Skip to main content

Time Resolved Fluorescence Measurements of Fluorophores Close to Metal Nanoparticles

  • Chapter
Radiative Decay Engineering

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 8))

Abstract

Time resolved fluorescence measurements have become an important tool in applied fluorescence spectroscopy. Recently, it has been pointed out that the controlled manipulation of fluorescence decay rates opens a new dimension in applied fluorescence spectroscopy/ The fluorescence decay rate depends on two independent contributions, the pure radiative rate and the nonradiative rate. The latter one can be influenced by the well known Forster-type resonant energy transfer processes, while the radiative rate can be changed if the molecules are embedded or close to media comprising a dielectric constant markedly different from vacuum. Especially metal nanostructures have been used to alter both decay paths of fluorescent molecules. Apart from a change of those two rates, the absorption cross-section might also be altered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

7. References

  1. J. R. Lakowicz, Radiative decay engineering: Biophysical and biomedical applications, Anal. Biochem. 298, 1–23 (2001).

    Article  CAS  Google Scholar 

  2. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. Van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects, Phys. Rev. Lett. 89, 203002 (2002).

    Article  CAS  Google Scholar 

  3. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  4. T. Klar, M. Perner, S. Grosse, W. Spirkl, G. von Plessen, and J. Feldmann, Surface-plasmon resonances in single metallic nanoparticles, Phys. Rev. Lett. 80, 4249–4252 (1998).

    Article  CAS  Google Scholar 

  5. B. Lamprecht, A. Leitner, and F. R. Aussenegg, SHG studies of plasmon dephasing in nanoparticles, Appl. Phys. B 69, 419–423 (1999).

    Article  Google Scholar 

  6. B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Particle-plasmon decay-time determination by measuring the optical near-field’s autocorrelation: Influence of inhomogeneous line broadening, Appl. Phys. B 69, 223–227 (1999).

    Article  CAS  Google Scholar 

  7. F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Träger, Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning, Phys. Rev. Lett. 84, 5644–5647 (2000).

    Article  CAS  Google Scholar 

  8. M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, Optically induced damping of the surface plasmon resonance in gold colloids, Phys. Rev. Lett. 78, 2192–2195 (1997).

    Article  CAS  Google Scholar 

  9. M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles, Phys. Rev. Lett. 85, 792–795 (2000).

    Article  CAS  Google Scholar 

  10. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, Spectroscopy of single metallic nanoparticles using total internal reflection microscopy, Appl. Phys. Lett. 77, 2949–2951 (2000).

    Article  Google Scholar 

  11. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88, 077402 (2002).

    Article  CAS  Google Scholar 

  12. J. Müller, C. Sönnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, Electrically controlled light scattering with single metal nanoparticles, Appl. Phys. Lett. 81, 171–173 (2002).

    Article  CAS  Google Scholar 

  13. S. Schultz, J. J. Mock, D. R. Smith, and D. A. Schultz, Nanoparticles based biological assays, Journal of Clinical Ligand Assay 22, 214–216 (1999).

    Google Scholar 

  14. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels, Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).

    Article  CAS  Google Scholar 

  15. J. Yguerabide and E. E. Yguerabide, Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications, Anal. Biochem. 262, 157–176 (1998).

    Article  CAS  Google Scholar 

  16. J. Yguerabide and E. E. Yguerabide, Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications, Journal of Cellular Biochemistry Supplement 37, 71–81 (2001).

    Article  CAS  Google Scholar 

  17. P. Englebienne, Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes, The Analyst 123, 1599–1603 (1998).

    Article  CAS  Google Scholar 

  18. P. Englebienne, A. Van Hoonacker, and J. Valsamis, Rapid homogeneous immunoassay for human ferritin in the cobas mira using colloidal gold as the reporter reagent, Clinical Chemistry 46, 2000–2003 (2000).

    CAS  Google Scholar 

  19. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers, J. Am. Chem. Soc. 123, 1471–1482 (2001).

    Article  CAS  Google Scholar 

  20. D. Eck, C. A. Helm, N. J. Wagner, and K. A. Vaynberg, Plasmon resonance measurements of the adsorption and adsorption kinetics of a biopolymer onto gold nanocolloids, Langmuir 17, 957–960 (2001).

    Article  CAS  Google Scholar 

  21. P. Englebienne, A. V. Hoonacker, and M. Verhas, High-throughput screening using the plasmon resonance effect of colloidal gold nanoparticles, The Analyst 126, 1645–1651 (2001).

    Article  CAS  Google Scholar 

  22. N. Nath and A. Chilkoti, A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface, Analytical Chemistry 74, 504–509 (2002).

