Skip to main content

Nuclear Import and Export Signals

  • Chapter

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Eukaryotic cells are separated into two large compartments, namely the nucleus and the cytoplasm, by the nuclear envelope. As a result, macromolecules including RNAs, which are transcribed in the nucleus and nuclear proteins, which are translated in the cytoplasm must cross the double Upid bilayer to reach the intracellular sites where they function. In addition, cumulative evidence suggests that trafficking between the nucleus and the cytoplasm is rather dynamic and some proteins and RNAs cross the nuclear envelope again after being transported to one compartment.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg MW, Allen TD. Structural and functional organization of the nuclear envelope. Curr Opin Cell Biol 1995; 7(3):301–309.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Doye V, Hurt E. From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol 1997;9(3):401–411.

    CrossRef  PubMed  CAS  Google Scholar 

  3. Görlich D, Vogel F, Mills AD et al. Distinct functions for the two importin subunits in nuclear protein import. Nature 1995; 377(6546):246–248.

    CrossRef  PubMed  Google Scholar 

  4. Moroianu J, Hijikata M, Blobel G et al. Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: Alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins. Proc Natl Acad Sci USA 1995; 92(14):6532–6536.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Kose S, Imamoto N, Tachibana T et al. Ran-unassisted nuclear migration of a 97-kD component of nuclear pore-targeting complex. J Cell Biol 1997; 139(4):841–849.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Ribbeck K, Görlich D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J 2001; 20(6):1320–1330.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Stewart M, Baker RP, Bayliss R et al. Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import. FEBS Lett 2001; 498(2–3):145–149.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Görlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607–660.

    CrossRef  PubMed  Google Scholar 

  9. Mattaj IW, Englmeier L. Nucleocytoplasmic transport: The soluble phase. Annu Rev Biochem 1998; 67:265–306.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Yoshida K, Blobel G. The karyopherin Kap142p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J Cell Biol 2001; 152(4):729–740.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Dingwall C, Sharnick SV, Laskey RA. A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell 1982; 30(2):449–458.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Kalderon D, Richardson WD, Markham AF et al. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 1984; 3H(5981):33–38.

    CrossRef  Google Scholar 

  13. Goldfarb DS, Gariepy J, Schoolnik G et al. Synthetic peptides as nuclear localization signals. Nature 1986; 322(6080):641–644.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Yoneda Y, Arioka T, Imamoto-Sonobe N et al. Synthetic peptides containing a region of SV 40 large T-antigen involved in nuclear localization direct the transport of proteins into the nucleus. Exp Cell Res 1987; 170(2):439–452.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Dingwall C, Robbins J, Dilworth SM et al. The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. J Cell Biol 1988; 107(3):841–849.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Dingwall C, Laskey RA. Nuclear targeting sequences—A consensus? Trends Biochem Sci 1991;16(12):478–481.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Weis K, Mattaj IW, Lamond Al. Identification of hSRP1 alpha as a functional receptor for nuclear localization sequences. Science 1995; 268(5213):1049–1053.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Imamoto N, Shimamoto T, Takao T et al. In vivo evidence for involvement of a 58 kDa component of nuclear pore-targeting complex in nuclear protein import. EMBO J 1995; 14(15):3617–3626.

    PubMed  CAS  Google Scholar 

  19. Adam SA, Gerace L. Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell 1991; 66(5):837–847.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Conti E, Uy M, Leighton L et al. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 1998; 94(2):193–204.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Görlich D, Henklein P, Laskey RA et al. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J 1996; 15(8):1810–1817.

    PubMed  Google Scholar 

  22. Cingolani G, Petosa C, Weis K et al. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 1999; 399(6733):221–229.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Palmeri D, Malim MH. Importin beta can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin alpha. Mol Cell Biol 1999; 19(2):1218–1225.

    PubMed  CAS  Google Scholar 

  24. Truant R, Cullen BR. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 1999; 19(2):1210–1217.

    PubMed  CAS  Google Scholar 

  25. Henkel T, Zabel U, van Zee K et al. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 1992; 68(6):1121–1133.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Nadler SG, Tritschler D, Haffar OK et al. Differential expression and sequence-specific interaction of karyopherin alpha with nuclear localization sequences. J Biol Chem 1997; 272(7):4310–4315.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Zabel U, Henkel T, Silva MS et al. Nuclear uptake control of NF-kappa B by MAD-3, an I kappa B protein present in the nucleus. EMBO J 1993; 12(1):201–211.

