Skip to main content

Bayesian Analysis of Molecular Evolution Using MrBayes

  • Chapter
Statistical Methods in Molecular Evolution

Part of the book series: Statistics for Biology and Health ((SBH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Adachi and M. Hasegawa. MOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs of Institute of Statistical Mathematics, 28:1–150, 1996.

    Google Scholar 

  2. J. Adachi, P. Waddell, W. Martin, and M. Hasegawa. Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. Journal of Molecular Evolution, 50:348–358, 2000.

    Google Scholar 

  3. H. Akaike. Information theory as an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki, editors, Second International Symposium on Information Theory, pages 267–281. Akademiai Kiado, Budapest, 1973.

    Google Scholar 

  4. U. Arnason, A. Gullberg, and A. Janke. Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenartha (Edentata) and Ferungulates. Molecular Biology and Evolution, 14:762–768, 1997.

    Google Scholar 

  5. E. T. Bell. Exponential numbers. American Mathematical Monthly, 41:411–419, 1934.

    MATH  MathSciNet  Google Scholar 

  6. J. O. Berger, B. Liseo, and R. L. Wolpert. Integrated likelihood methods for eliminating nuisance parameters. Statistical Science, 14:1–28, 1999.

    Article  MathSciNet  Google Scholar 

  7. M. J. Bishop and A. E. Friday. Tetrapod relationships: The molecular evidence. In C. Patterson, editor, Molecules and Morphology in Evolution, pages 123–139. Cambridge University Press, Cambridge, England, 1987.

    Google Scholar 

  8. Y. Cao, A. Janke, P. J. Waddell, M. Westerman, O. Takenaka, S. Murata, N. Okada, S. Paabo, and M. Hasegawa. Conflict amongst individual mitochondrial proteins in resolving the phylogeny of eutherian orders. Journal of Molecular Evolution, 47:307–322, 1998.

    Google Scholar 

  9. J. T. Chang. Full reconstruction of Markov models on evolutionary tree: Identifiability and consistency. Mathematical Bioscience, 137:51–73, 1996.

    MATH  MathSciNet  Google Scholar 

  10. D. R. Cox. Further results on tests of families of alternate hypotheses. Journal of the Royal Statistical Society B, 24:406–424, 1962.

    MATH  Google Scholar 

  11. M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure, volume 5, pages 345–352. National Biomedical Research Foundation, Washington, DC, 1978. Suppl. 3.

    Google Scholar 

  12. M. W. Dimmic, J. S. Rest, D. P. Mindell, and D. Goldstein. rtREV: An amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. Journal of Molecular Evolution, 55:65–73, 2002.

    Article  Google Scholar 

  13. J. Felsenstein. Statistical inference and the estimation of phylogenies. PhD thesis, University of Chicago, 1968.

    Google Scholar 

  14. J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17:368–376, 1981.

    Article  Google Scholar 

  15. J. Felsenstein. Distance methods for inferring phylogenies: A justification. Evolution, 38:16–24, 1984.

    Google Scholar 

  16. J. Felsenstein. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39:783–791, 1985.

    Google Scholar 

  17. P. G. Foster. Modeling compositional heterogeneity. Systematic Biology, 53:485–495, 2004.

    Article  Google Scholar 

  18. N. Galtier and M. Gouy. Inferring pattern and process: Maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Molecular Biology Evolution, 15:871–879, 1998.

    Google Scholar 

  19. N. Galtier, N. Tourasse, and M. Gouy. A nonhyperthermophilic common ancestor to extant life forms. Science, 283:220–221, 1999.

    Article  Google Scholar 

  20. N. Goldman. Maximum likelihood inference of phylogenetic trees with special reference to a Poisson process model of DNA substitution and to parsimony analyses. Systematic Zoology, 39:345–361, 1990.

    Google Scholar 

  21. N. Goldman and Z. Yang. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution, 11:725–736, 1994.

    Google Scholar 

  22. P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711–732, 1995.

    MATH  MathSciNet  Google Scholar 

  23. M. Hasegawa, H. Kishino, and T. Yano. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22:160–174, 1985.

    Google Scholar 

  24. M. Hasegawa, T. Yano, and H. Kishino. A new molecular clock of mitochondrial DNA and the evolution of Hominoids. Proceedings of the Japan Academy Series B, 60:95–98, 1984.

