Skip to main content

Selective Sweep in the Evolution of a New Sperm-Specific Gene in Drosophila

  • Chapter
Book cover Selective Sweep

Abstract

The Sdic gene cluster at the base of the X-chromosome is unique to the lineage of Drosophila melanogaster. The repeating unit in the cluster was formed from a duplication and fusion of the genes, AnnX and Cdic, which juxtaposed the 3′ untranslated region of AnnX to the third intron of Cdic. AnnX encodes Annexin 10 and Cdic encodes a cytoplasmic dynein intermediate chain. The 3′ untranslated region of AnnX contains two promoter elements, including a testis-specific element, and Cdic intron 3 contains a third promoter element; together these elements result in testis-specific transcription of Sdic. The Sdic protein features a novel amino terminus derived in part from Cdic intron 3 which contains motifs similar to those in axonemal dyneins. It has been demonstrated that the Sdic protein becomes incorporated into the tails of mature sperm. The evolution of the Sdic cluster required several deletions, at least one insertion, at least eleven nudeotide substitutions, and an estimated tenfold tandem duplication, all of which took place in the 1–3 million years since the divergence of D. melanogaster from D. simulans. Evidence for the ongoing evolution of Sdic including a recent selective sweep is found in the low levels of polymorphism across neighboring genes in the region, a large number of fixed amino acid replacements relative to fixed synonymous nucleotide substitutions, and a frequency spectrum of polymorphic nucleotides skewed toward rare variants. The analysis of polymorphism and divergence in the Sdic region, however, is complicated by the possible effects of background selection caused by deleterious new mutations, owing to the reduced amount of recombination in the region associated with its proximity to centromeric heterochromatin. We present the rapid evolution of this novel gene as a fascinating example of male-driven evolution incurred by recurrent selective sweeps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams MD, Celniker SE, Holt RA et al. The genome sequence of Drosophila melanogaster. Science 2000; 287:2185–95.

    Article  PubMed  Google Scholar 

  2. Akashi H. Synonymous codon usage in Drosophila melanogaster: Natural selection and translational accuracy. Genetics 1993; 136:927–35.

    Google Scholar 

  3. Akashi H. Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 1995; 139:1067–76.

    PubMed  CAS  Google Scholar 

  4. Akashi H. Molecular evolution between Drosophila melanogaster and D. simulans: Reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics 1996; 144:1297–307.

    PubMed  CAS  Google Scholar 

  5. Andolfatto P, Przeworski M. Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster. Genetics 2001; 158:657–65.

    PubMed  CAS  Google Scholar 

  6. Atlan A, Mercot H, Landre C et al. The sex-ratio trait in Drosophila simulans: Geographical distribution of distortion and resistance. Evolution 1997; 51:1886–95.

    Article  Google Scholar 

  7. Barton GJ, Newman RH, Freemont PS et al. Amino acid sequence analysis of the annexin super-gene family of proteins. Eur J Biochem 1991; 198:749–60.

    Article  PubMed  CAS  Google Scholar 

  8. Begun DJ, Aquadro CF. African and North American populations of Drosophila melanogaster are very different. Nature 1993; 365:548–50.

    Article  PubMed  CAS  Google Scholar 

  9. Begun DJ, Aquadro CF. Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of Drosophila: Selection and geographic differentiation. Genetics 1994; 136:155–71.

    PubMed  CAS  Google Scholar 

  10. Benassi V, Depaulis F, Meghlaoui GK et al. Partial sweeping of variation at the Fbp2 locus in a West African population of Drosophila melanogaster. Mol Biol Evol 1999; 16:347–53.

    PubMed  CAS  Google Scholar 

  11. Benevolenskaya E, Nurminsky D, Gvozdev V. Structure of the Drosophila melanogaster annexin X gene. DNA Cell Biol 1998; 14:349–57.

    Article  Google Scholar 

  12. Bozzetti MP, Massari S, Finelli P et al. The Ste locus, a component of the parasitic cry-ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the beta subunit of casein kinase. Proc Natl Acad Sci USA 1995; 92:6067–71.

    Article  PubMed  CAS  Google Scholar 

  13. Bustamante CR, Nielsen R, Sawyer SA et al. The cost of inbreeding in Arabidopsis. Nature 2002;46:531–4.

    Article  Google Scholar 

  14. Charlesworth B, Charlesworth D. How was the Sdic gene fixed? Nature 1999; 400:519–20.

    Article  PubMed  CAS  Google Scholar 

  15. Civetta A, Singh RS. High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species. J Mol Evol 1995; 41:1085–95.

    Article  PubMed  CAS  Google Scholar 

  16. Civetta A, Singh RS. Broad-sense sexual selection, sex gene pool evolution, and speciation. Genome 1999; 42:1033–41.

    Article  PubMed  CAS  Google Scholar 

  17. Civetta A, Clark A. Correlated effects of sperm competition and postmating female mortality. Proc Natl Acad Sci USA 2000; 97:13162–5.

