Skip to main content

Melatonin Interaction with BZ-GabaA Receptors

Implications for Sleep Induction

  • Chapter
Sleep and Sleep Disorders
  • 2121 Accesses

Abstract

The pineal hormone, melatonin, can exert sedative/hypnotic, anxiolytic and other neuropharmacological effects in experimental animals. Usually, these effects are produced by large pharmacological doses of melatonin, which are known to interact with benzodiazepine (BZ) receptors in the central nervous system (CNS). There is evidence that flumazenil, a specific central-type BZ antagonist, can block some of these effects of melatonin. Therefore, it is thought that activation of central-type BZ receptors on the BZ-GABAA receptor complex, with consequent allosteric enhancement of GABAergic activity, is the primary mechanism underlying the neuropharmacological effects of melatonin. In addition, melatonin can interact with other BZ receptor subtypes to influence neurosteroidogenesis and cyclic AMP production, which can further modulate GABAergic activity in the CNS. However, in contrast to the high pharmacological doses of melatonin used in animal studies, the relatively low doses of this hormone, typically used in human sleep studies, are unlikely to reach the micromolar threshold required for binding to BZ receptors. In support of this view, flumazenil does not block the sedative/hypnotic effect observed in young adults following administration of a low pharmacological dose of 3 mg melatonin. Thus, while pharmacological sedation by high doses of melatonin is thought to involve enhancement of BZ-GABAA receptor signaling, it appears that physiological receptors and mechanisms mediate sleep induction by low doses of this psychotropic hormone in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubocovich ML, Cardinali DP, Guardiola-Lemaitre B et al. Melatonin receptors. In: Girdlestone D, ed. The IUPHAR Compendium of Receptor Characterization and Classification. London: IUPHAR Media, 1998:187–193.

    Google Scholar 

  2. Vanecek J. Cellular mechanisms of melatonin action. Physiol Rev 1998; 78:687–721.

    CAS  PubMed  Google Scholar 

  3. Niles LP. G protein-coupled melatonin receptors. In: Mishra RK, Baker GB, Boulton AA, eds. G Protein Methods and Protocols: Role of G Proteins in Psychiatric and Neurological Disorders. Neuromethods. New Jersey: Humana Press, 1997:31:223–281.

    Google Scholar 

  4. McArthur AJ, Hunt AE, Gillette MU. Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: Activation of protein kinase C at dusk and dawn. Endocrinology 1997; 138:627–634.

    Article  CAS  PubMed  Google Scholar 

  5. Anton-Tay F, Ramirez G, Martinez I et al. In Vitro Stimulation of protein kinase C by melatonin. Neurochemical Res 1998; 23601:606

    Google Scholar 

  6. Brydon L, Petit L, Delagrange P et al. Functional expression of MT2 (Mel 1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology 2001; 142:4264–4271.

    Article  CAS  PubMed  Google Scholar 

  7. Roy D, Belsham DD. Melatonin receptor activation regulates GnRH gene expression and secretion in GT1-7 GnRH neurons. J Biol Chem 2002; 277:251–258.

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong KJ, Niles LP. Induction of GDNF mRNA expression by melatonin in rat C6 glioma cells. NeuroReport 2002; 13:473–475.

    Article  CAS  PubMed  Google Scholar 

  9. Golombek DA, Martinin M, Cardinali DP. Melatonin as an anxiolytic in rats: Time dependence and interaction with the central GABAergic system. Eur J Pharmacol 1993; 237:231–236.

    Article  CAS  PubMed  Google Scholar 

  10. Tenn CC, Niles LP. Central-type benzodiazepine receptors mediate the antidopaminergic effect of clonazepam and melatonin in 6-hydroxydopamine lesioned rats: Involvement of a GABAergic mechanism. J Pharmacol Exp Ther 1995; 274:84–89.

    CAS  PubMed  Google Scholar 

  11. Sieghart W. Structure and pharmacology of γ aminobutyric acidA receptor subtypes. Pharmacol Rev 1995; 47:181–234.

    CAS  PubMed  Google Scholar 

  12. Costa E. From GABAA receptor diversity emerges a unified vision of GABAergic inhibition. Annu Rev Pharmacol Toxicol 1998; 38:321–350.