    Article  CAS  Google Scholar 

  23. A. J. Haes and V. D. R. P., A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc. 124, 10596–10604 (2002).

    Article  CAS  Google Scholar 

  24. J. C. Riboh, A. J. Haes, A. D. McFarland, C. R. Y. Yonzon, and R. P. Van Duyne, A nanoscale optical biosensor: Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion, J. Phys. Chem. B 107, 1772–1780 (2003).

    Article  CAS  Google Scholar 

  25. J. J. Mock, D. R. Smith, and S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles, Nano Letters 3, 485–491 (2003).

    Article  CAS  Google Scholar 

  26. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, Biomolecular recognition based on single nanoparticle light scattering, Nano Letters, in press (2003).

    Google Scholar 

  27. P. T. Leung and T. F. George, Molecular fluorescence spectroscopy in the vicinity of a microstructure, Journal de Chimie Physique et de Physico-Chimie Biologique 92, 226–247 (1995).

    CAS  Google Scholar 

  28. H. Metiu, Surface enhanced spectroscopy, Prog. Surf. Sci. 17, 153–320 (1984).

    Article  CAS  Google Scholar 

  29. A. Sommerfeld, Über die Ausbreitung der Wellen in der drahtlosen Telegraphic Annalen der Physik 28, 665–736 (1909).

    Article  Google Scholar 

  30. A. Sommerfeld, Über die Ausbreitung der Wellen in der drahtlosen Telegraphic Annalen der Physik 81, 1135–1153 (1926).

    Article  Google Scholar 

  31. K. H. Drexhage, M. Fleck, H. Kuhn, F. P. Schäfer, and W. Sperling, Beeinflussung der Fluoreszenz eines Europium-Chelates durch einen Spiegel, Ber. Bunsen. Phys. Chem. 20, 1179 (1966).

    Google Scholar 

  32. K. H. Drexhage, H. Kuhn, and F. P. Schäfer, Variation of the fluorescence decay time of a molecule in front of a mirror, Ber. Bunsen-Ges. Phys. Chem. 72, 329 (1968).

    Google Scholar 

  33. H. Kuhn, Classical aspects of energy transfer in molecular systems, J. Chem. Phys. 53, 101–108 (1970).

    Article  CAS  Google Scholar 

  34. R. R. Chance, A. Prock, and R. Silbey, in Adv. Chem. Phys., edited by I. Prigogine and S. R. Rice (Wiley, New York, 1978), p. 1–65.

    Chapter  Google Scholar 

  35. B. N. J. Persson and N. D. Lang, Electron-hole-pair quenching of excited states near a metal, Phys. Rev. B 26, 5409–5415 (1982).

    Article  CAS  Google Scholar 

  36. B. N. J. Persson and S. Andersson, Dynamical process at surfaces: Excitation of electron-hole pairs, Phys. Rev. B 29, 4382–4394 (1984).

    Article  CAS  Google Scholar 

  37. J. Arias, P. K. Aravind, and H. Metiu, The fluorescence lifetime of a molecule emitting near a surface with small, random roughness, Chem. Phys. Lett. 85, 404–408 (1982).

    Article  CAS  Google Scholar 

  38. P. T. Leung, Z. C. Wu, D. A. Jelski, and T. F. George, Molecular lifetimes in the periodically roughened metallic surfaces, Phys. Rev. B 36, 1457–1479 (1987).

    Article  Google Scholar 

  39. T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Annalen der Physik 2, 55–75 (1948).

    Article  Google Scholar 

  40. T. Förster, Experimented und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie, Zeitschrift fur Naturforschung 4a, 321–327 (1949).

    Google Scholar 

  41. D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836–850 (1953).

    Article  CAS  Google Scholar 

  42. J. Gersten and A. Nitzan, Spectroscopic properties of molecules interacting with small dielectric particles, J. Chem. Phys. 75, 1139–1152 (1981).

    Article  CAS  Google Scholar 

  43. R. Ruppin, Decay of an excited molecule near a small metal sphere, J. Chem. Phys. 76, 1681–1684 (1982).

    Article  CAS  Google Scholar 

  44. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik 3, 25 (1908).

    Google Scholar 

  45. P. T. Leung, T. F. George, and Y. C. Lee, Limit of the image theory for the classical decy rates of molecules at surfaces, J. Chem. Phys. 86, 7227–7229 (1987).

    Article  CAS  Google Scholar 

  46. P. T. Leung and T. F. George, Dynamical analysis of molecular decay at spherical surfaces, J. Chem. Phys. 87, 6722–6724 (1987).

