Nuclear Import and Export Signals

  • Toshihiro Sekimoto
  • Jun Katahira
  • Yoshihiro Yoneda
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Eukaryotic cells are separated into two large compartments, namely the nucleus and the cytoplasm, by the nuclear envelope. As a result, macromolecules including RNAs, which are transcribed in the nucleus and nuclear proteins, which are translated in the cytoplasm must cross the double Upid bilayer to reach the intracellular sites where they function. In addition, cumulative evidence suggests that trafficking between the nucleus and the cytoplasm is rather dynamic and some proteins and RNAs cross the nuclear envelope again after being transported to one compartment.


Nuclear Localization Signal Nuclear Export Nuclear Import Nuclear Pore Complex Nuclear Export Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldberg MW, Allen TD. Structural and functional organization of the nuclear envelope. Curr Opin Cell Biol 1995; 7(3):301–309.PubMedCrossRefGoogle Scholar
  2. 2.
    Doye V, Hurt E. From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol 1997;9(3):401–411.PubMedCrossRefGoogle Scholar
  3. 3.
    Görlich D, Vogel F, Mills AD et al. Distinct functions for the two importin subunits in nuclear protein import. Nature 1995; 377(6546):246–248.PubMedCrossRefGoogle Scholar
  4. 4.
    Moroianu J, Hijikata M, Blobel G et al. Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: Alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins. Proc Natl Acad Sci USA 1995; 92(14):6532–6536.PubMedCrossRefGoogle Scholar
  5. 5.
    Kose S, Imamoto N, Tachibana T et al. Ran-unassisted nuclear migration of a 97-kD component of nuclear pore-targeting complex. J Cell Biol 1997; 139(4):841–849.PubMedCrossRefGoogle Scholar
  6. 6.
    Ribbeck K, Görlich D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J 2001; 20(6):1320–1330.PubMedCrossRefGoogle Scholar
  7. 7.
    Stewart M, Baker RP, Bayliss R et al. Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import. FEBS Lett 2001; 498(2–3):145–149.PubMedCrossRefGoogle Scholar
  8. 8.
    Görlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607–660.PubMedCrossRefGoogle Scholar
  9. 9.
    Mattaj IW, Englmeier L. Nucleocytoplasmic transport: The soluble phase. Annu Rev Biochem 1998; 67:265–306.PubMedCrossRefGoogle Scholar
  10. 10.
    Yoshida K, Blobel G. The karyopherin Kap142p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J Cell Biol 2001; 152(4):729–740.PubMedCrossRefGoogle Scholar
  11. 11.
    Dingwall C, Sharnick SV, Laskey RA. A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell 1982; 30(2):449–458.PubMedCrossRefGoogle Scholar
  12. 12.
    Kalderon D, Richardson WD, Markham AF et al. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 1984; 3H(5981):33–38.CrossRefGoogle Scholar
  13. 13.
    Goldfarb DS, Gariepy J, Schoolnik G et al. Synthetic peptides as nuclear localization signals. Nature 1986; 322(6080):641–644.PubMedCrossRefGoogle Scholar
  14. 14.
    Yoneda Y, Arioka T, Imamoto-Sonobe N et al. Synthetic peptides containing a region of SV 40 large T-antigen involved in nuclear localization direct the transport of proteins into the nucleus. Exp Cell Res 1987; 170(2):439–452.PubMedCrossRefGoogle Scholar
  15. 15.
    Dingwall C, Robbins J, Dilworth SM et al. The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. J Cell Biol 1988; 107(3):841–849.PubMedCrossRefGoogle Scholar
  16. 16.
    Dingwall C, Laskey RA. Nuclear targeting sequences—A consensus? Trends Biochem Sci 1991;16(12):478–481.PubMedCrossRefGoogle Scholar
  17. 17.
    Weis K, Mattaj IW, Lamond Al. Identification of hSRP1 alpha as a functional receptor for nuclear localization sequences. Science 1995; 268(5213):1049–1053.PubMedCrossRefGoogle Scholar
  18. 18.