    Google Scholar 

  25. W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97–109, 1970.

    MATH  Google Scholar 

  26. S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences, USA, 89:10915–10919, 1992.

    Google Scholar 

  27. D. M. Hillis and J. J. Bull. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42:182–192, 1993.

    Google Scholar 

  28. S. Holmes. Bootstrapping phylogenetic trees: Theory and methods. Statistical Science, 18:241–255, 2003.

    MathSciNet  Google Scholar 

  29. J. P. Huelsenbeck. Performance of phylogenetic methods in simulation. Systematic Biology, 44:17–48, 1995.

    Google Scholar 

  30. J. P. Huelsenbeck. The robustness of two phylogenetic methods: Four taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. Molecular Biology and Evolution, 12:843–849, 1995.

    Google Scholar 

  31. J. P. Huelsenbeck and K. A. Dyer. Bayesian estimation of positively selected sites. Journal of Molecular Evolution, 58:661–672, 2004.

    Article  Google Scholar 

  32. J. P. Huelsenbeck, B. Larget, and M. E. Alfaro. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol. Biol. Evol, 21:1123–1133, 2004.

    Google Scholar 

  33. J. P. Huelsenbeck, B. Larget, and D. Swofford. A compound Poisson process for relaxing the molecular clock. Genetics, 154:1879–1892, 2000.

    Google Scholar 

  34. J. P. Huelsenbeck and B. Rannala. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology. In press.

    Google Scholar 

  35. J. P. Huelsenbeck and F. Ronquist. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17:754–755, 2001.

    Article  Google Scholar 

  36. H. Jeffreys. Theory of Probability. Oxford University Press, Oxford, 1961.

    Google Scholar 

  37. D. T. Jones, W. R. Taylor, and J. M. Thornton. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 8:275–282, 1992.

    Google Scholar 

  38. T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In H. N. Munro, editor, Mammalian Protein Metabolism, pages 21–123. Academic Press, New York, 1969.

    Google Scholar 

  39. S. Kim, K. M. Kjer, and C. N. Duckett. Comparison between molecular and morphological-based phylogenies of galerucine/alticine leaf beetles (Coleoptera: Chrysomelidae). Insect Systematic Evolution, 34:53–64, 2003.

    Google Scholar 

  40. M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16:111–120, 1980.

    Article  Google Scholar 

  41. B. Larget and D. Simon. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16:750–759, 1999.

    Google Scholar 

  42. M. S. Y. Lee. Molecular clock calibrations and metazoan divergence dates. Journal of Molecular Evolution, 49:385–391, 1999.

    Google Scholar 

  43. P. O. Lewis. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50:913–925, 2001.

    Article  Google Scholar 

  44. S. Li. Phylogenetic tree construction using Markov chain Monte Carlo. PhD thesis, Ohio State University, Columbus, 1996.

    Google Scholar 

  45. B. Mau. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. PhD thesis, University of Wisconsin, Madison, 1996.

    Google Scholar 

  46. B. Mau and M. Newton. Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. Journal of Computational and Graphical Statistics, 6:122–131, 1997.

    Google Scholar 

  47. B. Mau, M. Newton, and B. Larget. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics, 55:1–12, 1999.

    Article  MathSciNet  Google Scholar 

  48. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. W. Teller, and E. Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1091, 1953.

    Article  Google Scholar 

  49. T. Muller and M. Vingron. Modeling amino acid replacement. Journal of Computational Biology, 7:761–776, 2000.

    Article  Google Scholar 

  50. S. V. Muse and B. S. Gaut. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates with application to the chloroplast genome. Molecular Biology and Evolution, 11:715–724, 1994.

    Google Scholar 

  51. M. Nei, P. Xu, and G. Glazko. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proceedings of the National Academy of Sciences, USA, 98:2497–2502, 2001.

    Article  Google Scholar 

  52. M. Newton, B. Mau, and B. Larget. Markov chain Monte Carlo for the Bayesian analysis of evolutionary trees from aligned molecular sequences. In F. Seillier-Moseiwitch, T. P. Speed, and M. Waterman, editors, Statistics in Molecular Biology. Monograph Series of the Institute of Mathematical Statistics, 1999.