    PubMed  CAS  Google Scholar 

  28. Zhu J, Shibasaki F, Price R et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 1998; 93(5):851–861.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Xu L, Chen YG, Massague J. The nuclear import function of Smad2 is masked by SARA and unmasked by TGFbeta-dependent phosphorylation. Nat Cell Biol 2000; 2(8):559–562.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Sekimoto T, Nakajima K, Tachibana T et al. Interferon-gamma-dependent nuclear import of Stat1 is mediated by the GTPase activity of Ran/TC4. J Biol Chem 1996; 271(49):31017–31020.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Sekimoto T, Imamoto N, Nakajima K et al. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J 1997; 16(23):7067–7077.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Melen K, Kinnunen L, Julkunen I. Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J Biol Chem 2001; 276(19):16447–16455.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem 1994; 55(1):32–58.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Siomi H, Dreyfuss G. A nuclear localization domain in the hnRNP A1 protein. J Cell Biol 1995;129(3):551–560.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Weighardt F, Biamonti G, Riva S. Nucleo-cytoplasmic distribution of human hnRNP proteins: a search for the targeting domains in hnRNP Al. J Cell Sci 1995; 108 (Pt 2):545–555.

    PubMed  CAS  Google Scholar 

  36. Michael WM, Choi M, Dreyfuss G. A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 1995; 83(3):415–422.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Pollard VW, Michael WM, Nakielny S et al. A novel receptor-mediated nuclear protein import pathway. Cell 1996; 86(6):985–994.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Nagoshi E, Imamoto N, Sato R et al. Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell 1999; 10(7):2221–2233.

    PubMed  CAS  Google Scholar 

  39. Jakel S, Görlich D. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 1998; 17(15):4491–4502.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Schlenstedt G, Smirnova E, Deane R et al. Yrb4p, a yeast ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus. EMBO J 1997; 16(20):6237–6249.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Mo YY, Wang C, Beck WT. A novel nuclear localization signal in human DNA topoisomerase I. J Biol Chem 2000; 275(52):411107–41113.

    CrossRef  Google Scholar 

  42. Fischer U, Huber J, Boelens WC et al. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995; 82(3):475–483.

    CrossRef  PubMed  CAS  Google Scholar 

  43. Bogerd HP, Fridell RA, Benson RE et al. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol Cell Biol 1996; 16(8):4207–4214.

    PubMed  CAS  Google Scholar 

  44. Wen W, Meinkoth JL, Tsien RY et al. Identification of a signal for rapid export of proteins from the nucleus. Cell 1995; 82(3):463–473.

    CrossRef  PubMed  CAS  Google Scholar 

  45. Fornerod M, Ohno M, Yoshida M et al. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 1997; 90(6):1051–1060.

    CrossRef  PubMed  CAS  Google Scholar 

  46. Fukuda M, Asano S, Nakamura T et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390(6657):308–311.

    CrossRef  PubMed  CAS  Google Scholar 

  47. Stade K, Ford CS, Guthrie C et al. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 1997; 90(6):1041–1050.

    CrossRef  PubMed  CAS  Google Scholar 

  48. Kudo N, Matsumori N, Taoka H et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA 1999;96(16):9112–9117.

    CrossRef  PubMed  CAS  Google Scholar 

  49. Kudo N, Wolff B, Sekimoto T et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 1998; 242(2):540–547.

    CrossRef  PubMed  CAS  Google Scholar 

  50. Neville M, Rosbash M. The NES-Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. EMBO J 1999; 18(13):3746–3756.

    CrossRef  PubMed  CAS  Google Scholar 

  51. Wolff B, Sanglier JJ, Wang Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 1997; 4(2):139–147.

    CrossRef  PubMed  CAS  Google Scholar 

  52. Wada A, Fukuda M, Mishima M et al. Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J 1998; 17(6):1635–1641.

    CrossRef  PubMed  CAS  Google Scholar 

  53. Adachi M, Fukuda M, Nishida E. Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J Cell Biol 2000; l48(5):849–856.

    CrossRef  Google Scholar 

  54. Huang TT, Kudo N, Yoshida M et al. A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proc Natl Acad Sci USA 2000; 97(3):1014–1019.

