Advertisement

Cracking the Green Paradigm: Functional Coding of Phosphoinositide Signals in Plant Stress Responses

  • Laura Zonia
  • Teun Munnik
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 39)

Keywords

Pollen Tube Guard Cell Phosphatidic Acid Pollen Tube Growth Hyperosmotic Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, G.J., Chu, S.P., Schumacher, K., Shimazaki, C.T., Vafaedos, D., Kemper, A., Hawke, S.D., Tallman, G., Tsien, R.Y., Harper, J.F., Chory, J. and Schroeder, J.I., 2000, Alteration of stimulispecific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289: 2338–2342.PubMedCrossRefGoogle Scholar
  2. Allen, G.J., Chu, S.P., Harrington, C.L., Schumacher, K., Hoffmann, T., Tang, Y.Y., Grill, E. and Schroeder, J.I., 2001, A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411: 1053–1057.PubMedCrossRefGoogle Scholar
  3. Anthony, R.G., Henriques, R., Helfer, A., Mészáros, T., Rios, G., Testerink, C., Munnik, T., Deák, M., Koncz, C. and Bögre, L., 2004, A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23: 572–581.PubMedCrossRefGoogle Scholar
  4. Arisz, S.A., Valianpour, F., Van Gennip, A.H. and Munnik, T., 2003, Substrate preference of stress-activated phospholipase D in Chlamydomonas and its contribution to PA formation. Plant J. 34: 595–604.PubMedCrossRefGoogle Scholar
  5. Bali, M.Z., Lipecka, J., Edelman, A. and Fritsch, J., 2001, Regulation of ClC-2 chloride channels in T84 cells by TGF-alpha. Am. J. Physiol. Cell Physiol. 280: C1588–C1598.PubMedGoogle Scholar
  6. Barrett, K.E., Smitham, J., Traynor-Kaplan, A. and Uribe, J.M., 1998, Inhibition of Ca2+-dependent Cl- secretion in T84 cells: Membrane target(s) of inhibition is agonist specific. Am. J. Physiol. Cell Physiol. 274: C958–C965.Google Scholar
  7. Berdy, S.E., Kudla, J., Gruissem, W. and Gillaspy, G.E., 2001, Molecular characterization of At5PTase1, an inositol phosphatase capable of terminating inositol trisphosphate signaling. Plant Physiol. 126: 801–810.PubMedCrossRefGoogle Scholar
  8. Blatt, M.R., 2000, Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16: 221–241.PubMedCrossRefGoogle Scholar
  9. Blume, B., Nürnberger, T., Nass, N. and Scheel, D., 2000, Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12: 1425–1440.PubMedCrossRefGoogle Scholar
  10. Blumwald, E., Aharon, G.S. and Lam, B.C-H., 1998, Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci. 3: 342–346.CrossRefGoogle Scholar
  11. Bominaar, A.A., Van Dijken, P., Draijer, R. and Van Haastert, P.J.M., 1991, Developmental regulation of the inositol 1,4,5-trisphosphatases in Dictyostelium discoideum. Differentiation 46: 1–5.PubMedCrossRefGoogle Scholar
  12. Burnette, R.N., Gunesekera, B.M. and Gillaspy, G.E., 2003, An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol. 132: 1011–1019.PubMedCrossRefGoogle Scholar
  13. Caffrey, J.J., Darden, T., Wenk, M.R. and Shears, S.B., 2001, Expanding coincident signaling by PTEN through its inositol 1,3,4,5,6-pentakisphosphate 3-phosphatase activity. FEBS Lett. 499: 6–10.PubMedCrossRefGoogle Scholar
  14. Carew, M.A., Yang, X.N., Schultz, C. and Shears, S.B., 2000, myo-Inositol 3,4,5,6-tetrakisphosphate inhibits an apical calcium-activated chloride conductance in polarized monolayers of a cystic fibrosis cell line. J. Biol. Chem., 275: 26906–26913.PubMedGoogle Scholar
  15. Carroll, K., Gomez, C. and Shapiro, L., 2004, TUBBY proteins: the plot thickens. Nat. Rev. Mol. Cell Biol. 5: 55–63.PubMedCrossRefGoogle Scholar