    Article  CAS  Google Scholar 

  47. P. T. Leung, S. K. Young, and T. F. George, Radiative decay rates for molecules near a dielectric sphere, J. Phys. Chem. 92, 6206–6208 (1988).

    Article  CAS  Google Scholar 

  48. Y. S. Kim, P. T. Leung, and T. F. George, Remark on the morphology-dependent resonance in the decay rate spectrum for molecules near a spherical surface, Chem. Phys. Lett. 152, 453–456 (1988).

    Article  CAS  Google Scholar 

  49. Y. S. Kim, P. T. Leung, and T. F. George, Classical decay rates for molecules in the presence of a spherical surface: A complete treatment, Surface Science 195, 1–14 (1988).

    Article  CAS  Google Scholar 

  50. T. Maniv and H. Metiu, Electron-gas effects in the spectroscopy of molecules chemisorbed at a metal-surface. I. Theory, J. Chem. Phys. 72, 1996–2006 (1980).

    Article  CAS  Google Scholar 

  51. T. Maniv and H. Metiu, Electrodynamics at a metal surface. II. Fresnel formulas for the electromagnetic field at the interface for a jellium model within the random phase approximation, J. Chem. Phys. 76, 2697–2713 (1982).

    Article  CAS  Google Scholar 

  52. T. Maniv and H. Metiu, Electrodynamics at a metal surface. III. Reflectance and the photoelectron yield of a thin slab, J. Chem. Phys. 76, 696–708 (1982).

    Article  CAS  Google Scholar 

  53. G. E. Korzeniewski, T. Maniv, and H. Metiu, Electrodynamics at metal surfaces. IV. The electric fields caused by the polarization of a metal surface by an oscillating dipole, J. Chem. Phys. 76, 1564–1573 (1982).

    Article  CAS  Google Scholar 

  54. G. Korzeniewski, T. Maniv, and H. Metiu, The interaction between an oscillating dipole and a metal surface described by a jellium model and the random phase approximation, Chem. Phys. Lett. 73, 212–215 (1980).

    Article  CAS  Google Scholar 

  55. P. Gies and G. R. R., Density. Functional theory for the dynamical response of molecules adsorbed on metal surfaces, Phys. Rev. B 37, 10020–10028 (1988).

    Article  Google Scholar 

  56. S. Corni and J. Tomasi, Lifetimes of electronic excited states of a molecule close to a metal surface, J. Chem. Phys. 118, 6481–6494 (2003).

    Article  CAS  Google Scholar 

  57. W. Ekardt and Z. Penzar, Nonradiative lifetime of excited states near a small metal particle, Phys. Rev. B 34, 8444–8448 (1986).

    Article  CAS  Google Scholar 

  58. R. Fuchs and F. Claro, Multipolar response of small metallic spheres: Nonlocal theory, Phys. Rev. B 35, 3722–3727 (1987).

    Article  Google Scholar 

  59. P. T. Leung, Decay of molecules at spherical surfaces: Nonlocal effects, Phys. Rev. B 42, 7622–7625 (1990).

    Article  Google Scholar 

  60. C. Girard and F. Hache, Effective polarizablility of a molecule physisorbed on a spherical metal particle: Nonlocal effects, Chem. Phys. 118, 249–264 (1987).

    Article  CAS  Google Scholar 

  61. R. Rossetti and L. E. Brus, Time resolved molecular electronic energy transfer into a silver surface, J. Chem. Phys. 73, 572–577 (1980).

    Article  CAS  Google Scholar 

  62. P. Avouris and J. E. Demuth, Electronic excitations of benzene, pyridine, and pyrazine adsorbed on ag(111), J. Chem. Phys. 75, 4783–4794 (1981).

    Article  CAS  Google Scholar 

  63. J. E. Demuth and P. Avouris, Lifetime broadening of excited pyrazine adsorbed on ag(111), Phys. Rev. Lett. 47, 61–63 (1981).

    Article  CAS  Google Scholar 

  64. P. M. Whitmore, H. J. Robota, and C. B. Harris, Mechanisms for electronic energy transfer between molecules and metal surfaces: A comparison of silver and nickel, J. Chem. Phys. 77, 1560–1568 (1982).

    Article  CAS  Google Scholar 

  65. R. Rossetti and L. E. Brus, Time resolved energy transfer from electronically excited 3b3u pyrazine molecules to planar ag and au surfaces, J. Chem. Phys. 76, 1146–1149 (1982).

    Article  CAS  Google Scholar 

  66. P. M. Whitmore, H. J. Robota, and C. B. Harris, Electronic energy transfer from pyrazine to a silver(111) surface between 10 and 400 a, J. Chem. Phys. 76, 740–741 (1982).

