Advertisement

Keywords

Particle Swarm Optimization Particle Swarm Evolutionary Computation Multiobjective Optimization Swarm Intelligence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. K. Agrafiotis and W. Cedeño (2002): Feature selection for structure-activity correlation using binary particle swarms. Journal of Medicinal Chemistry, 45, 1098–1107.CrossRefGoogle Scholar
  2. [2]
    P. J. Angeline (1997): Tracking Extrema in Dynamic Environments. Evolutionary Programming, pp. 335–345.Google Scholar
  3. [3]
    P. Angeline (1998a): Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, (eds.), Evolutionary Programming VII, 601, 610. Berlin: Springer.Google Scholar
  4. [4]
    P. J. Angeline (1998b): Using selection to improve particle swarm optimization. IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA.Google Scholar
  5. [5]
    S. Asch (1956): Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychological Monographs, 70(9).Google Scholar
  6. [6]
    T. Bäck (1998): On the behavior of evolutionary algorithms in dynamic environments. In D. B. Fogel, H.-P. Schwefel, Th. Bäck, and X. Yao (eds.), Proc. Fifth IEEE Conference on Evolutionary Computation (ICEC’98), Anchorage AK, pp. 446–451, IEEE Press, Piscataway, NJ.Google Scholar
  7. [7]
    T. Bäck, F. Hoffmeister, and H. Schwefel (1991): A survey of evolution strategies. In Lashon B. Belew and Richard K. Booker (eds.), Proc. 4th International Conference on Genetic Algorithms, pp. 2–9, San Diego, CA, Morgan Kaufmann.Google Scholar
  8. [8]
    A. Bandura (1986): Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  9. [9]
    A. Bavelas (1950): Communication patterns in task-oriented groups. Journal of the Acoustical Society of America, 22, 727–730.CrossRefGoogle Scholar
  10. [10]
    A. Carlisle and G. Dozier (2000): Adapting particle swarm optimization to dynamic environments. Proc. Int. Conf. Artificial Intelligence, 2000, 429–434, Las Vegas, NV, USA.Google Scholar
  11. [11]
    A. Carlisle and G. Dozier (2002): Tracking Changing Extrema with Adaptive Particle Swarm Optimizer. ISSCI, 2002 World Automation Congress, Orlando, FL, USA, June, 2002.Google Scholar
  12. [12]
    W. Cedeño and D. K. Agrafiotis (2003): Using particle swarms for the development of QSAR models based on k-nearest neighbor and kernel regression. Journal of Computer-Aided Molecular Design, 17, 255–263.CrossRefGoogle Scholar
  13. [13]
    R. B. Cialdini (1984): Influence: The Psychology of Persuasion. Quill Publishing.Google Scholar
  14. [14]
    M. Clerc (1999): The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. Congress on Evolutionary Computation, Washington, D. C., pp. 1951–1957.Google Scholar
  15. [15]
    M. Clerc and J. Kennedy (2002): The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.CrossRefGoogle Scholar
  16. [16]
    A. B. Cockshott and B. E. Hartman (2001): Improving the fermentation medium for Echinocandin B production. Part II: Particle swarm optimization. Process Biochemistry, 36, 661–669.Google Scholar
  17. [17]
    C. A. Coello Coello and S. Lechuga (2001): MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. Technical Report EVOCINV-01-2001, Evolutionary Computation Group at CINVESTAV, Sección de Computación, Departamento de Ingeniería Eléctrica, CINVESTAV-IPN, México.Google Scholar
  18. [18]
    C. A. Coello Coello and M. S. Lechuga (2002): MOPSO: A proposal for multiple objective particle swarm optimization. IEEE Congress on Evolutionary Computation, 2002, Honolulu, HI, USA.Google Scholar
  19. [19]
    R. S. Crutchfield (1955): Conformity and character. American Psychologist, 10, 191–198.Google Scholar
  20. [20]