    Article  CAS  PubMed  Google Scholar 

  13. Tenn CC, Niles LP. Modulation of dopaminergic activity in the striatum by benzodiazepines and melatonin. Pharmacol Rev Comm 2002; 12:171–178.

    Article  CAS  Google Scholar 

  14. Parola AL, Yamamura HI, Laird HE. Peripheral-type benzodiazepine receptors. Life Sci 1993; 52:1329–1342.

    Article  CAS  PubMed  Google Scholar 

  15. Niddam R, Dubois A, Scatton B et al. Autoradiographic localization of [3H] zolpidem binding sites in the rat CNS: Comparison with the distribution of [3H]flunitrazepam binding sites. J Neurochem 1987; 49:890–899.

    Article  CAS  PubMed  Google Scholar 

  16. Bateson AN. Basic pharmacologic mechanisms involved in benzodiazepine tolerance and withdrawal. Curr Pharmaceut Design 2002; 8:5–21.

    Article  CAS  Google Scholar 

  17. Sigel E, Buhr A. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol Sci 1997; 18:425–429.

    CAS  PubMed  Google Scholar 

  18. Sur C, Wafford KA, Reynolds DS et al. Loss of the major GABA(A) receptor subtype in the brain is not lethal in mice. J Neurosci 2001; 21:3409–3418.

    CAS  PubMed  Google Scholar 

  19. Mohler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther 2002; 300:2–8.

    Article  CAS  PubMed  Google Scholar 

  20. Pritchett DB, Seeburg PH. γ-Aminobutyric acidA receptor α5 subunit creates novel type II benzodiazepine receptor pharmacology. J Neurochem 1990; 54:1802–1804.

    Article  CAS  PubMed  Google Scholar 

  21. Wisden W, Laurie DJ, Monyer H et al. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I Telencephalon, diencephalon, mesencephalon. J Neurosci 1992; 12:1040–1062.

    CAS  PubMed  Google Scholar 

  22. Tobler I, Kopp C, Deboer T et al. Diazepam-induced changes in sleep: Role of the α1 GABAA receptor subypte. Proc Natl Acad Sci 2001; 98:6464–6469.

    Article  CAS  PubMed  Google Scholar 

  23. Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 2002; 40:475–486.

    Article  CAS  PubMed  Google Scholar 

  24. McEnery MW, Snowman AM, Trifiletti RR et al. Isolation of the mitochondrial benzodiazepine receptor: Association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 1992; 89:3170–3174.

    Article  CAS  PubMed  Google Scholar 

  25. Papadopoulos V. Structure and function of the peripheral-type benzodiazepine receptor in steroidogenic cells. Proc Soc Exp Biol Med 1998; 217:130–142.

    CAS  PubMed  Google Scholar 

  26. Oke BO, Suarez-Quian CA, Riond J et al. Cell surface localization of the peripheral-type benzodiazepine receptor in adrenal cortex. Mol Cell Endocrinol 1992; 87:R1–R6.

    Article  CAS  PubMed  Google Scholar 

  27. Woods MJ, Zisterer DM, Williams DC. Two cellular and subcellular locations for the peripheral-type benzodiazepine receptor in rat liver. Biochem Pharmacol 1996; 51:1283–1292.

    Article  CAS  PubMed  Google Scholar 

  28. Tenn CC, Neu JM, Niles LP. PK 11195 blockade of benzodiazepine-induced inhibition of forskolin-stimulated adenylate cyclase activity in the striatum. Brit J Pharmacol 1996; 119:223–228.

    CAS  Google Scholar 

  29. Tenn CC, Niles LP. Sensitization of G protein coupled benzodiazepine receptors in the striatum of 6-hydroxydopamine lesioned rats. J Neurochem 1997; 69:1920–1926.