    Imamoto N, Shimamoto T, Takao T et al. In vivo evidence for involvement of a 58 kDa component of nuclear pore-targeting complex in nuclear protein import. EMBO J 1995; 14(15):3617–3626.PubMedGoogle Scholar
  19. 19.
    Adam SA, Gerace L. Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell 1991; 66(5):837–847.PubMedCrossRefGoogle Scholar
  20. 20.
    Conti E, Uy M, Leighton L et al. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 1998; 94(2):193–204.PubMedCrossRefGoogle Scholar
  21. 21.
    Görlich D, Henklein P, Laskey RA et al. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J 1996; 15(8):1810–1817.PubMedGoogle Scholar
  22. 22.
    Cingolani G, Petosa C, Weis K et al. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 1999; 399(6733):221–229.PubMedCrossRefGoogle Scholar
  23. 23.
    Palmeri D, Malim MH. Importin beta can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin alpha. Mol Cell Biol 1999; 19(2):1218–1225.PubMedGoogle Scholar
  24. 24.
    Truant R, Cullen BR. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 1999; 19(2):1210–1217.PubMedGoogle Scholar
  25. 25.
    Henkel T, Zabel U, van Zee K et al. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 1992; 68(6):1121–1133.PubMedCrossRefGoogle Scholar
  26. 26.
    Nadler SG, Tritschler D, Haffar OK et al. Differential expression and sequence-specific interaction of karyopherin alpha with nuclear localization sequences. J Biol Chem 1997; 272(7):4310–4315.PubMedCrossRefGoogle Scholar
  27. 27.
    Zabel U, Henkel T, Silva MS et al. Nuclear uptake control of NF-kappa B by MAD-3, an I kappa B protein present in the nucleus. EMBO J 1993; 12(1):201–211.PubMedGoogle Scholar
  28. 28.
    Zhu J, Shibasaki F, Price R et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 1998; 93(5):851–861.PubMedCrossRefGoogle Scholar
  29. 29.
    Xu L, Chen YG, Massague J. The nuclear import function of Smad2 is masked by SARA and unmasked by TGFbeta-dependent phosphorylation. Nat Cell Biol 2000; 2(8):559–562.PubMedCrossRefGoogle Scholar
  30. 30.
    Sekimoto T, Nakajima K, Tachibana T et al. Interferon-gamma-dependent nuclear import of Stat1 is mediated by the GTPase activity of Ran/TC4. J Biol Chem 1996; 271(49):31017–31020.PubMedCrossRefGoogle Scholar
  31. 31.
    Sekimoto T, Imamoto N, Nakajima K et al. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J 1997; 16(23):7067–7077.PubMedCrossRefGoogle Scholar
  32. 32.
    Melen K, Kinnunen L, Julkunen I. Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J Biol Chem 2001; 276(19):16447–16455.PubMedCrossRefGoogle Scholar
  33. 33.
    Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem 1994; 55(1):32–58.PubMedCrossRefGoogle Scholar
  34. 34.
    Siomi H, Dreyfuss G. A nuclear localization domain in the hnRNP A1 protein. J Cell Biol 1995;129(3):551–560.PubMedCrossRefGoogle Scholar
  35. 35.
    Weighardt F, Biamonti G, Riva S. Nucleo-cytoplasmic distribution of human hnRNP proteins: a search for the targeting domains in hnRNP Al. J Cell Sci 1995; 108 (Pt 2):545–555.PubMedGoogle Scholar
  36. 36.
    Michael WM, Choi M, Dreyfuss G. A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 1995; 83(3):415–422.PubMedCrossRefGoogle Scholar
  37. 37.
    Pollard VW, Michael WM, Nakielny S et al. A novel receptor-mediated nuclear protein import pathway. Cell 1996; 86(6):985–994.PubMedCrossRefGoogle Scholar
  38. 38.