    Article  CAS  Google Scholar 

  67. K. Kuhnke, R. Becker, M. Epple, and K. Kern, C60 exciton quenching near metal surfaces, Phys. Rev. Lett. 79, 3246–3249 (1997).

    Article  CAS  Google Scholar 

  68. S. J. Strickler and R. A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37, 814–822 (1962).

    Article  CAS  Google Scholar 

  69. F. R. Aussenegg, A. Leitner, M. E. Lippitsch, H. Reinisch, and M. Riegler, Novel aspects of fluorescence lifetime for molecules positioned close to metal surfaces, Surface Science 189/190, 935–945 (1987).

    Article  Google Scholar 

  70. H. Imahori, H. Norieda, Y. Nishimura, I. Yamazaki, K. Higuchi, N. Kato, T. Motohiro, H. Yamada, K. Tamaki, M. Arimura, and Y. Sakata, Chain length effect on the structure and photochemical properties of self-assembled monolyayers of porphyrins on gold electrodes, J. Phys. Chem. B 104, 1253–1260 (2000).

    Article  CAS  Google Scholar 

  71. H. Imahori, M. Arimura, T. Hanada, Y. Nishimura, I. Yamazaki, Y. Sakata, and S. Fukuzumi, Photoactive three-dimensional monolayers: Porphyrin-alkanethiolate-stabilized gold clusters, J. Am. Chem. Soc. 123, 335–336(2001).

    Article  CAS  Google Scholar 

  72. C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Fang, and L. J. R., Metal-enhanced fluorescence (mef) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging, J. Phys. Chem. 107, 3443–3449 (2003).

    CAS  Google Scholar 

  73. J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, Intrinsic fluorescence from DNA can be enhanced by metallic particles, Biophys. Biochem. Res. Comm. 286, 875–879 (2001).

    Article  CAS  Google Scholar 

  74. I. Gryczynski, J. Malicka, E. Holder, N. DiCesare, and J. R. Lakowicz, Effects of metallic silver particles on the emission properties of ru(bpy)3)2+, Chem. Phys. Lett. 372, 409–414 (2003).

    Article  CAS  Google Scholar 

  75. F. R. Aussenegg, S. Draxler, A. Leitner, M. E. Lippitsch, and M. Riegler, Picosecnond investigations on the fluorescence properties of adsorbed dye molecules, J. Opt. Soc. Am. B. 1, 456–457 (1984).

    Google Scholar 

  76. A. Leitner, M. E. Lippitsch, S. Draxler, M. Riegler, and F. R. Aussenegg, Fluorescence properties of dyes adsorbed to silver islands, investigated by picosecond techniques, Appl. Phys. B 36, 105–109 (1985).

    Article  Google Scholar 

  77. S. A. Levi, Supramolecular chemistry at the nanometer level, PhD thesis (University of Twente, Enschede, 2001)

    Google Scholar 

  78. A. Mooradian, Photoluminescence of metals, Phys. Rev. Lett. 22, 185–187 (1969).

    Article  CAS  Google Scholar 

  79. G. T. Boyd, Z. Yu, and Y. R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces, Phys. Rev. B 33, 7923–7936 (1986).

    Article  CAS  Google Scholar 

  80. J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenmann, and D. F. Kelley, Photoluminescence from nanosized gold clusters, J. Chem. Phys. 1998, 9137–9143 (1998).

    Article  Google Scholar 

  81. M. B. Mohammed, V. Volkov, S. Link, and M. A. El-Sayed, The ‘lightning’ gold nanorods: Fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317, 517–523 (2000).

    Article  Google Scholar 

  82. O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson III, Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites, J. Chem. Phys. 114, 1962–1965 (2001).

    Article  CAS  Google Scholar 

  83. N. Nilius, N. Ernst, and H. J. Freund, Tip influence on plasmon excitations in single particles in an stm, Phys. Rev. B 65, 115421 (2002).

    Article  CAS  Google Scholar 

  84. Y. N. Hwang, D. H. Jeong, H. J. Shin, D. Kim, S. C. Jeoung, S. H. Han, J. S. Lee, and G. Cho, Femtosecond emission studies on gold nanoparticles, J. Phys. Chem. B 106, 7581–7584 (2002).

    Article  CAS  Google Scholar 

  85. I. Gryczynski, J. Malicka, Y. Shen, Z. Gryczynski, and J. R. Lakowicz, Multiphoton excitation of fluorescence near metallic particles: Enhanced and lokalized excitation, J. Phys. Chem. B 106, 2191–2195 (2002).