  16. Cessna, S.G., Kim, J. and Taylor, A.T.S., 2003, Cytosolic Ca2+ pulses and protein kinase activation in the signal transduction pathways leading to the plant oxidative burst. J. Plant Biol. 46: 215–222.Google Scholar
  17. Chen, C.Y-H., Cheung, A.Y. and Wu, H-M., 2003, Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell 15: 237–249.PubMedCrossRefGoogle Scholar
  18. Cho, M.H., Shears, S.B. and Boss, W.F., 1993, Changes in phosphatidylinositol metabolism in response to hyperosmotic stress in Daucus carota L. cells grown in suspension culture. Plant Physiol. 103: 637–647.PubMedCrossRefGoogle Scholar
  19. Cipres, A., Carrasco, S., Merino, E., Diaz, E., Krishna, U.M., Falck, J.R., Martinez, C. and Merida, I., 2003, Regulation of diacylglycerol kinase alpha by phosphoinositide 3-kinase lipid products. J. Biol. Chem. 278: 35629–35635.PubMedCrossRefGoogle Scholar
  20. Cockcroft, S., 2001, Signalling roles of mammalian phospholipase D1 and D2. Cell. Mol. Life Sci. 58: 1674–1687.PubMedCrossRefGoogle Scholar
  21. Cox, L.J., Larman, M.G., Saunders, C.M., Hashimoto, K., Swann, K. and Lai, F.A., 2002, Sperm phospholipase Cξ from humans and cynomoigus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reprod. 124: 611–623.CrossRefGoogle Scholar
  22. Craxton, A., Ali, N. and Shears, S.B., 1995, Comparison of the activities of a multiple inositol polyphosphate phosphatase obtained from several sources: a search for heterogeneity in this enzyme. Biochem. J. 305: 491–498.PubMedGoogle Scholar
  23. Cullen, P.J., Cozier, G.E., Banting, G. and Mellor, H., 2001, Modular phosphoinositide-binding domains — their role in signalling and membrane trafficking. Curr. Biol. 11: R882–R893.PubMedCrossRefGoogle Scholar
  24. Delledonne, M., Murgia, I., Ederle, D., Sbicego, P.F., Biondani, A., Polverari, A. and Lamb, C., 2002, Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resistance response. Plant Physiol. Biochem. 40: 605–610.CrossRefGoogle Scholar
  25. Den Hartog, M., Musgrave, A. and Munnik, T., 2001, Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphatase formation: a role for phospholipase C and D in root hair formation. Plant J. 25: 55–66.CrossRefGoogle Scholar
  26. Den Hartog, M., Verhoef, N. and Munnik, T., 2003, Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol. 132: 311–317.CrossRefGoogle Scholar
  27. De Jong, C.F., Laxalt, A.M., Bargmann, B.O.R., de Wit, P.J.G.M., Joosten, M.H.A.J. and Munnik, T., 2004, Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J. 39: 1–12.PubMedCrossRefGoogle Scholar
  28. DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D. and Hama, H., 2001, Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol. 126: 759–769.PubMedCrossRefGoogle Scholar
  29. Dhonukshe, P., Laxalt, A.M., Goedhart, J., Gadella, T.W.J. and Munnik, T., 2003, Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15: 2666–2679.PubMedCrossRefGoogle Scholar
  30. Dove, S.K., Piper, R.C., McEwen, R.K., Yu, J.W., King, M.C., Hughes, D.C., Thuring, J., Holmes, A.B., Cooke, F.T., Michell, R.H., Parker, P.J. and Lemmon, M.A., 2004, Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J. 23: 1922–1933.PubMedCrossRefGoogle Scholar
  31. Downes, C.P., Gray, A., Watt, S.A. and Lucocq, J.M., 2003, Advances in procedures for the detection and localization of inositol phospholipid signals in cells, tissues, and enzyme assays. Meth. Enz. 366: 64–84.Google Scholar
  32. Drayer, A.L., Van der Kaay, J., Mayr, G.W. and Van Haastert, P.J.M., 1994, Role of phospholipase C in Dictyostelium: formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J. 13: 1601–1609.PubMedGoogle Scholar
