  2. Lazarowitz SG, Beachy RN. Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 1999; 11:535–548.

    PubMed  CAS  Google Scholar 

  3. Tzfira T, Rhee Y, Chen M-H et al. Nucleic acid transport in plant microbe interactions: The molecules that walk through the walls. Annu Rev Microbiol 2000; 54:187–219.

    PubMed  CAS  Google Scholar 

  4. Hicks GR, Raikhel NV. Protein import into the nucleus: An integrated view. Annu Rev Cell Dev Biol 1995; 11:155–188.

    PubMed  CAS  Google Scholar 

  5. Hubner S, Smith HMS, Hu W et al. Plant importin a binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin β. J Biol Chem 1999; 274(32):226l0–22617.

    Google Scholar 

  6. Deng W, Chen L, Wood DW et al. Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc Natl Acad Sci USA 1998; 95:7040–7045.

    PubMed  CAS  Google Scholar 

  7. Smith HMS, Raikhel NV. Nuclear localization signal receptor importin α associates with the cytoskeleton. Plant Cell 1998; 10:1791–1799.

    PubMed  CAS  Google Scholar 

  8. Haasen D, Kohler C, Neuhaus G et al. Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. Plant J 1999; 20(6): 695–705.

    PubMed  CAS  Google Scholar 

  9. Ward BM, Lazarowitz SG. Nuclear export in plants: Use of geminivirus movement proteins for an in vivo cell based export assay. Plant Cell 1999; 11: 1267–1276.

    PubMed  CAS  Google Scholar 

  10. Jans DA, Hubner S. Regulation of protein transport to the nucleus: Central role of phosphorylation. Physiol rev 1996; 76(3):651–685.

    PubMed  CAS  Google Scholar 

  11. Boulikas T. Nuclear localization signal peptides for the import of plasmid DNA in gene therapy (Review). Int J Oncol 1996; 10:301–309.

    Google Scholar 

  12. Corbett AH, Silver PA. Nucleocytoplasmic transport of macromolecules. Microbiol Mol Biol Rev 1997; 61(2):193–211.

    PubMed  CAS  Google Scholar 

  13. Goldfarb DS. Whose finger is on the switch? Science 1997; 276:1814–1816.

    PubMed  CAS  Google Scholar 

  14. Lee MS, Silver PA. RNA movement between the nucleus and the cytoplasm. Curr Opin Gen Dev 1997; 7:212–219.

    CAS  Google Scholar 

  15. Moroianu J. Molecular mechanisms of nuclear protein import. Crit Rev Eukaryot Gene Expr 1997; 7(1–2):61–72.

    PubMed  CAS  Google Scholar 

  16. Nakielny S, Fischer U, Michael WM et al. RNA transport. Annu Rev Neurosci 1997; 20:269–301.

    PubMed  CAS  Google Scholar 

  17. Yoneda Y. How proteins are transported from the cytoplasm to the nucleus. J Biochem 1997; 121:811–817.

    PubMed  CAS  Google Scholar 

  18. Mattaj IW, Englmeier L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 1998; 67:265–306.

    PubMed  CAS  Google Scholar 

  19. Weis K. Importins and exportins: How to get in and out of the nucleus. Trends Biochem Sci 1998; 23(5):185–189.

    PubMed  CAS  Google Scholar 

  20. Whittaker GR, Helenius A. Nuclear import and export of viruses and virus genomes. Virology 1998; 246(1):1–23.

    PubMed  CAS  Google Scholar 

  21. Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607–660.