    Article  CAS  PubMed  Google Scholar 

  30. Lambert JJ, Belelli D, Hill-Venning C et al. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 1995; 16:295–303.

    Article  CAS  PubMed  Google Scholar 

  31. Brot MD, Akwa Y, Purdy RH et al. The anxiolytic-like effects of the neurosteroid allopregnanolone: Intractions with GABAA receptors. Eur J Pharmacol 1997; 325:1–7.

    Article  CAS  PubMed  Google Scholar 

  32. Stoffel-Wagner B. Neurosteroid metabolism in the human brain. Eur J Endocrinol 2001; 145:669–679.

    Article  CAS  PubMed  Google Scholar 

  33. Wan Q, Man HY, Liu F et al. Differential modulation of GABAA receptor function by Mella and Mell breceptors. Nat Neurosci 1999; 2:401–403.

    Article  CAS  PubMed  Google Scholar 

  34. Niles LP. Melatonin interaction with the benzodiazepine-GABA receptor complex in the CNS. In: Schwarcz R, Young SN, Brown RR, eds. Kynurenine and Serotonin Pathways: Progress in Tryptophan Research. Advances in Experimental Medicine and Biology. New York: Plenum Press, 1991:294:267–277.

    Google Scholar 

  35. Niles LP, Peace CH. Allosteric modulation of t-[35S]butylcyclo-phosphorothionate binding in rat brain by melatonin. Brain Res Bull 1990; 24:635–638.

    Article  CAS  PubMed  Google Scholar 

  36. Joseph-Liauzun E, Farges R, Delmas P et al. The Mr 18,000 subunit of the peripheral-type benzodiazepine receptor exhibits both benzodiazepine and isoquinoline carboxamide binding sites in the absence of the voltage-dependent anion channel or of the adenine nucleotide carrier. J Biol Chem 1997; 272:28102–6.

    Article  CAS  PubMed  Google Scholar 

  37. Mellon SH, Griffin LD. Neurosteroids: Biochemistry and clinical significance. Trends Endocrinol Metab 2002; 13:35–43.

    Article  CAS  PubMed  Google Scholar 

  38. Browning MD, Endo S, Smith GB et al. Phosphorylation of the GABAA receptor by cAMP-dependent protein kinase and by protein kinase C: Analysis of the substrate domain. Neurochem Res 1993; 18:95–10.

    Article  CAS  PubMed  Google Scholar 

  39. Poisbeau P, Cheney MC, Browning M.D et al. Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons. J Neurosci 1999; 19:674–683.

    CAS  PubMed  Google Scholar 

  40. Wan Q, Man HY, Braunton J et al. Modulation of GABAA receptor function by tyrosine phosphorylation of beta subunits. J Neurosci 1997; 17:5062–5069.

    CAS  PubMed  Google Scholar 

  41. Itzhak Y, Baker L, Norenberg MD. Characterization of the peripheral-type benzodiazepine receptors in cultured astrocytes: Evidence for multiplicity. Glia 1993; 9:211–8.

    Article  CAS  PubMed  Google Scholar 

  42. Pierrefiche G, Zerbib R, Laborit H. Anxiolytic activity of melatonin in mice: Involvement of benzodiazepine receptors. Res Comm Chem Pathol Pharmacol 1993; 82:131–142.

    CAS  Google Scholar 

  43. Green AR, Nutt DJ, Cowen PJ. Using Ro 15-1788 to investigate the benzodiazepine receptor in vivo: Studies on the anticonvulsant and sedative effect of melatonin and the convulsant effect of the benzodiazepine Ro 05-3663. Psychopharmacol 1982; 78:293–295.

    Article  CAS  Google Scholar 

  44. Golombek DA, Duque DF, De Brito Sanchez MG et al. Time-dependent anticonvulsant activity of melatonin in hamsters. Eur J Pharmacol 1992; 210:253–258.

    Article  CAS  PubMed  Google Scholar 

  45. Wang F, Li J, Wu C et al. The GABAA receptor mediates the hypnotic activity of melatonin in rats. Pharmacol Biochem Behav 2003; 74:573–578.