  33. Drøbak, B.K. and Watkins, P.A.C., 2000, Inositol(1,4,5)trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS Lett. 481: 240–244.PubMedCrossRefGoogle Scholar
  34. Drøbak, B.K., Franklin-Tong, V.E. and Staiger, C.J., 2004, The role of the actin cytoskeleton in plant cell signaling. New Phytol. 163: 13–30.CrossRefGoogle Scholar
  35. Drøbak, B.K., Watkins, P.A.C., Valenta, R., Dove, S.K., Lloyd, C.W. and Staiger, C.J., 1994, Inhibition of plant plasma-membrane phosphoinositide phospholipase-C by the actin-binding protein, profilin. Plant J. 6: 389–400.CrossRefGoogle Scholar
  36. Duman, J.G., Lee, E., Lee, G.Y., Singh, G. and Forte, J.G., 2004, Membrane fusion correlates with surface charge in exocytic vesicles. Biochem. 43: 7924–7939.CrossRefGoogle Scholar
  37. Durner, J., Wendehenne, D. and Klessig, D.F., 1998, Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95: 10328–10333.PubMedCrossRefGoogle Scholar
  38. Einspahr, K.J., Peeler, T.C. and Thompson, G.A. Jr., 1988, Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. J. Biol. Chem. 263: 5775–5779.PubMedGoogle Scholar
  39. Elge, S., Brearley, C., Xia, H-J., Kehr, J., Xue, H-W. and Mueller-Roeber, B., 2001, An Arabidopsis inositol phospholipid kinase strongly expressed in procambial cells: Synthesis of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in insect cells by 5-phosphorylation of precursors. Plant J. 26: 561–571.PubMedCrossRefGoogle Scholar
  40. English, D., 1996, Phosphatidic acid: a lipid messenger involved in intracellular and extracellular signaling. Cell Signal 8: 341–347.PubMedCrossRefGoogle Scholar
  41. Ercetin, M.E. and Gillaspy, G.E., 2004, Molecular characterization of an Arabidopsis gene encoding a phospholipid-specific inositol polyphosphate 5-phosphatase. Plant Physiol. 135: 938–946.PubMedCrossRefGoogle Scholar
  42. Estruch, J.J., Kadwell, S., Merlin, E. and Crossland, L., 1994, Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc. Natl. Acad. Sci. USA 91: 8837–8841.PubMedCrossRefGoogle Scholar
  43. Foster, D.A. and Xu, L.Z., 2003, Phospholipase D in cell proliferation and cancer. Mol. Cancer Res. 1: 789–800.PubMedGoogle Scholar
  44. Frank, W., Munnik, T., Kerkmann, K., Salamini, F. and Bartels, D., 2000, Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12: 111–123.PubMedCrossRefGoogle Scholar
  45. Franklin-Tong, V.E., 1999, Signaling and the modulation of pollen tube growth. Plant Cell 11: 727–738.PubMedCrossRefGoogle Scholar
  46. Franklin-Tong, V.E., Drøbak, B., Allan, A.C., Watkins, P.A.C. and Trewavas, A.J., 1996, Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell 8: 1305–1321.PubMedCrossRefGoogle Scholar
  47. Freyberg, Z., Siddhanta, A. and Shields, D., 2003, ’slip, sliding away’: phospholipase D and the Golgi apparatus. Trends Cell Biol. 13: 540–546.PubMedCrossRefGoogle Scholar
  48. Fu, Y. and Yang, Z., 2001, Rop GTPase: a master switch of cell polarity development in plants. Trends Plant Sci. 6: 545–547.PubMedCrossRefGoogle Scholar
  49. Gary, J.D., Wurmser, A.E., Bonangelino, C.J., Weisoman, L.S. and Emr, S.D., 1998, Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J. Cell Biol. 143: 65–79.PubMedCrossRefGoogle Scholar
  50. Gawer, M., Norberg, P., Chervin, D., Guern, N., Yaniv, Z., Mazliak, P. and Kader, J.C., 1999, Phosphoinositides and stress-induced changes in lipid metabolism of tobacco cells. Plant Sci. 141: 117–127.CrossRefGoogle Scholar