    PubMed  CAS  Google Scholar 

  22. Hood JK, Silver PA. In or out? Regulating nuclear transport. Curr Opin Cell Biol 1999; 11(2):241–247.

    PubMed  CAS  Google Scholar 

  23. Davis LI. The nuclear pore complex. Annu Rev Biochem 1995; 64:865–896.

    PubMed  CAS  Google Scholar 

  24. Pante N, Aebi U. Molecular dissection of the nuclear pore complex. Crit Rev Mol Biol 1996; 31:153–159

    CAS  Google Scholar 

  25. Fabre E, Hurt E. Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. Annu Rev Genet 1997; 31:277–313.

    PubMed  CAS  Google Scholar 

  26. Nigg EA. Nucleocytoplasmic transport: Signals, mechanisms and regulation. Nature 1997; 386:779–787.

    PubMed  CAS  Google Scholar 

  27. Gant TM, Goldberg MW, Allen TD. Nuclear envelope and nuclear pore assembly: Analysis of assembly intermediates by electron microscopy. Curr Opin Cell Biol; 10:409–415.

    Google Scholar 

  28. Yang Q, Rout MP, Akey CW. Three-dimensional architecture of the isolated yeast nuclear pore complex: Function and evolutionary implications. Mol Cell 1998; 1:223–234.

    PubMed  CAS  Google Scholar 

  29. Badoor K, Shaikh S, Enarson P et al. Function and assembly of nuclear pore complex proteins. Biochem Cell Biol 1999; 77(4):321–329.

    Google Scholar 

  30. Allen TD, Cronshaw JM, Bagley S et al. The nuclear pore complex: Mediator of translocation between the nucleus and cytoplasm. J Cell Sci 2000; 113:1651–1659.

    PubMed  CAS  Google Scholar 

  31. Rout MP, Aitchison JD, Suprapto A et al. The yeast nuclear pore complex: Composition, architecture and transport mechanism. J Cell Biol 148:635–651.

    Google Scholar 

  32. Rout MP, Aitchison JD, Suprapto A et al. The yeast nuclear pore complex: Composition, architecture and transport mechanism. J Cell Biol 2000; 148:635–651.

    PubMed  CAS  Google Scholar 

  33. Delphin C, Guan T, Melchior F et al. RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol Biol Cell 1997; 8:2379–2390.

    PubMed  CAS  Google Scholar 

  34. Shah S, Tugendreich S, Forbes DJ. Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J Cell Biol 1998; 141:31–49.

    PubMed  CAS  Google Scholar 

  35. Fornerod M, van Deursen J, van Baal S et al. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 1997; 16:807–816.

    PubMed  CAS  Google Scholar 

  36. Iovine MK, Wente SR. A nuclear export signal in Kap95p is required for both recycling the import factor and interaction with the nucleoporin GLFG repeat regions of Nup116p and Nup100p. J Cell Biol 1997; 137:797–811.

    PubMed  CAS  Google Scholar 

  37. Percipalle P, Clarkson WD, Kent HM et al. Molecular interactions between the importin alpha/beta heterodimer and proteins involved in vertebrate nuclear protein import. J Mol Biol 1997; 266:722–732.

    PubMed  CAS  Google Scholar 

  38. Heese-Peck A, Raikhel NV. A glycoprotein modified with terminal N-acetylglucosamine and localized at the nuclear rim shows sequence similarity to aldose-1-epimerases. Plant Cell 1998; 10:599–612.

    PubMed  CAS  Google Scholar 

  39. Roberts K, Northcoat DH. Structure of the nuclear pore complex in higher plants. Nature 1970; 228: 385–386.

    PubMed  CAS  Google Scholar 

  40. Heese-Peck A, Raikhel NV. The nuclear pore complex. Plant Mol Biol 1998a; 38(1–2):145–162.

    PubMed  CAS  Google Scholar 

  41. Scofield GN, Beven AF, Shaw PJ et al. Identification and localization of a nucleoporin-like protein component of the plant nuclear matrix. Plant 1992; 187: 414–420.

    CAS  Google Scholar 

  42. Hicks GR, Raikhel NV. Specific binding of nuclear localization sequences to plant nuclei. Plant Cell 1993; 5:983–994.

    PubMed  CAS  Google Scholar 

  43. Hicks GR, Raikhel NV. Nuclear localization signal binding proteins in higher plant nuclei. Proc Natl Acad Sci USA 1995; 92:734–938.