    Nagoshi E, Imamoto N, Sato R et al. Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell 1999; 10(7):2221–2233.PubMedGoogle Scholar
  39. 39.
    Jakel S, Görlich D. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 1998; 17(15):4491–4502.PubMedCrossRefGoogle Scholar
  40. 40.
    Schlenstedt G, Smirnova E, Deane R et al. Yrb4p, a yeast ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus. EMBO J 1997; 16(20):6237–6249.PubMedCrossRefGoogle Scholar
  41. 41.
    Mo YY, Wang C, Beck WT. A novel nuclear localization signal in human DNA topoisomerase I. J Biol Chem 2000; 275(52):411107–41113.CrossRefGoogle Scholar
  42. 42.
    Fischer U, Huber J, Boelens WC et al. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995; 82(3):475–483.PubMedCrossRefGoogle Scholar
  43. 43.
    Bogerd HP, Fridell RA, Benson RE et al. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol Cell Biol 1996; 16(8):4207–4214.PubMedGoogle Scholar
  44. 44.
    Wen W, Meinkoth JL, Tsien RY et al. Identification of a signal for rapid export of proteins from the nucleus. Cell 1995; 82(3):463–473.PubMedCrossRefGoogle Scholar
  45. 45.
    Fornerod M, Ohno M, Yoshida M et al. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 1997; 90(6):1051–1060.PubMedCrossRefGoogle Scholar
  46. 46.
    Fukuda M, Asano S, Nakamura T et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390(6657):308–311.PubMedCrossRefGoogle Scholar
  47. 47.
    Stade K, Ford CS, Guthrie C et al. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 1997; 90(6):1041–1050.PubMedCrossRefGoogle Scholar
  48. 48.
    Kudo N, Matsumori N, Taoka H et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA 1999;96(16):9112–9117.PubMedCrossRefGoogle Scholar
  49. 49.
    Kudo N, Wolff B, Sekimoto T et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 1998; 242(2):540–547.PubMedCrossRefGoogle Scholar
  50. 50.
    Neville M, Rosbash M. The NES-Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. EMBO J 1999; 18(13):3746–3756.PubMedCrossRefGoogle Scholar
  51. 51.
    Wolff B, Sanglier JJ, Wang Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 1997; 4(2):139–147.PubMedCrossRefGoogle Scholar
  52. 52.
    Wada A, Fukuda M, Mishima M et al. Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J 1998; 17(6):1635–1641.PubMedCrossRefGoogle Scholar
  53. 53.
    Adachi M, Fukuda M, Nishida E. Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J Cell Biol 2000; l48(5):849–856.CrossRefGoogle Scholar
  54. 54.
    Huang TT, Kudo N, Yoshida M et al. A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proc Natl Acad Sci USA 2000; 97(3):1014–1019.PubMedCrossRefGoogle Scholar
  55. 55.
    Jans DA, Xiao CY, Lam MH. Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays 2000; 22(6):532–544.PubMedCrossRefGoogle Scholar
  56. 56.
    Watkins JL, Murphy R, Emtage JL et al. The human homologue of Saccharomyces cerevisiae Gle1p is required for poly(A)+ RNA export. Proc Natl Acad Sci USA 1998; 95(12):6779–6784.PubMedCrossRefGoogle Scholar
  57. 57.
    Hood JK, Silver PA. In or out? Regulating nuclear transport. Curr Opin Cell Biol 1999;11(2):241–247.PubMedCrossRefGoogle Scholar
  58. 58.
    Pines J, Hunter T. Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 1991; 115(1):1–17.PubMedCrossRefGoogle Scholar
  59. 59.
    Pines J, Hunter T. The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J 1994; 13(16):3772–3781.PubMedGoogle Scholar
  60. 60.
    Hagting A, Jackman M, Simpson K et al. Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr Biol 1999; 9(13):680–689.PubMedCrossRefGoogle Scholar
  61. 61.
    Toyoshima F, Moriguchi T, Wada A et al. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J 1998; 17(10):2728–2735.PubMedCrossRefGoogle Scholar
  62. 62.