    Article  CAS  Google Scholar 

  86. M. R. Beverluis, A. Bouhelier, and L. Novotny, Photoluminescence from sharp gold tips, CLEO / QELS Proceedings, QTUD4 (2003 (6)).

    Google Scholar 

  87. E. Dulkeith, T. A. Klar, G. von Plessen, and J. Feldmann, to be published.

    Google Scholar 

  88. S. N. Smith and R. P. Steer, The photophysics of lissamine rhodamine-b sulphonyl chloride in aqueous solution: Implications for fluorescent proteine-dye conjugates, J. Photochem. Photobiol A 139, 151–156 (2001).

    Article  CAS  Google Scholar 

  89. B. Dubertret, M. Calame, and A. J. Libchaber, Single-mismatch detection using gold-quenched fluorescent oligonucleotides, Nature Biotech. 19, 365–370 (2001).

    Article  CAS  Google Scholar 

  90. T. Niedereichholz, Fluoreszenzauslöschung von Farbstojfen auf der Oberfläche von Goldnanopartikeln-strahlende und nichtstrahlende Effekte, diploma thesis (Ludwig-Maximilians-University, Munich, 2002).

    Google Scholar 

  91. E. Dulkeith, D. S. Koktysh, W. Parak, T. A. Klar, and J. Feldmann, to be published.

    Google Scholar 

  92. R. D. Powell, C. M. R. Halsey, D. L. Spector, S. L. Kaurin, J. McCann, and J. F. Hainfeld, A covalent fluorescent-gold immunoprobe: Simultaneous detection of a pre-mrna splicing factor by light and electron microscopy, J. Histochem. Cytochem. 45, 947–956 (1997).

    CAS  Google Scholar 

  93. R. D. Powell, C. M. R. Halsey, and J. F. Hainfeld, Combined fluorescent and gold immunoprobes: Reagents and methods for correlative light and electron microscopy, Microscopy Research and Technique 42, 2–12 (1998).

    Article  CAS  Google Scholar 

  94. B. Dubertret, M. Calame, and A. J. Libchaber, Single-mismatch detection using gold-quenched fluorescent oligonucleotides, erratum, Nature Biotech. 19, 680–681 (2001).

    Article  CAS  Google Scholar 

  95. S. Tyagi and F. R. Kramer, Molecular beacons: Probes that fluoresce upon hybridization, Nature Biotech. 14, 303–308 (1996).

    Article  CAS  Google Scholar 

  96. O. Holderer, Manipulation der optischen Eigenschaften von organischen Halbleitern mit Hilfe von Metall-Nanopartikeln, diploma thesis (Ludwig-Maximilians-University, Munich, 1999).

    Google Scholar 

  97. C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles, Proc. Natl. Acad. Sci. U. S. A. 100, 6297–6301(2003).

    Article  CAS  Google Scholar 

  98. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, Radiative decay engineering 2: Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer, Anal Biochem. 301, 261–277 (2002).

    Article  CAS  Google Scholar 

  99. A. Wokaun, H. P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, Energy transfer in surface enhanced luminescence, J. Chem. Phys. 79, 509–514 (1983).

    Article  CAS  Google Scholar 

  100. K. Skokolov, G. Chumanov, and T. M. Cotton, Enhancement of molecular fluorescence near the surface of colloidal metal films, Analytical Chemistry 70, 3898–3904 (1998).

    Article  Google Scholar 

  101. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Enhanced luminescence of cdse quantum dots on gold colloids, Nano Letters 2, 1449–1452 (2002).

    Article  CAS  Google Scholar 

  102. J. Enderlein, Theoretical study of single molecule fluorescence in a metallic nanocavity, Appl. Phys. Lett. 80, 315–317 (2002).

    Article  CAS  Google Scholar 

  103. A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, Enhanced two-photon fluorescence of molecules adsorbed on silver particle films, Phys. Rev. B 24, 4906–4909 (1981).

    Article  CAS  Google Scholar 

  104. W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters, J. Phys. Chem. B 106, 6853–6863 (2002).

    Article  CAS  Google Scholar 

  105. G. Peleg, A. Lewis, M. Linial, and L. M. Loew, Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites, Proc. Natl. Acad. Sci. USA 96, 6700–6704 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Klar, T.A., Dulkeith, E., Feldmann, J. (2005). Time Resolved Fluorescence Measurements of Fluorophores Close to Metal Nanoparticles. In: Geddes, C.D., Lakowicz, J.R. (eds) Radiative Decay Engineering. Topics in Fluorescence Spectroscopy, vol 8. Springer, Boston, MA. https://doi.org/10.1007/0-387-27617-3_8

Download citation

Publish with us

Policies and ethics