    PubMed  CAS  Google Scholar 

  44. Hicks GR, Smith HMS, Shieh M et al. Three classes of nuclear import signals bind to plant nuclei. Plant Physiol 1995; 107:1055–1058.

    PubMed  CAS  Google Scholar 

  45. Smith HMS, Hicks GR, Raikhel NV. Importin α from Arabidopsis thaliana is a nuclear import receptor that recognizes three classes of import signals. Plant Physiol 1997; 114:411–417.

    PubMed  CAS  Google Scholar 

  46. Smith HMS, Raikhel NV. Protein targeting to the nuclear pore. What can we learn from plants? Plant Physiol 1999; 119:1157–1163.

    PubMed  CAS  Google Scholar 

  47. Heese-Peck A, Cole RN, Borkhsenious ON et al. Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine. Plant Cell 1995; 7:1459–1471.

    PubMed  CAS  Google Scholar 

  48. Hicks GR, Smith HMS, Lobreaux S et al. Nuclear import on permeabilized protoplasts from higher plants has unique features. Plant Cell 1996; 8:1337–1352.

    PubMed  CAS  Google Scholar 

  49. Merkle T, Leclerc D, Marshallsay C et al. A plant in vitro system for the nuclear import of proteins. Plant J 1996; 10:1177–1186.

    PubMed  Google Scholar 

  50. Duverger E, Pellerin, Mendes C, Mayer R et al. Nuclear import of glycoconjugates is distinct from the classical NLS pathway. J Cell Sci 1995; 108:1325–1332.

    PubMed  CAS  Google Scholar 

  51. Breeuwer M, Goldfarb D. Facilitated nuclear trasnport of histone H1 and other small nucleophilic proteins. Cell 1990; 60:999–1008.

    PubMed  CAS  Google Scholar 

  52. Zasloff M. tRNA transport from the nucleus in a eukaryotic cell: Carrier-mediated translocation process. Proc Natl Acad Sci USA 1983; 80:6436–6440.

    PubMed  CAS  Google Scholar 

  53. Al-Mohanna FA, Caddy KWT, Bolsover SR. The nucleus is insulated from large cytosolic calcium ion changes. Nature 1994; 367:745–750.

    PubMed  CAS  Google Scholar 

  54. Sweitzer TD, Love DC, Hanover JA. Regulation of nuclear import and export. Curr Top Cell Regul 2000; 36:77–94.

    PubMed  CAS  Google Scholar 

  55. Lassner MW, Jones A, Daubert S et al. Targeting of T7 RNA polymerase to tobacco nuclei mediated by an SV40 nuclear localization signal. Plant Mol Biol 1991; 17:229–234.

    PubMed  CAS  Google Scholar 

  56. van der Krol AR, Chua N-H. The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell 1991; 3:667–675.

    PubMed  Google Scholar 

  57. Guralnick B, Thomsen G, Citovsky V. Transport of DNA into the nuclei of Xenopus oocytes be a modified VirE2 protein of Agrobacterium. Plant Cell 1996; 8:363–373.

    PubMed  CAS  Google Scholar 

  58. Relic B, Andjelkovic M, Rossi L et al. Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: Analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci USA 1998; 95:9105–9110.

    PubMed  CAS  Google Scholar 

  59. Rhee Y, Gurel F, Gafni Y et al. A genetic system for detection of protein nuclear import and export. Nat Biotechnol 2000; 18:433–437.

    PubMed  CAS  Google Scholar 

  60. Chelsky D, Ralph R, Jonak G. Sequence requirements for synthetic pep tide-mediated translocation to the nucleus. Mol Cell Biol 1989; 2487–2492.

    Google Scholar 

  61. Lanford RE, Feldherr CM, White RG et al. Comparison of diverse transport signals in synthetic peptide-induced nuclear transport. Exp Cell Res 1990; 186:32–38.

    PubMed  CAS  Google Scholar 

  62. Wagner P, Hall MN. Nuclear transport is functionally conserved between yeast and higher eukaryotes. FEBS Lett 1993; 321:261–266.