    Yang J, Bardes ES, Moore JD et al. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev 1998; 12(14):2131–2143.PubMedGoogle Scholar
  63. 63.
    Yang J, Song H, Walsh S et al. Combinatorial control of cyclin B1 nuclear trafficking through phosphorylation at multiple sites. J Biol Chem 2001; 276(5):3604–3609.PubMedCrossRefGoogle Scholar
  64. 64.
    Mattaj IW. Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell 1986; 46(6):905–911.PubMedCrossRefGoogle Scholar
  65. 65.
    Fischer U, Luhrmann R. An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science 1990; 249(4970):786–790.PubMedCrossRefGoogle Scholar
  66. 66.
    Hamm J, Mattaj IW. Monomethylated cap structures facilitate RNA export from the nucleus. Cell 1990; 63(1):109–118.PubMedCrossRefGoogle Scholar
  67. 67.
    Jarmolowski A, Boelens WC, Izaurralde E et al. Nuclear export of different classes of RNA is mediated by specific factors. J Cell Biol 1994; 124(5):627–635.PubMedCrossRefGoogle Scholar
  68. 68.
    Izaurralde E, Stepinski J, Darzynkiewicz E et al. A cap binding protein that may mediate nuclear export of RNA polymerase II-transcribed RNAs. J Cell Biol 1992; 118(6):1287–1295.PubMedCrossRefGoogle Scholar
  69. 69.
    Kataoka N, Ohno M, Moda I et al. Identification of the factors that interact with NCBP, an 80 kDa nuclear cap binding protein. Nucleic Acids Res 1995; 23(18):3638–3641.PubMedCrossRefGoogle Scholar
  70. 70.
    Izaurralde E, Lewis J, Gamberi C et al. A cap-binding protein complex mediating U snRNA export. Nature 1995; 376(6542):709–712.PubMedCrossRefGoogle Scholar
  71. 71.
    Huber J, Cronshagen U, Kadokura M et al. Snurportinl, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 1998; 17(14):41114–4126.CrossRefGoogle Scholar
  72. 72.
    Paraskeva E, Izaurralde E, Bischoff FR et al. CRM1-mediated recycling of snurportin 1 to the cytoplasm. J Cell Biol 1999; 145(2):255–264.PubMedCrossRefGoogle Scholar
  73. 73.
    Ohno M, Segref A, Bachi A et al. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 2000; 101(2):187–198.PubMedCrossRefGoogle Scholar
  74. 74.
    Kutay U, Bischoff FR, Kostka S et al. Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 1997; 90(6):1061–1071.PubMedCrossRefGoogle Scholar
  75. 75.
    Lipowsky G, Bischoff FR, Schwarzmaier P et al. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J 2000; 19(16):4362–4371.PubMedCrossRefGoogle Scholar
  76. 76.
    Kaffman A, Rank NM, O’Neill EM et al. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 1998; 396(6710):482–486.PubMedCrossRefGoogle Scholar
  77. 77.
    Dreyfiiss G, Matunis MJ, Pinol-Roma S et al. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 1993; 62:289–321.CrossRefGoogle Scholar
  78. 78.
    Pinol-Roma S, Dreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 1992; 355(6362):730–732.PubMedCrossRefGoogle Scholar
  79. 79.
    Burd CG, Dreyfuss G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J 1994; 13(5):1197–1204.PubMedGoogle Scholar
  80. 80.
    Bogerd HP, Benson RE, Truant R et al. Definition of a consensus transportin-specific nucleocytoplasmic transport signal. J Biol Chem 1999; 274(14):9771–9777.PubMedCrossRefGoogle Scholar
  81. 81.
    Izaurralde E, Kutay U, von Kobbe C et al. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 1997; 16(21):6535–6547.PubMedCrossRefGoogle Scholar
  82. 82.