    CrossRef  PubMed  CAS  Google Scholar 

  55. Jans DA, Xiao CY, Lam MH. Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays 2000; 22(6):532–544.

    CrossRef  PubMed  CAS  Google Scholar 

  56. Watkins JL, Murphy R, Emtage JL et al. The human homologue of Saccharomyces cerevisiae Gle1p is required for poly(A)+ RNA export. Proc Natl Acad Sci USA 1998; 95(12):6779–6784.

    CrossRef  PubMed  CAS  Google Scholar 

  57. Hood JK, Silver PA. In or out? Regulating nuclear transport. Curr Opin Cell Biol 1999;11(2):241–247.

    CrossRef  PubMed  CAS  Google Scholar 

  58. Pines J, Hunter T. Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 1991; 115(1):1–17.

    CrossRef  PubMed  CAS  Google Scholar 

  59. Pines J, Hunter T. The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J 1994; 13(16):3772–3781.

    PubMed  CAS  Google Scholar 

  60. Hagting A, Jackman M, Simpson K et al. Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr Biol 1999; 9(13):680–689.

    CrossRef  PubMed  CAS  Google Scholar 

  61. Toyoshima F, Moriguchi T, Wada A et al. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J 1998; 17(10):2728–2735.

    CrossRef  PubMed  CAS  Google Scholar 

  62. Yang J, Bardes ES, Moore JD et al. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev 1998; 12(14):2131–2143.

    PubMed  CAS  Google Scholar 

  63. Yang J, Song H, Walsh S et al. Combinatorial control of cyclin B1 nuclear trafficking through phosphorylation at multiple sites. J Biol Chem 2001; 276(5):3604–3609.

    CrossRef  PubMed  CAS  Google Scholar 

  64. Mattaj IW. Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell 1986; 46(6):905–911.

    CrossRef  PubMed  CAS  Google Scholar 

  65. Fischer U, Luhrmann R. An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science 1990; 249(4970):786–790.

    CrossRef  PubMed  CAS  Google Scholar 

  66. Hamm J, Mattaj IW. Monomethylated cap structures facilitate RNA export from the nucleus. Cell 1990; 63(1):109–118.

    CrossRef  PubMed  CAS  Google Scholar 

  67. Jarmolowski A, Boelens WC, Izaurralde E et al. Nuclear export of different classes of RNA is mediated by specific factors. J Cell Biol 1994; 124(5):627–635.

    CrossRef  PubMed  CAS  Google Scholar 

  68. Izaurralde E, Stepinski J, Darzynkiewicz E et al. A cap binding protein that may mediate nuclear export of RNA polymerase II-transcribed RNAs. J Cell Biol 1992; 118(6):1287–1295.

    CrossRef  PubMed  CAS  Google Scholar 

  69. Kataoka N, Ohno M, Moda I et al. Identification of the factors that interact with NCBP, an 80 kDa nuclear cap binding protein. Nucleic Acids Res 1995; 23(18):3638–3641.

    CrossRef  PubMed  CAS  Google Scholar 

  70. Izaurralde E, Lewis J, Gamberi C et al. A cap-binding protein complex mediating U snRNA export. Nature 1995; 376(6542):709–712.

    CrossRef  PubMed  CAS  Google Scholar 

  71. Huber J, Cronshagen U, Kadokura M et al. Snurportinl, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 1998; 17(14):41114–4126.

    CrossRef  Google Scholar 

  72. Paraskeva E, Izaurralde E, Bischoff FR et al. CRM1-mediated recycling of snurportin 1 to the cytoplasm. J Cell Biol 1999; 145(2):255–264.

    CrossRef  PubMed  CAS  Google Scholar 

  73. Ohno M, Segref A, Bachi A et al. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 2000; 101(2):187–198.

    CrossRef  PubMed  CAS  Google Scholar 

  74. Kutay U, Bischoff FR, Kostka S et al. Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 1997; 90(6):1061–1071.

    CrossRef  PubMed  CAS  Google Scholar 

  75. Lipowsky G, Bischoff FR, Schwarzmaier P et al. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J 2000; 19(16):4362–4371.

    CrossRef  PubMed  CAS  Google Scholar 

  76. Kaffman A, Rank NM, O’Neill EM et al. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 1998; 396(6710):482–486.

    CrossRef  PubMed  CAS  Google Scholar 

  77. Dreyfiiss G, Matunis MJ, Pinol-Roma S et al. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 1993; 62:289–321.

    CrossRef  Google Scholar 

  78. Pinol-Roma S, Dreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 1992; 355(6362):730–732.

    CrossRef  PubMed  CAS  Google Scholar 

  79. Burd CG, Dreyfuss G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J 1994; 13(5):1197–1204.

    PubMed  CAS  Google Scholar 

  80. Bogerd HP, Benson RE, Truant R et al. Definition of a consensus transportin-specific nucleocytoplasmic transport signal. J Biol Chem 1999; 274(14):9771–9777.