    PubMed  CAS  Google Scholar 

  63. Sazer S, Dasso M. The Ran decathlon: Multiple roles of Ran. J Cell Sci 2000; 113:1111–1118.

    PubMed  CAS  Google Scholar 

  64. Kutay U, Bischoff FR, Kostka S et al. Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 1997; 90:1061–0171.

    PubMed  CAS  Google Scholar 

  65. Ribbeck K, Lipowsky G, Kent HM et al. NTF2 mediates nuclear import of Ran. EMBO J 1998; 17:6587–6598.

    PubMed  CAS  Google Scholar 

  66. Smith A, Brownawell A, Macara IG. Nuclear import of ran is mediated b the transport factor NTF2. Curr Biol 1998; 8:103–1406.

    Google Scholar 

  67. Kussel P, Frasch M. Pendulin, a Drosophila protein with cell cycle-dependent nuclear localization is required for normal cell proliferation. J Cell Biol 1995; 129:1491–1507.

    PubMed  CAS  Google Scholar 

  68. Torok I, Strand D, Schmitt R et al. The overgrown hematopoietic organs-31 tumor suppressor gene of Drosophila encodes an importin-like proteins accumulating in the nucleus at the onset of mitosis. J Cell Biol 1995; 129:1473–1489.

    PubMed  CAS  Google Scholar 

  69. Kohler M, Ansieau S, Prehn S et al. Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of the importin-alpha protein family. FEBS Lett 1997; 417:104–108.

    PubMed  CAS  Google Scholar 

  70. Tsuji L, Takumi T, Imamoto N et al. Identification of novel homologues of mouse importin alpha, the alpha subunit of the nuclear pore-targeting complex, and their tissu-specific expression. FEBS Lett 1997; 416:30–34.

    PubMed  CAS  Google Scholar 

  71. Kohler M, Speck C, Christiansen M et al. Evidence for distinct substrate specificities of importin α-family members in nuclear protein import. Mol Cell Biol 1999; 19(11):7782–7791.

    PubMed  CAS  Google Scholar 

  72. Balks N, Citovsky V. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 1997; 94:10723–10728.

    Google Scholar 

  73. Schledz M, Leclerc D, Neuhaus G et al. Characterization of four cDNAs encoding different importin aloha homologs from Arabidopisis thaliana. Plant Physiol 1998; 116:868.

    Google Scholar 

  74. Nemeth K, Sakchert K, Putnoky P et al. Pleiotropic control of glucose and hormone resposnes by PRL1, a nuclear WD protein, in Arabidopsis. Genes and Dev 1998; 12:3059–3073.

    PubMed  CAS  Google Scholar 

  75. Shoji K, Iwasaki T, Matsuki R et al. Cloning of an importin-a and down-regulation of the gene by light in rice leaves. Gene 1998; 212:279–286.

    PubMed  CAS  Google Scholar 

  76. Jiang C-J, Imamoto N, Matsuki R et al. Functional characterization of a plant importin a homologue. J Biol Chem 1998; 273(37):24083–24087.

    PubMed  CAS  Google Scholar 

  77. Matsuki R, Iwasaki T, Shoji K et al. Isolation and characterization of two importin-beta genes from rice. Plant Cell Physiol 1998; 39(8):879–884.

    PubMed  CAS  Google Scholar 

  78. Jian C-J, Imatoto N, Matsuki R et al. In vitro characterization of rice importin β1: molecular interaction with nuclear transport factors and mediation of nuclear protein import. FEBS Lett 1998; 437:127–130.

    Google Scholar 

  79. Haizel T, Merkle T, Pay A et al. Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in Arabidopsis. Plant J 1997; 11:93–103.

    PubMed  CAS  Google Scholar 

  80. Ach RA, Gruissem W. A small GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant. Proc Natl Acad Sci USA 1994; 91:5863–5867.