  51. Gilroy, S., Read, N.D. and Trewavas, A.J., 1990, Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346: 769–771.PubMedCrossRefGoogle Scholar
  52. Goedhart, J. and Gadella, T.W.J. Jr., 2004, Photolysis of caged phosphatidic acid induces flagellar excision in Chlamydomonas. Biochem. 43: 4263–4271.CrossRefGoogle Scholar
  53. Gupta, R., Ting, J.T.L., Sokolov, L.N., Johnson, S.A. and Luan, S., 2002, A tumor suppressor homologue, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 14: 2495–2507.PubMedCrossRefGoogle Scholar
  54. Hallouin, M., Ghellis, T., Brault, M., Bardat, F., Cornel, D., Miginiac, E., Rona, J.P., Sotta, B. and Jeannette, E., 2002, Plasmalemma abscisic acid perception leads to RAB18 expression via phopholipase D activation in Arabidopsis suspension cells. Plant Physiol. 130: 265–272.PubMedCrossRefGoogle Scholar
  55. Heilmann, I., Perera, I.Y., Gross, W. and Boss, W.F., 1999, Changes in phosphoinositide metabolism with days in culture affect signal transduction pathways in Galderia sulphuraria. Plant Physiol. 119: 1331–1339.PubMedCrossRefGoogle Scholar
  56. Heilmann, I., Perera, I.Y., Gross, W. and Boss, W.F., 2001, Plasma membrane phosphatidylinositol 4,5-bisphosphate levels decrease with time in culture. Plant Physiol. 126: 1507–1518.PubMedCrossRefGoogle Scholar
  57. Helsper, J.P.F.G., de Groot, P.F.M., Linskens, H.F. and Jackson, J.F., 1986, Phosphatidylinositol phospholipase C activity in pollen of Lilium longiflorum. Phytochem. 25: 2053–2055.CrossRefGoogle Scholar
  58. Helsper, J.P.F.G., Heemskerk, J.W.M. and Veerkamp, J.H., 1987, Cytosolic and particulate phosphatidylinositol phospholipase C activity in pollen of Lilium longiflorum. Physiol. Plant. 71: 120–126.CrossRefGoogle Scholar
  59. Hepler, P.K., Vidali, L. and Cheung, A.Y., 2001, Polarized cell growth in higher plants. Annu. Rev. Cell Dev. Biol. 17: 159–187.PubMedCrossRefGoogle Scholar
  60. Hetherington, A.M. and Drøbak, B.K., 1992, Inositol-containing lipids in higher-plants. Prog. Lipid Res. 31: 53–63.PubMedCrossRefGoogle Scholar
  61. Hilgemann, D.W., Feng, S. and Nasuhoglu, C., 2001, The complex and intriguing lives of PIP2 with ion channels and transporters. Science STKE 111: 1–8.Google Scholar
  62. Ho, M.W., Kaetzel, M.A., Armstrong, D.L. and Shears, S.B., 2001, Regulation of a human chloride channel, a paradigm for integrating input from calcium, type II calmodulin-dependent protein kinase, and inositol 3,4,5,6-tetrakisphosphate. J. Biol. Chem. 276: 18673–18680.PubMedCrossRefGoogle Scholar
  63. Ho, M.W.Y., Carew, M.A., Yang, X. and Shears, S.B., 2000, Regulation of chloride channel conductance by Ins(3,4,5,6)P4, a phosphoinositide-initiated signaling pathway that acts downstream of Ins(1,4,5)P3. In: Biology of Phosphoinositides, Cockcroft, S. ed., Oxford University Press, New York, pp. 298–319.Google Scholar
  64. Ho, M.W.Y. and Shears, S.B., 2002, Regulation of calcium-activated chloride channels by inositol 3,4,5,6-tetrakisphosphate. Curr. Topics Membr. 53: 345–363.Google Scholar
  65. Ho, M.W.Y., Shears, S.B., Bruzik, K.S., Duszyk, M. and French, A.S., 1997, Ins(3,4,5,6)P4 specifically inhibits a receptor-mediated Ca2+-dependent Cl current in CFPAC-1 cells. Am. J. Physiol. Cell Physiol. 272: C1160–C1168.Google Scholar
  66. Ho, M.W.Y., Yang, X.N., Carew, M.A., Zhang, T., Hua, L., Kwon, Y.U., Chung, S.K., Adelt, S., Vogel, G., Riley, A.M., Potter, B.V.L. and Shears, S.B., 2002, Regulation of Ins(3,4,5,6)P4 signaling by a reversible kinase/phosphatase. Curr. Biol. 12: 477–482.PubMedCrossRefGoogle Scholar