    R. Dawkins (1989): The Selfish Gene, 2nd ed. Oxford: Oxford University Press.Google Scholar
  21. [21]
    M. Deutsch and H. B. Gerard (1955): A study of normative and informational social influences upon individual judgment. Journal of Abnormal and Social Psychology, 51, 629–636.Google Scholar
  22. [22]
    R. C. Eberhart and X. Hu (1999): Human tremor analysis using particle swarm optimization. Proc. Congress on Evolutionary Computation 1999, Washington, D. C. 1927–1930. Piscataway, NJ: IEEE Service Center.Google Scholar
  23. [23]
    R. C. Eberhart and Y. Shi (2000): Comparing inertia weights and constriction factors in particle swarm optimization. Proc. CEC 2000, San Diego, CA, pp. 84–88.Google Scholar
  24. [24]
    R. C. Eberhart and Y. Shi (1998): Evolving artificial neural networks. Proc. 1998 Int. Conf. Neural Networks and Brain, Beijing, P. R. C., PL5–PL13.Google Scholar
  25. [25]
    R. C. Eberhart and Y. Shi (2001a): Tracking and optimizing dynamic systems with particle swarms. Proc. Congress on Evolutionary Computation 2001, Seoul, Korea. Piscataway, NJ: IEEE Service Center.Google Scholar
  26. [26]
    R. C. Eberhart and Y. Shi (2001b): Particle swarm optimization: developments, applications and resources. Proc. Congress on Evolutionary Computation 2001, Seoul, Korea. Piscataway, NJ: IEEE Service Center.Google Scholar
  27. [27]
    R. C. Eberhart (2003): Introduction to particle swarm optimization (tutorial). IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA.Google Scholar
  28. [28]
    A. E. Eiben and C. A. Schippers (1998): On evolutionary exploration and exploitation. Fundamenta Informaticae. IOS Press.Google Scholar
  29. [29]
    J. E. Fieldsend and S. Singh (2002): A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence. Proc. 2002 U.K. Workshop on Computational Intelligence (Birmingham, UK, 2–4 Sept. 2002), pp. 37–44.Google Scholar
  30. [30]
    L. Festinger (1957): A Theory of Cognitive Dissonance. Evanston IL: Row, Peterson.Google Scholar
  31. [31]
    L. Festinger (1954/1999): Social communication and cognition: A very preliminary and highly tentative draft. In E. Harmon-Jones and J. Mills (eds.), Cognitive Dissonance: Progress on a Pivotal Theory in Social Psychology. Washington D. C.: AP Publishing.Google Scholar
  32. [32]
    D. Gies and Y. Rahmat-Samii (2003): Reconfigurable array design using parallel particle swarm optimization. Proceedings of 2003 IEEE Antennas and Propagation Symposium (in press).Google Scholar
  33. [33]
    F. Heppner and U. Grenander (1990): A stochastic nonlinear model for coordinated bird flocks. In S. Krasner (ed.), The Ubiquity of Chaos. Washington, D. C.: AAAS Publications.Google Scholar
  34. [34]
    N. Higashi and H. Iba (2003): Particle swarm optimization with gaussian mutation. Proc. IEEE Swarm Intelligence Symposium 2003 (SIS 2003), Indianapolis, IN, USA, pp. 72–79.Google Scholar
  35. [35]
    J. H. Holland (1975): Adaptation in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press.Google Scholar
  36. [36]
    C. Hovland (1982): Communication and Persuasion. New York: Greenwood.Google Scholar
  37. [37]
    X. Hu and R. C. Eberhart (2002a): Multiobjective optimization using dynamic neighborhood particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, HI, USA, pp. 1677–1681.Google Scholar
  38. [38]
    X. Hu and R. C. Eberhart (2002b): Adaptive particle swarm optimization: detection and response to dynamic systems. IEEE Congress on Evolutionary Computation, Honolulu, HI, USA.Google Scholar
  39. [39]
    X. Hu (2002): Multiobjective optimization using dynamic neighborhood particle swarm optimization. IEEE Congress on Evolutionary Computation, Honolulu, HI, USA.Google Scholar