    PubMed  CAS  Google Scholar 

  81. Merkle T, Haizel T, Matsumoto T et al. Phenotype of the fission yeast cell cycle regulatory mutant pirn 1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. Plant J 1994; 6:555–565.

    PubMed  CAS  Google Scholar 

  82. Saalbach G, Christov V. Sequence of a plant cDNA from Vicia faba encoding a novel Ran-related GTP-binding protein. Plant Mol Biol 1994; 24:969–972.

    PubMed  CAS  Google Scholar 

  83. Borg S, Brandstrup B, Jenson TJ et al. Identification of a new protein species among 33 different small GTP-binding proteins encoded by cDNAs from Lotus japonicus, and expression of corresponding mRNAs in developing root nodules. Plant J 1997; 11:237–250.

    PubMed  CAS  Google Scholar 

  84. Meier I. A Novel link between Ran signal transduction and nuclear envelope proteins in plants. Plant Physiol 2000; 124:1507–1510.

    PubMed  CAS  Google Scholar 

  85. Gindullis F, Peffer NJ, Meier I. MAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope. Plant Cell 1999; 11:1755–1767

    PubMed  CAS  Google Scholar 

  86. Gindullis F, Meier I. Matrix attachment region binding protein MFP1 is localized in discrete domains at the nuclear envelope. Plant Cell 1999; 11:1117–1128

    PubMed  CAS  Google Scholar 

  87. Adam SA, Sterne-Marr R, Gerace L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 1990; 11:807–816.

    Google Scholar 

  88. Adam SA, Sterne-Marr R, Gerace L. Nuclear protein import using digitonin-permeabilized cells. Methods Enzymol 1992; 219:97–110.

    PubMed  CAS  Google Scholar 

  89. Schlenstedt G, Hurt E, Doye V et al. Reconstitution of nuclear protein transport with semi-intact yeast cells. J Cell Biol 1993; 123:785–798.

    PubMed  CAS  Google Scholar 

  90. Kalinich JF, Douglas MG. In vitro translocation through the yeast nuclear envelope. J Biol Chem 1989; 264:17979–17989.

    PubMed  CAS  Google Scholar 

  91. Harter K, Kircher S, Frohmeyer H et al. Light regulated modification and nuclear translocation of cytosolic G-box binding factors in parsley. Plant Cell 1994; 6:545–559.

    PubMed  CAS  Google Scholar 

  92. Griesbach RJ, Sink KC. Evacuolation of mesophyll protoplasts. Plant Sci Lett 1983; 30:297–301.

    Google Scholar 

  93. Broder YC, Stanhill A, Zakai N et al. Translocation of NLS-BSA conjugates into nuclei of permeabilized mammalian cells can be supported by protoplast extract. FEBS Lett 1997; 412:535–539.

    PubMed  CAS  Google Scholar 

  94. Zupan JR, Citovsky V, Zambryski P. Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci USA 1996; 93:2392–2397.

    PubMed  CAS  Google Scholar 

  95. Batschauer A. Photoreceptors of higher plants. Planta 1998; 206:479–492.

    PubMed  CAS  Google Scholar 

  96. Buche C, Poppe C, Schafer E et al. eid1: a new Arabidopsis mutants hypersensitive in phytochrome A-dependent high-irradiance responese. Plant Cell 2000:12:547–558.

    PubMed  CAS  Google Scholar 

  97. Fairchild CD, Schumaker MA, Quail PH. HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 2000; 14:2377–2391.

    PubMed  CAS  Google Scholar 

  98. Fankhauser C, Chory J. RSF1, an Arabidopsis locus implicated in phytochrome A signaling. Plant Physiol 2000; 124:39–46.

    PubMed  CAS  Google Scholar 

  99. Hsieh HL, Okamoto H, Wang A et al. FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 2000; 14:1958–1970.

    PubMed  CAS  Google Scholar 

  100. Casal JJ. Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71:1–11.

    Google Scholar 

  101. Nagy F, Schafer E. Nuclear and cytosolic events of light-induced, phytochrome-regulated signaling in higher plants. EMBO J 2000; 19:157–163.