  67. Holdaway-Clarke, T., Feijo, J.A., Hackett, G.R., Kunkel, J.G. and Hepler, P.K., 1997, Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9: 1999–2010.PubMedCrossRefGoogle Scholar
  68. Holdaway-Clarke, T.L. and Hepler, P.K., 2003, Control of pollen tube growth: role of ion gradients and fluxes. New Phytol. 159: 539–563.CrossRefGoogle Scholar
  69. Hunt, L., Mills, L.N., Pical, C., Leckie, C.P., Aitken, F.L., Kopka, J., Mueller-Roeber, B., McAinsh, M.R., Hetherington, A.M. and Gray, J.E., 2003, Phospholipase C is required for the control of stomatal aperture by ABA. Plant J. 34: 47–55.PubMedCrossRefGoogle Scholar
  70. Hunt, L., Otterhag, L., Lee, J.C., Lasheen, T., Hunt, J., Seki, M., Shinozaki, K., Sommarin, M., Gilmour, D.J., Pical, C. and Gray, J.E., 2004, Gene-specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. New Phytol. 162: 643–654.CrossRefGoogle Scholar
  71. Irvine, R.F. and Schell, M.J., 2001, Back in the water: the return of the inositol phosphates. Nature Rev. Mol. Cell Biol. 2: 327–338.CrossRefGoogle Scholar
  72. Ismailov, I.I., Fuller, C.M., Berdiev, B.K., Shlyonsky, V.G., Benos, D.J. and Barrett, K.E., 1996, A biologic function for an “orphan” messenger: D-myo-inositol 3,4,5,6-tetrakisphosphate selectively blocks epithelial calcium-activated chloride channels. Proc. Natl. Acad. Sci. USA 93: 10505–10509.PubMedCrossRefGoogle Scholar
  73. Itoh, T. and Takenawa, T., 2004, Regulation of endocytosis by phosphatidylinositol 4,5-bisphosphate and ENTH proteins. Curr. Top. Microbiol. Immunol. 282: 31–47.PubMedGoogle Scholar
  74. Ives, E.B., Nichols, J., Wente, S.R. and York, J.D., 2000, Biochemical and functional characterization of inositol 1,3,4,5,6-pentakisphosphate 2-kinases. J. Biol. Chem. 275: 36575–36583.PubMedCrossRefGoogle Scholar
  75. Jacob, T., Ritchie, S., Assmann, S.M. and Gilroy, S., 1999, Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc. Natl. Acad. Sci. USA 96: 12192–12197.PubMedCrossRefGoogle Scholar
  76. Janmey, P.A., 1994, Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu. Rev. Physiol. 56: 169–191.PubMedGoogle Scholar
  77. Janmey, P.A., Xian, W. and Flanagan, L.A., 1999, Controlling cytoskeleton structure by phosphoinositide-protein interactions: phosphoinositide binding protein domains and effects of lipid packing. Chem. Phys. Lipids 101: 93–107.PubMedCrossRefGoogle Scholar
  78. Johnson, M.A. and Preuss, D., 2002, Plotting a course: multiple signals guide pollen tubes to their targets. Dev. Cell 2: 273–281.PubMedCrossRefGoogle Scholar
  79. Jung, H.W., Kim, W. and Hwang, B.K., 2003, Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic and environmental stresses. Plant Cell Environ. 26: 915–928.PubMedCrossRefGoogle Scholar
  80. Jung, J-Y., Kim, Y-W., Kwak, J.M., Hwang, J-U., Young, J., Schroeder, J.I., Hwang, I. and Lee, Y., 2002, Phosphatidylinositol 3-and 4-phosphate are required for normal stomatal movements. Plant Cell 14: 2399–2412.PubMedCrossRefGoogle Scholar
  81. Kamada, Y. and Muto, S., 1994, Stimulation by fungal elicitor of inositol phospholipid turnover in tobacco suspension culture cells. Plant Cell Physiol. 35: 397–404.Google Scholar
  82. Kanoh, H., Yamada, K. and Sakane, F., 2002, Diacylglycerol kinases: emerging downstream regulators in cell signalling systems. J. Biol. Chem. 131: 629–633.Google Scholar
  83. Katagiri, T., Takahashi, S. and Shinozaki, K., 2001, Involvement of a novel Arabidopsis phospholipase D, AtPLD delta, in dehydration-inducible accumulation of phosphatidic acid in stress signaling. Plant J. 26: 595–605.PubMedCrossRefGoogle Scholar