    CrossRef  PubMed  CAS  Google Scholar 

  81. Izaurralde E, Kutay U, von Kobbe C et al. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 1997; 16(21):6535–6547.

    CrossRef  PubMed  CAS  Google Scholar 

  82. Michael WM, Eder PS, Dreyfuss G. The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J 1997; 16(12):3587–3598.

    CrossRef  PubMed  CAS  Google Scholar 

  83. Michael WM. Nucleocytoplasmic shuttling signals: two for the price of one. Trends Cell Biol 2000; 10(2):46–50.

    CrossRef  PubMed  CAS  Google Scholar 

  84. Caceres JF, Screaton GR, Krainer AR. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev 1998; 12(1):55–66.

    PubMed  CAS  Google Scholar 

  85. Kose S, Imamoto N, Tachibana T et al. beta-subunit of nuclear pore-targeting complex (importin-beta) can be exported from the nucleus in a Ran-independent manner. J Biol Chem 1999;274(7):3946–3952.

    CrossRef  PubMed  CAS  Google Scholar 

  86. Kutay U, Izaurralde E, Bischoff FR et al. Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO J 1997;16(6):1153–1163.

    CrossRef  PubMed  CAS  Google Scholar 

  87. Katahira J, Strasser K, Podtelejnikov A et al. The Mex67p-mediated nuclear mRNA export path way is conserved from yeast to human. EMBO J 1999; 18(9):2593–2609.

    CrossRef  PubMed  CAS  Google Scholar 

  88. Strasser K, Basler J, Hurt E. Binding of the Mex67p/Mtr2p Heterodimer to FXFG, GLFG, and FG Repeat Nucleoporins Is Essential for Nuclear mRNA Export. J Cell Biol 2000; 150(4):695–706.

    CrossRef  PubMed  CAS  Google Scholar 

  89. Schmitt I, Gerace L. In vitro analysis of nuclear transport mediated by the C-terminal shuttle domain of tap. J Biol Chem 2001; 276:42355–42363.

    CrossRef  PubMed  CAS  Google Scholar 

  90. Bear J, Tan W, Zolotukhin AS et al. Identification of novel import and export signals of human TAP, the protein that binds to the constitutive transport element of the type D retrovirus mRNAs. Mol Cell Biol 1999; 19(9):6306–6317.

    PubMed  CAS  Google Scholar 

  91. Guzik BW, Levesque L, Prasad S et al. NXT1 (p15) is a crucial cellular cofactor in TAP-dependent export of intron-containing RNA in mammalian cells. Mol Cell Biol 2001; 21(7):2545–2554.

    CrossRef  PubMed  CAS  Google Scholar 

  92. Ribbeck K, Lipowsky G, Kent HM et al. NTF2 mediates nuclear import of Ran. EMBO J 1998;17(22):6587–6598.

    CrossRef  PubMed  CAS  Google Scholar 

  93. Bayliss R, Ribbeck K, Akin D et al. Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J Mol Biol 1999; 293(3):579–593.

    CrossRef  PubMed  CAS  Google Scholar 

  94. Sachdev S, Bagchi S, Zhang DD et al. Nuclear import of IkappaBalpha is accomplished by a ran-independent transport pathway. Mol Cell Biol 2000; 20(5):1571–1582.

    CrossRef  PubMed  CAS  Google Scholar 

  95. Yokoya F, Imamoto N, Tachibana T et al. beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol Biol Cell 1999; 10(4):1119–1131.

    PubMed  CAS  Google Scholar 

  96. Fukuda M, Gotoh I, Gotoh Y et al. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem 1996; 271(33):20024–20028.

    CrossRef  PubMed  CAS  Google Scholar 

  97. Hagting A, Karlsson C, Clute P et al. MPF localization is controlled by nuclear export. EMBO J 1998; 17(14):4127–4138.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Sekimoto, T., Katahira, J., Yoneda, Y. (2005). Nuclear Import and Export Signals. In: Nuclear Import and Export in Plants and Animals. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27747-1_4

Download citation

Publish with us

Policies and ethics