    PubMed  CAS  Google Scholar 

  102. Neff MM, Fankhauser C, Chory J. Light: An indicator of time and place. Genes Dev 2000; 14:257–271.

    PubMed  CAS  Google Scholar 

  103. Wei N, Deng XW. Making sense of the COP9 signalosome: A regulatory protein complex conserved from Arabidopsis to human. Trends Genet 2000; 15:98–103.

    Google Scholar 

  104. von Armin AG, Deng XW. Light inactiviation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 1994; 79:1035–1045.

    Google Scholar 

  105. Stacey MG, Kopp OR, Kim T-H et al. Modular domain structure of Arabidopsis COP1. Reconstitution of activity by fragment complementation and mutational analysis of a nuclear localization signal in planta. Plant Physiol 2000; 124:979–989.

    PubMed  CAS  Google Scholar 

  106. Ang LH, Chattopadhyay S, Wei N et al. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1998; 1:213–222.

    PubMed  CAS  Google Scholar 

  107. Osterlund MT, Hardtke CS, Wei N et al. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 2000; 405:462–466.

    PubMed  CAS  Google Scholar 

  108. Hardtke CS, Gohda K, Osterlund MT et al. HY5 stability and activity in Arabidopsis is regulated by a phosphorylation within COP1 binding domain. EMBO J 2000; 19:4997–5006.

    PubMed  CAS  Google Scholar 

  109. Guo H, Mockler T, Duong H et al. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 2001; 291:487–490.

    PubMed  CAS  Google Scholar 

  110. Matsui M, Stoop CD, von Armin AG et al. Arabidopsis COP1 protein specifically interactsin vitro with a cytoskeleton-associated protein, CIP1. Proc Natl Acad Sci USA 1995; 92:4239–4243.

    PubMed  CAS  Google Scholar 

  111. Batschauer A. Light perception in higher plants. Cell Mol Sci 1999; 55:163–166.

    Google Scholar 

  112. Kircher S, Kozma-Bognar L, Kim L et al. Light quality-dependent import of plant photoreceptors phytochrome A and B. Plan Cell 1999; 11:1445–1456.

    CAS  Google Scholar 

  113. Gil P, Kircher S, Adam E et al. Photocontrol of subcellular partitioning of phytochrome-B:GFP fusion protein in tobacco seedlings. Plant J 2000:22(2):1335–145

    Google Scholar 

  114. Kim L, Kircher S, Toth R et al. Light-induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis. Plant J 2000:22(2):125–133.

    PubMed  CAS  Google Scholar 

  115. Kircher S, Wellmer F, Nick P et al. Nuclear import of the parsley bZIP transcription factor CPRF2 is regulated by phytochrome photoreceptors. J Cell Biol 1999; 144(2):201–211.

    PubMed  CAS  Google Scholar 

  116. Terzaghi WB, Bertekap RL, Cashmore AR. Intracellular localization of BGF proteins and blue light-induced import of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells. Plant J 1997; 11(5):967–982.

    PubMed  CAS  Google Scholar 

  117. Kircher S, Ledger S, Hayashi H et al. CPRF4a, a novel plant bZIP protein of the CPRF family: comparative analysis of light-dependent expression, post-transcriptional regulation, nuclear import and heterodimerisation. Mol Gen Gen 1998; 257:595–605.

    CAS  Google Scholar 

  118. Lyck R, Harmening U, Hohfeld I et al. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta 1997; 202:117–125.

    PubMed  CAS  Google Scholar 

  119. Scharf K-D, Heider H, Hohfeld I et al. The tomato Hsf system: HsfA2 needs interaction with HsfAl for efficient nuclear import and may be localized in cytoplasmic heat shock granules. Mol Cell Biol 1998; 18(4):2240–2251.

    PubMed  CAS  Google Scholar 

  120. Sanderfoot AA, Lazarowitz SG. Getting it together in plant virus movement: Cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol 1996; 6:353–358.