  84. Kasparovsky, T., Blein, J.P. and Mikes, V., 2004, Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway. Plant Physiol. Biochem. 42: 429–435.PubMedCrossRefGoogle Scholar
  85. Kiegle, E., Moore, C.A., Haseloff, J., Tester, M.A. and Knight, M.R., 2000, Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 23: 267–278.PubMedCrossRefGoogle Scholar
  86. Kim, D.H., Eu, Y-J., Yoo, C.M., Kim, Y-W., Pih, K.T., Jin, J.B., Kim, S.J., Stenmark, H. and Hwang, I., 2001, Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell 13: 287–301.PubMedCrossRefGoogle Scholar
  87. Kim, H.U., Cotter, R., Johnson, S., Senda, M., Dodds, P., Kulikauskas, R., Tang, W., Ezcurra, I., Herzmark, P. and McCormick, S., 2002, New pollen-specific receptor kinases identified in tomato, maize, and Arabidopsis: the tomato kinases show overlapping but distinct localization patterns on pollen tubes. Plant Mol. Biol. 50: 1–16.PubMedCrossRefGoogle Scholar
  88. Knight, M.R., 2002, Signal transduction leading to low-temperature tolerance in Arabidopsis thaliana. Phil. Trans. Roy. Soc. Lond. B 357: 871–874.CrossRefGoogle Scholar
  89. Knight, H. and Knight, M.R., 2001, Abiotic stress signalling pathways: specificity amd cross-talk. Trends Plant Sci. 6: 262–267.PubMedCrossRefGoogle Scholar
  90. Knight, H., Trewavas, A.J. and Knight, M.R., 1996, Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8: 489–503.PubMedCrossRefGoogle Scholar
  91. Knight, H., Trewavas, A.J. and Knight, M.R., 1997, Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J. 12: 1067–1078.PubMedCrossRefGoogle Scholar
  92. Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C. and Chua, N-H., 1999, Rac homologues and compartmentalized phosphatidylinositol 4,5,-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 145: 317–330.PubMedCrossRefGoogle Scholar
  93. Kovar, D.R., Drøbak, B.K. and Staiger, C.J., 2000, Maize profilin isoforms are functionally distinct. Plant Cell 12: 583–598.PubMedCrossRefGoogle Scholar
  94. Kroj, T., Rudd, J.J., Nürnberger, T., Gäbler, Y., Lee, J. and Scheel, D., 2003, Mitogen-activated protein kinases play an essential role in oxidative burst-independent expression of pathogenesis-related genes in parsley. J. Biol. Chem. 278: 2256–2264.PubMedCrossRefGoogle Scholar
  95. Ktistakis, N.T., Delon, C., Manifava, M., Wood, E., Ganley, I. and Sugars, J.M., 2003, Phospholipase D1 and potential targets of its hydrolysis product, phosphatidic acid. Biochem. Soc. Trans. 31: 94–97.PubMedCrossRefGoogle Scholar
  96. Kurokawa, M., Sato, K., Rissore, R.A., 2004, Mammalian fertilization: from sperm factor to phospholipase Cζ. Biol. Cell 96: 37–45.PubMedCrossRefGoogle Scholar
  97. Lam, B.C-H. and Blumwald, E., 2002, Domains as functional building blocks of plant proteins. Trends Plant Sci. 7: 544–549.PubMedCrossRefGoogle Scholar
  98. Larman, M.G., Saunders, C.M., Carroll, J., Lai, F.A. and Swann, K., 2004, Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCζ. J. Cell Sci. 117: 2513–2521.PubMedCrossRefGoogle Scholar
  99. Laxalt, A.M. and Munnik, T., 2002, Phospholipid signalling in plant defence. Curr. Op. Plant Biol. 5: 332–338.CrossRefGoogle Scholar
  100. Laxalt, A.M., Ter Riet, B., Verdonk, J.C., Parigi, L., Tameling, W.I.L., Vossen, J., Haring, M., Musgrave, A. and Munnik, T., 2001, Characterization of five tomato phospholipase D cDNAs: rapid and specific expression of LePLDβ1 on elicitation with xylanase. Plant J. 26: 237–247.PubMedCrossRefGoogle Scholar