    Article  PubMed  CAS  Google Scholar 

  18. Clark AG, Aguade M, Prout T et al. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics 1995; 139:189–201.

    PubMed  CAS  Google Scholar 

  19. Coulthart MB, Singh RS. High level of divergence of male-reproductive-tract proteins between Drosophila melanogaster and its sibling species, D simulans Mol Biol Evol 1988; 5:182–91.

    PubMed  CAS  Google Scholar 

  20. Depaulis F, Brazier L, Veuille M. Selective sweep at the Drosophila melanogaster Suppressor of Hairless locus and its association with the In(2L)t inversion polymorphism. Genetics 1999;152:1017–24.

    PubMed  CAS  Google Scholar 

  21. Fay JC, Wyckoff GJ, Wu CI. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 2002; 415:1024–6.

    Article  PubMed  CAS  Google Scholar 

  22. Geisow MJ. Annexins: Forms without function but not without fun. Trends Biotechnol 1991;9:180–1.

    Article  Google Scholar 

  23. Hamblin MT, Veuille M. Population structure among African and derived populations of Drosophila simulans: Evidence for ancient subdivision and recent admixture. Genetics 1999; 153:305–17.

    PubMed  CAS  Google Scholar 

  24. Hey J, Kliman RM. Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 2002; 160:595–608.

    PubMed  CAS  Google Scholar 

  25. Hollocher H, Ting C-T, Wu M-L et al. Incipient speciation by sexual isolation in Drosophila melanogaster: Extensive genetic divergence without reinforcement. Genetics 1997; 147:1191–201.

    PubMed  CAS  Google Scholar 

  26. Hudson RR, Bailey K, Skarecky D et al. Evidence for positive selection in the superoxide-dismutase (Sod) region of Drosophila melanogaster. Genetics 1994; 136:1329–40.

    PubMed  CAS  Google Scholar 

  27. King SM, Barbarese E, Dillman JF et al. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J Biol Chem 1996; 271:19358–66.

    Article  PubMed  CAS  Google Scholar 

  28. Kirby DA, Stephan W. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster. Genetics 1995; 141:1483–90.

    PubMed  CAS  Google Scholar 

  29. Kirby DA, Stephan W. Multi-locus selection and the structure of variation at the white gene of Drosophila melanogaster. Genetics 1996; 144:635–45.

    PubMed  CAS  Google Scholar 

  30. Labate JA, Biermann CH, Eanes WF. Nucleotide variation at the runt locus in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol 1999; 16:724–31.

    PubMed  CAS  Google Scholar 

  31. Maynard Smith J, Haigh J. The hitch-hiking effect of a favorable gene. Genet Res 1974; 23:23–5.

    Article  Google Scholar 

  32. McClean JR, Merrill CJ, Powers PA et al. Functional identification of the segregation distorter locus of Drosophila melanogaster by germline transformation. Genetics 1994; 137:201–9.

    Google Scholar 

  33. McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 1991; 351:652–4.

    Article  PubMed  CAS  Google Scholar 

  34. Mckee BD, Satter MT. Structure of the Y chromosomal Su(Ste) locus in Drosophila melanogaster and evidence for localized recombination among repeats. Genetics 1996; 142:149–61.

    PubMed  CAS  Google Scholar 

  35. Moriyama EN, Powell JR. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol 1996;13:261–77.

    PubMed  CAS  Google Scholar 

  36. Nurminsky DI, Benevolenskaya EV, Nurminskaya MV et al. Cytoplasmic dynein intermediate chain isoforms with different targeting properties created by tissue-specific alternative splicing. Mol Cell Biol 1998a; 18:6816–25.

    PubMed  CAS  Google Scholar 

  37. Nurminsky DI, Nurminskaya MV, De Aguiar D et al. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 1998b; 396:572–5.

    Article  PubMed  CAS  Google Scholar 

  38. Nurminsky DI, Hartl DL. How was the Sdic gene fixed? Nature 1999; 400:520.

    Article  CAS  Google Scholar 

  39. Nurminsky DI, Aguiar DD, Bustamante CD et al. Chromosomal effects of rapid gene evolution in Drosophila melanogaster. Science 2001; 291:128–30.

    Article  PubMed  CAS  Google Scholar 

  40. Ohno S, ed. Evolution by Gene Duplication. Berlin: Springer-Verlag, 1970.

    Google Scholar 

  41. Palumbo G, Bonaccorsi S, Robbins LG et al. Genetic analysis of stellate elements of Drosophila melanogaster. Genetics 1994; 138:1181–97.