    PubMed  CAS  Google Scholar 

  121. Pascal E, Sanderfoot AA, Ward BM et al. The geminivirus BR movement protein binds single-stranded DNA and localizes to the cell nucleus. Plant Cell 1994; 6:995–1006.

    PubMed  CAS  Google Scholar 

  122. Sanderfoot AA, Ingham DJ, Lazarowitz SG. A viral movement protein as a nuclear shuttle: The geminivirus BR1 movement protein contains domains essential for interaction with BL1 and nuclear localization. Plant Physiol 1996; 110:23–33.

    PubMed  CAS  Google Scholar 

  123. Restrepo-Hartwig MA, Carrington JC. The tobacco etch potyvirus 6-kilodalto protein is membrane associated and involved in viral replication. J Virol 1994; 68:2388–2397.

    PubMed  CAS  Google Scholar 

  124. Kunik T, Palanichelvam K, Czosnek H et al. Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J 1998; 13(3):393–399.

    PubMed  CAS  Google Scholar 

  125. Nagatani A. Regulated nuclear targeting. Curr Opin Plant Biol 1998; 1:470–474.

    PubMed  CAS  Google Scholar 

  126. Bassel G, Singer RH. MRNA and cytoskeletal filaments. Curr Opin Cell Biol 1997; 9:109–115.

    Google Scholar 

  127. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 1998; 279:519–526.

    PubMed  CAS  Google Scholar 

  128. Sodeik B, Ebersold MW, Helenius A. Microtuble-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 1997; 136:1007–1021.

    PubMed  CAS  Google Scholar 

  129. Heinlein M, Epel BL, Padgett et al. Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 1995; 270:1983–1985.

    PubMed  CAS  Google Scholar 

  130. Barth AI, Nathke IS, Nelson WJ. Cadherins, catenins and AC signaling; Interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 1997; 9:693–690.

    Google Scholar 

  131. Ambron RT, Schmied R, Huang CC. A signal sequence mediates the retrograde transport of proteins from the axon periphery to the cell body and then into the nucleus. J Neurosci 1992; 12:2813–2818.

    PubMed  CAS  Google Scholar 

  132. Wiese C, Wilde A, Moore MS et al. Role of importin-β in coupling Ran to downstream targets in microtubule assembly. Science 2001; 291(5504):653–656.

    PubMed  CAS  Google Scholar 

  133. Fischer U, Huber J, Boelens WC et al. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995; 82:475–483.

    PubMed  CAS  Google Scholar 

  134. Wen W, Meinkoth JL, Tsien RY et al. Identification of a signal for rapid export of proteins from the nucleus. Cell 1995; 82:463–473.

    PubMed  CAS  Google Scholar 

  135. Fridell RA, Fischer U, Luhrmann R et al. Amphibian transcription factor IIIA proteins contain a sequence element functionally equivalent to the nuclear export signal of human immunodeficiency virus type 1 Rev. Proc Natl Acad Sci USA 1996; 93:2936–2940.

    PubMed  CAS  Google Scholar 

  136. Fornerod M, Ohno M, Yoshida M et al. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 1997; 90:1051–1060.

    PubMed  CAS  Google Scholar 

  137. Fukuda M, Asano S, Nakamura T et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390:308–311.

    PubMed  CAS  Google Scholar 

  138. Ossareh-Nazari B, Bachlerie F, Dargemont C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 1997; 278:141–144.

    PubMed  CAS  Google Scholar 

  139. Stade K, Ford CS, Guthrie C et al. Exportin 1 (CRM1p) is an essential nuclear export factor. Cell 1997; 90:1041–1050.

    PubMed  CAS  Google Scholar 

  140. Haasen D, Kohler C, Neuhaus G et al. Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana. Plant J 1999; 20(6):695–705.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Hicks, G.R. (2005). Nuclear Import of Plant Proteins. In: Nuclear Import and Export in Plants and Animals. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27747-1_5

Download citation

Publish with us

Policies and ethics