  40. [40]
    J. Kennedy (1998): The behavior of particles. Evolutionary Programming VII: Proc. Seventh Annual Conference on Evolutionary Programming, San Diego, CA, pp. 581–589.Google Scholar
  41. [41]
    J. Kennedy (1999): Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. Proc. Congress on Evolutionary Computation 1999, pp. 1931–1938. Piscataway, NJ: IEEE Service Center.Google Scholar
  42. [42]
    J. Kennedy (2000): Human and Computer Learning Together in the Exteriorized Particle Swarm. Socially Intelligent Agents: The Human in the Loop, pp. 83–89. Technical Report FS-00-04, AAAI Press.Google Scholar
  43. [43]
    J. Kennedy (2003): Bare bones particle swarms. Proc. IEEE Swarm Intelligence Symposium 2003 (SIS 2003), Indianapolis, IN, USA, 80–87.Google Scholar
  44. [44]
    J. Kennedy and R. C. Eberhart (1997): A discrete binary version of the particle swarm algorithm. Proc. 1997 Conf. on Systems, Man, and Cybernetics, 4104–4109. Piscataway, NJ: IEEE Service Center.Google Scholar
  45. [45]
    J. Kennedy and R. C. Eberhart (1995): Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, 4, 1942–1948. Piscataway, NJ: IEEE Service Center.Google Scholar
  46. [46]
    J. Kennedy and R. Mendes (2002): Population structure and particle swarm performance. IEEE Congress on Evolutionary Computation, Honolulu, HI, USA.Google Scholar
  47. [47]
    J. Kennedy and R. Mendes (2003): Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms. In Proc. 2003 IEEE SMC Workshop on Soft Computing in Industrial Applications (SMCia03), Binghamton, NY.Google Scholar
  48. [48]
    J. Kennedy and W. M. Spears (1998): Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. Proc. Int. Conf. on Evolutionary Computation, pp. 78–83. Piscataway, NJ: IEEE Service Center.Google Scholar
  49. [49]
    B. Latané (1981): The psychology of social impact. American Psychologist, 36, 343–356.Google Scholar
  50. [50]
    J. M. Levine, L. B. Resnick, and E. T. Higgins (1993): Social foundations of cognition. Annual Review of Psychology, 44, 585–612.Google Scholar
  51. [51]
    E. F. Loftus and K. Ketcham (1994): The Myth of Repressed Memory: False Memories and Allegations of Sexual Abuse. New York: St. Martin’s Press.Google Scholar
  52. [52]
    C. K. Mohan and B. Al-kazemi (2001): Discrete particle swarm optimization. Proc. Workshop on Particle Swarm Optimization. Indianapolis, IN: Purdue School of Engineering and Technology, IUPUI (in press).Google Scholar
  53. [53]
    S. Naka, T. Genji, K. Miyazato, and Y. Fukuyama (2002): Hybrid particle swarm optimization based distribution state estimation using constriction factor approach. Proc. Joint 1st International Conference on Soft Computing and Intelligent Systems and 3rd International Symposium on Advanced Intelligent Systems (SCIS & ISIS).Google Scholar
  54. [54]
    A. Newell and H. Simon (1963): GPS: A program that simulates human thought. In Feigenbaum and Feldman. (ed.), Computers and Thought. McGraw-Hill, New York.Google Scholar
  55. [55]
    R. E. Nisbett and D. W. Wilson (1977): Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84, 231–259.Google Scholar
  56. [56]
    A. Nowak, J. Szamrej, and B. Latané (1990): From private attitude to public opinion: A dynamic theory of social impact. Psychological Review, 97, 362–376.CrossRefGoogle Scholar
  57. [57]
    E. Ozcan and C. Mohan (1999): Particle swarm optimization: surfing the waves. Proc. 1999 Congress on Evolutionary Computation, 1939–1944. Piscataway, NJ: IEEE Service Center.Google Scholar
  58. [58]
    E. Ozcan and C. K. Mohan (1998): Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems Through Artificial Neural Networks, 8, 253–258.Google Scholar