    PubMed  CAS  Google Scholar 

  42. Parsch J, Meiklejohn CD, Hartl DL. Patterns of DNA sequence variation suggest the recent action of positive selection in the janus-ocnus region of Drosophila simulans. Genetics 2001; 159:647–57.

    PubMed  CAS  Google Scholar 

  43. Paschal BM, Mikami A, Pfister KK et al. Homology of the 74-kD cytoplasmic dynein subunit with a flagellar dynein polypcptide suggests an intracellular targeting function. J Cell Biol 1992;118:1133–43.

    Article  PubMed  CAS  Google Scholar 

  44. Perlitz M, Stephan W. The mean and variance of the number of segregating sites since the last hitchhiking event. J Math Biol 1997; 36:1–23.

    Article  PubMed  CAS  Google Scholar 

  45. Ranz JM, Ponce AR, Hartl DL et al. Origin and evolution of a new gene expressed in the Drosophila sperm axoneme. Genetica 2003 188:233–44.

    Article  Google Scholar 

  46. Rice WR. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 1996; 381:232–4.

    Article  PubMed  CAS  Google Scholar 

  47. Russell SRH, Kaiser K. A Drosophila melanogaster chromosome-2L repeat is expressed in the male germ line. Chromosoma 1994; 103:63–72.

    Article  PubMed  CAS  Google Scholar 

  48. Sawyer SA, Hartl DL. Population genetics of polymorphism and divergence. Genetics 1992;132:1161–76.

    PubMed  CAS  Google Scholar 

  49. Shields DC, Sharp PM, Higgins DG et al. “Silent” sites in Drosophila genes are not neutral: Evidence of selection among synonymous codons. Mol Biol Evol 1988; 5:704–16.

    PubMed  CAS  Google Scholar 

  50. Singh RS, Kulathinal RJ. Sex gene pool evolution and speciation: A new paradigm. Genes Genet Syst 2000; 75:119–30.

    Article  PubMed  CAS  Google Scholar 

  51. Smith NGC, EyreWalker A. Adaptive protein evolution in Drosophila. Nature 2002; 415:1022–4.

    Article  PubMed  CAS  Google Scholar 

  52. Swanson W, Vacquier V. The rapid evolution of reproductive proteins. Nature Reviews Genetics 2002; 3:137–44.

    Article  PubMed  CAS  Google Scholar 

  53. Thomas S, Singh RS. A comprehensive study of genetic variation in natural population of Drosophila melanogaster. VII. Varying rates of genic divergence as revealed by two-dimensional electro-phoresis. Mol Biol Evol 1992; 9:507–25.

    PubMed  CAS  Google Scholar 

  54. Ting C-T, Tsaur S-C, Wu M-L et al. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 1998; 282:1501–4.

    Article  PubMed  CAS  Google Scholar 

  55. Ting C-T, Tsaur S-C, Wu C-I. The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus. Proc Natl Acad Sci USA 2000; 97:5313–6.

    Article  PubMed  CAS  Google Scholar 

  56. Wang W, Zhang JM, Alvarez C et al. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol Biol Evol 2000;17:1294–301.

    PubMed  CAS  Google Scholar 

  57. Wiehe THE, Stephan S. Analysis of a genetic hitchhiking model, and its application to DNA polymorphism data from Drosophila melanogaster. Mol Biol Evol 1993; 10:842–54.

    PubMed  CAS  Google Scholar 

  58. Wright F. The ‘effective number of codons’ used in a gene. Gene 1990; 87:23–9.

    Article  PubMed  CAS  Google Scholar 

  59. Wu C-I, Lyttle TW, Wu M-L et al. Association between a satellite DNA sequence and the Re-sponder of Segregation Distorter in D. melanogaster. Cell 1988; 54:179–89.

    Article  PubMed  CAS  Google Scholar 

  60. Wu C-I, Hollocher H, Begun D et al. Sexual isolation in Drosophila melanogaster: A possible case of incipient speciation. Proc Natl Acad Sci USA 1995; 92:2519–23.

    Article  PubMed  CAS  Google Scholar 

  61. Wu C-I, Davis AW. Evolution of postmating reproductive isolation: The composite nature of Haldane’s rule and its genetic bases. Am Nat 1993; 142:187–212.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Kulathinal, R.J. et al. (2005). Selective Sweep in the Evolution of a New Sperm-Specific Gene in Drosophila . In: Nurminsky, D. (eds) Selective Sweep. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27651-3_3

Download citation

Publish with us

Policies and ethics