    Michael WM, Eder PS, Dreyfuss G. The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J 1997; 16(12):3587–3598.PubMedCrossRefGoogle Scholar
  83. 83.
    Michael WM. Nucleocytoplasmic shuttling signals: two for the price of one. Trends Cell Biol 2000; 10(2):46–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Caceres JF, Screaton GR, Krainer AR. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev 1998; 12(1):55–66.PubMedGoogle Scholar
  85. 85.
    Kose S, Imamoto N, Tachibana T et al. beta-subunit of nuclear pore-targeting complex (importin-beta) can be exported from the nucleus in a Ran-independent manner. J Biol Chem 1999;274(7):3946–3952.PubMedCrossRefGoogle Scholar
  86. 86.
    Kutay U, Izaurralde E, Bischoff FR et al. Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO J 1997;16(6):1153–1163.PubMedCrossRefGoogle Scholar
  87. 87.
    Katahira J, Strasser K, Podtelejnikov A et al. The Mex67p-mediated nuclear mRNA export path way is conserved from yeast to human. EMBO J 1999; 18(9):2593–2609.PubMedCrossRefGoogle Scholar
  88. 88.
    Strasser K, Basler J, Hurt E. Binding of the Mex67p/Mtr2p Heterodimer to FXFG, GLFG, and FG Repeat Nucleoporins Is Essential for Nuclear mRNA Export. J Cell Biol 2000; 150(4):695–706.PubMedCrossRefGoogle Scholar
  89. 89.
    Schmitt I, Gerace L. In vitro analysis of nuclear transport mediated by the C-terminal shuttle domain of tap. J Biol Chem 2001; 276:42355–42363.PubMedCrossRefGoogle Scholar
  90. 90.
    Bear J, Tan W, Zolotukhin AS et al. Identification of novel import and export signals of human TAP, the protein that binds to the constitutive transport element of the type D retrovirus mRNAs. Mol Cell Biol 1999; 19(9):6306–6317.PubMedGoogle Scholar
  91. 91.
    Guzik BW, Levesque L, Prasad S et al. NXT1 (p15) is a crucial cellular cofactor in TAP-dependent export of intron-containing RNA in mammalian cells. Mol Cell Biol 2001; 21(7):2545–2554.PubMedCrossRefGoogle Scholar
  92. 92.
    Ribbeck K, Lipowsky G, Kent HM et al. NTF2 mediates nuclear import of Ran. EMBO J 1998;17(22):6587–6598.PubMedCrossRefGoogle Scholar
  93. 93.
    Bayliss R, Ribbeck K, Akin D et al. Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J Mol Biol 1999; 293(3):579–593.PubMedCrossRefGoogle Scholar
  94. 94.
    Sachdev S, Bagchi S, Zhang DD et al. Nuclear import of IkappaBalpha is accomplished by a ran-independent transport pathway. Mol Cell Biol 2000; 20(5):1571–1582.PubMedCrossRefGoogle Scholar
  95. 95.
    Yokoya F, Imamoto N, Tachibana T et al. beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol Biol Cell 1999; 10(4):1119–1131.PubMedGoogle Scholar
  96. 96.
    Fukuda M, Gotoh I, Gotoh Y et al. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem 1996; 271(33):20024–20028.PubMedCrossRefGoogle Scholar
  97. 97.
    Hagting A, Karlsson C, Clute P et al. MPF localization is controlled by nuclear export. EMBO J 1998; 17(14):4127–4138.PubMedCrossRefGoogle Scholar

Copyright information

© and Kluwer Academic / Plenum Publishers 2005

Authors and Affiliations

  • Toshihiro Sekimoto
    • 1
  • Jun Katahira
    • 2
  • Yoshihiro Yoneda
    • 2
  1. 1.Department of Cell Biology and Neuroscience, Graduate School of MedicineOsaka UniversitySuitaJapan
  2. 2.Department of Frontier Biosciences, Graduate School of Frontier BiosciencesOsaka UniversitySuita, OsakaJapan

Personalised recommendations