  59. [59]
    K. E. Parsopoulos and M. N. Vrahatis (2002a): Particle swarm optimization method in multiobjective problems, Proceedings of the 2002 ACM Symposium on Applied Computing (SAC 2002), pp. 603–607.Google Scholar
  60. [60]
    K. E. Parsopoulos and M. N. Vrahatis (2002b): Initializing the particle swarm optimizer using the nonlinear simplex method. In A. Grmela and N. E. Mastorakis (eds), Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, pp. 216–221. WSEAS Press.Google Scholar
  61. [61]
    R. E. Petty and J. T. Cacioppo (1981): Attitudes and persuasion: Classic and contemporary approaches. Dubuque, IA: Wm. C. Brown.Google Scholar
  62. [62]
    K. V. Price (1999): An introduction to differential evolution. In D.W. Corne, M. Dorigo, F. Glover (eds), New Ideas in Optimization. McGraw Hill.Google Scholar
  63. [63]
    R. G. Reynolds (1994): An introduction to cultural algorithms. Proc. Third Annual Conference on Evolutionary Programming, pp. 131–139.Google Scholar
  64. [64]
    C. W. Reynolds (1987): Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21, 25–34.Google Scholar
  65. [65]
    B. R. Secrest and G. B. Lamont (2003): Visualizing particle swarm optimization—gaussian particle swarm optimization. Proc. IEEE Swarm Intelligence Symposium 2003 (SIS 2003), Indianapolis, IN, USA, pp. 198–204.Google Scholar
  66. [66]
    J. D. Schaffer (1985): Multiple objective optimization with vector evaluated genetic algorithms. In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100.Google Scholar
  67. [67]
    M. Sherif (1936): The Psychology Of Social Norms. New York: Harper Brothers.Google Scholar
  68. [68]
    Y. Shi and R. C. Eberhart (1998): Parameter selection in particle swarm optimization. Proc. Seventh Annual Conference on Evolutionary Programming, pp. 591–601.Google Scholar
  69. [69]
    M. Tomasello (1999): The Cultural Origins of Human Cognition. Cambridge, MA: Harvard University Press.Google Scholar
  70. [70]
    S. Ujjin and P. J. Bentley (2003): Particle swarm optimization recommender system. In Proc. IEEE Swarm Intelligence Symposium 2003, Indianapolis, IN, USA.Google Scholar
  71. [71]
    D. Watts and S. Strogatz (1998): Collective dynamics of small-world networks. Nature, 363:202–204.Google Scholar
  72. [72]
    D. M. Wegner (2002): The Illusion of Conscious Will. Cambridge, MA: The MIT Press.Google Scholar
  73. [73]
    K. Weinert, J. Mehnen, and G. Rudolph (2001): Dynamic Neighborhood Structures in Parallel Evolution Strategies (Technical Report). Reihe CI 112/01, SFB 531, University of Dortmund.Google Scholar
  74. [74]
    S. Wolfram (1994): Cellular Automata and Complexity: Collected Papers. Reading, MA: Addison-Wesley.Google Scholar
  75. [75]
    X. Xiao, R. Dow, R. C. Eberhart, B. Miled, and R. J. Oppelt (2003): Gene clustering using self-organizing maps and particle swarm optimization. Second IEEE International Workshop on High Performance Computational Biology, Nice, France.Google Scholar
  76. [76]
    H. Yoshida, Y. Fukuyama, S. Takayama, and Y. Nakanishi (1999): A particle swarm optimization for reactive power and voltage control in electric power systems considering voltage security assessment. 1999 IEEE International Conference on Systems, Man, and Cybernetics, 6, 502.Google Scholar
  77. [77]
    W. J. Zhang and X. F. Xie (2003): DEPSO: hybrid particle swarm with differential evolution operator. IEEE Int. Conf. on Systems, Man & Cybernetics (SMCC), Washington, D. C. USA.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • James Kennedy
    • 1
  1. 1.Bureau of Labor StatisticsUSA

Personalised recommendations