    Google Scholar 

  53. R. Nielsen. Mapping mutations on phylogenies. Systematic Biology, 51:729–739, 2002.

    Article  Google Scholar 

  54. R. Nielsen and Z. Yang. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 148:929–936, 1998.

    Google Scholar 

  55. J. A. A. Nylander, F. Ronquist, J. P. Huelsenbeck, and J. L. Nieves-Aldrey. Bayesian phylogenetic analysis of combined data. Systematic Biology, 53:47–67, 2004.

    Article  Google Scholar 

  56. D. Posada and K. A. Crandall. Modeltest: Testing the model of DNA substitution. Bioinformatics, 14:817–818, 1998.

    Article  Google Scholar 

  57. B. Rannala and Z. Yang. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution, 43:304–311, 1996.

    Google Scholar 

  58. J. S. Rogers. On the consistency of maximum likelihood estimation of phylogenetic trees from nucleotide sequences. Systematic Biology, 46:354–357, 1997.

    Google Scholar 

  59. F. Ronquist and J. P. Huelsenbeck. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19:1572–1574, 2003.

    Article  Google Scholar 

  60. M. Schöniger and A. von Haeseler. A stochastic model and the evolution of autocorrelated DNA sequences. Mol. Phyl. Evol., 3:240–247, 1994.

    Google Scholar 

  61. E. Schröder. Vier combinatorische probleme. Z. Math. Phys., 15:361–376, 1870.

    MATH  Google Scholar 

  62. M. A. Suchard, R. E. Weiss, and J. S. Sinsheimer. Bayesian selection of continuous-time Markov chain evolutionary models. Molecular Biology and Evolution, 18:1001–1013, 2001.

    Google Scholar 

  63. Y. Suzuki, G. V. Glazko, and M. Nei. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceedings of the National Academy of Sciences, USA, 99:15138–16143, 2002.

    Google Scholar 

  64. D. L. Swofford. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MA, 2002.

    Google Scholar 

  65. N. Takezaki, A. Rzhetsky, and M. Nei. Phylogenetic test of molecular clock and linearized trees. Molecular Biology and Evolution, 12:823–833, 1995.

    Google Scholar 

  66. K. Tamura and M. Nei. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10:512–526, 1993.

    Google Scholar 

  67. S. Tavaré. Some probabilistic and statistical problems on the analysis of DNA sequences. Lectures in Mathematics in the Life Sciences, 17:57–86, 1986.

    MATH  Google Scholar 

  68. J. L. Thorne, H. Kishino, and I. S. Painter. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution, 15:1647–1657, 1998.

    Google Scholar 

  69. L. Tierney. Markov chains for exploring posterior distributions. Annals of Statistics, 22:1701–1762, 1994.

    MATH  MathSciNet  Google Scholar 

  70. C. Tuffey and M. Steel. Modeling the covarion hypothesis of nucleotide substitution. Mathematical Biosciences, 147:63–91, 1998.

    MathSciNet  Google Scholar 

  71. S. Whelan and N. Goldman. A general empirical model of protein evolution derived from multiple protein families using a maximum likelihood approach. Molecular Biology and Evolution, 18:691–699, 2001.

    Google Scholar 

  72. Z. Yang. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution, 10:1396–1401, 1993.

    Google Scholar 

  73. Z. Yang. PAML: A program package for phylogenetic analysis by maximum likelihood. Comptuer Applications in Bioscience, 15:555–556, 1997.

    Google Scholar 

  74. Z. Yang and B. Rannala. Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method. Molecular Biology and Evolution, 14:717–724, 1997.

    Google Scholar 

  75. E. Zuckerkandl and L. Pauling. Molecular disease, evolution, and genetic heterogeneity. In M. Kasha and B. Pullman, editors, Horizons in Biochemistry, pages 189–225. Academic Press, New York, 1962.

    Google Scholar 

  76. E. Zuckerkandl and L. Pauling. Evolutionary divergence and convergence in proteins. In V. Bryson and H. J. Vogel, editors, Evolving Genes and Proteins, pages 97–166. Academic Press, New York, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Huelsenbeck, J.P., Ronquist, F. (2005). Bayesian Analysis of Molecular Evolution Using MrBayes. In: Statistical Methods in Molecular Evolution. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/0-387-27733-1_7

Download citation

Publish with us

Policies and ethics