    Article  CAS  PubMed  Google Scholar 

  46. Sugden D. Psychopharmacological effects of melatonin in mouse and rat. J Pharmacol Exp. Ther 1983; 227:587–591.

    CAS  PubMed  Google Scholar 

  47. Golombek DA, Escolar E, Cardinali DP. Melatonin-induced depression of locomotor activity in hamsters: Time-dependency and inhibition by the central-type benzodiazepine antagonist Ro 15-1788. Physiol Behav 1991; 49:1091–1097.

    Article  CAS  PubMed  Google Scholar 

  48. Dollins AB, Zhdanova IV, Wurtman RJ et al. Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc Natl Acad Sci USA 1994; 91:1824–1828.

    Article  CAS  PubMed  Google Scholar 

  49. Hajak G, Rodenbeck A, Staedt J et al. Nocturnal plasma melatonin levels in patients suffering from chronic primary insomnia. J Pineal Res 1995; 19:116–122.

    Article  CAS  PubMed  Google Scholar 

  50. Waldhauser F, Weiszenbacher G, Tatzer E et al. Alterations in nocturnal serum melatonin levels in humans with growth and aging. J Clin Endocrinol Metab 1988; 66:648–652.

    Article  CAS  PubMed  Google Scholar 

  51. Van Coevorden A, Mockel J, Laurent E et al. Neuroendocrine rhythms and sleep in aging men. Am J Physiol 1991; 260:E651–61.

    PubMed  Google Scholar 

  52. Garfinkel D, Laudon M, Nof D et al. Improvement of sleep quality in elderly people by controlled-release melatonin. Lancet 1995; 346:541–544.

    Article  CAS  PubMed  Google Scholar 

  53. Zhdanova IV, Wang SY, Leclair OU et al. Melatonin promotes sleep-like state in zebrafish. Brain Res 2001; 903:263–268.

    Article  CAS  PubMed  Google Scholar 

  54. Gottesmann C. GABA mechanisms and sleep. Neurosci 2002; 111:231–239.

    Article  CAS  Google Scholar 

  55. Kushikata T, Kubota T, Fang J et al. Glial cell line-derived neurotrophic factor promotes sleep in rats and rabbits. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1001–1006.

    CAS  PubMed  Google Scholar 

  56. Zhdanova IV, Lynch HJ, Wurtman RJ. Melatonin: A sleep-promoting hormone. Sleep 1997; 20:899–907.

    CAS  PubMed  Google Scholar 

  57. MacFarlane JG, Cleghorn JM, Brown GM et al. The effects of exogenous melatonin on the total sleep time and daytime alertness of chronic insomniacs: A preliminary study. Biol Psychiatry 1991; 30:371–376.

    Article  CAS  PubMed  Google Scholar 

  58. Stone BM, Turner C, Mills SL et al. Hypnotic activity of melatonin. Sleep 2000; 23:663–669.

    CAS  PubMed  Google Scholar 

  59. Satomura T, Sakamoto T, Shirakawa S et al. Hypnotic action of melatonin during daytime administration and its comparison with triazolam. Psychiat Clin Neurosci 2001; 55:303–304.

    Article  CAS  Google Scholar 

  60. Mignot E, Taheri S, Nishino S. Sleeping with the hypothalamus: Emerging therapeutic targets for sleep disorders. Nat Neurosci 2002; 5:1071–1075.

    Article  CAS  PubMed  Google Scholar 

  61. Nave R, Herer P, Haimov I et al. Hypnotic and hypothermic effects of melatonin on daytime sleep in humans: Lack of antagonism by flumazenil. Neurosci Lett 1996; 214:123–126.

    Article  CAS  PubMed  Google Scholar 

  62. Zhdanova IV, Wurtman RJ, Regan MM et al. Melatonin treatment for age-related insomnia. J Clin Endocrinol Metab 2001; 86:4727–4730.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience/Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Niles, L.P. (2006). Melatonin Interaction with BZ-GabaA Receptors. In: Sleep and Sleep Disorders. Springer, Boston, MA. https://doi.org/10.1007/0-387-27682-3_8

Download citation

Publish with us

Policies and ethics