  101. Lee, S., Hirt, H. and Lee, Y., 2001, Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J. 26: 479–486.PubMedCrossRefGoogle Scholar
  102. Lee, S., Park, J. and Lee, Y., 2003, Phosphatidic acid induces actin polymerization by activating protein kinases in soybean cells. Mol. Cell 15: 313–319.Google Scholar
  103. Lee, Y., Choi, Y.B., Suh, S., Lee, J., Assmann, S.M., Joe, C.O., Kelleher, J.F. and Crain, R.C., 1996, Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba. Plant Physiol. 110: 987–996.PubMedGoogle Scholar
  104. Lemtiri-Chlieh, F., MacRobbie, E.A.C. and Brearley, C.A., 2000, Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Proc. Natl. Acad. Sci. USA 97: 8687–8692.PubMedCrossRefGoogle Scholar
  105. Lemtiri-Chlieh, F., MacRobbie, E.A.C., Webb, A.A.R., Manison, N.F., Brownlee, C., Skepper, J.N., Chen, J., Prestwich, G.D. and Brearley, C.A., 2003, Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc. Natl. Acad. Sci. USA 100: 10091–10095.PubMedCrossRefGoogle Scholar
  106. Lemmon, M.A., 2003, Phosphoinositide recognition domains. Traffic 4: 201–213.PubMedCrossRefGoogle Scholar
  107. Leonhardt, N., Bazin, I., Richaud, P., Marin, E., Vavasseur, A. and Forestier, C., 2001, Antibodies to the CFTR modulate the turgor pressure of guard cell protoplasts via slow anion channels. FEBS Lett. 494: 15–18.PubMedCrossRefGoogle Scholar
  108. Li, W., Li, M., Zhang, W., Welti, R. and Wang, X., 2004, The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nature Biotech. 22: 427–433.CrossRefGoogle Scholar
  109. Lin, W.H., Rui, Y.E., Hui, M.A., Xu, Z.H., Xui, H.W., 2004, DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Research 14: 34–45.PubMedCrossRefGoogle Scholar
  110. Luan, S., Ting, J. and Gupta, R., 2001, Protein tyrosine phosphatases in higher plants. New Phytol. 151: 155–164.CrossRefGoogle Scholar
  111. Luo, B., Regier, D.S., Prescott, S.M. and Topham, M.K., 2004, Diacylglycerol kinases. Cellular Signalling 16: 983–989.PubMedGoogle Scholar
  112. Luo, H.B.R., Huang, Y.E., Chen, J.M.C., Saiardi, A., Iijima, M, Ye, K.Q., Huang, Y.F., Nagata, E., Devreotes, P. and Snyder, S.H., 2003, Inositol pyrophosphates mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell 114: 559–572.PubMedCrossRefGoogle Scholar
  113. Malhó, R., 1998, Role of 1,4,5-inositol trisphosphate-induced Ca2+ release in pollen tube orientation. Sex. Plant Reprod. 11: 231–235.CrossRefGoogle Scholar
  114. Maehama, T. and Dixon, J.E., 1998, The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273: 13375–13378.PubMedCrossRefGoogle Scholar
  115. Martin, T.F.J., 1998, Phosphoinositide lipids as signaling molecules: Common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol. 14: 231–264.PubMedCrossRefGoogle Scholar
  116. Martin, T.F.J., 2001, PI(4,5)P2 regulation of surface membrane traffic. Curr. Op. Cell Biol. 13: 493–499.PubMedCrossRefGoogle Scholar
  117. McDermott, M., Wakelam, M.J.O. and Morris, A.J., 2004, Phospholipase D. Biochem. Cell Biol. 82: 225–253.PubMedCrossRefGoogle Scholar
  118. McLaughlin, S., Wang, J., Gambhir, A. and Murray, D., 2002, PIP2 and proteins: Interactions, organization and information flow. Annu. Rev. Biophys. Biomol. Struct. 31: 151–175.PubMedCrossRefGoogle Scholar
  119. Meijer, H.J.G., Arisz, S.A., Van Himbergen, J.A.J., Musgrave, A. and Munnik, T., 2001a, Hyperosmotic stress rapidly generates lyso-phosphatidic acid in Chlamydomonas. Plant J. 25: 541–548.PubMedCrossRefGoogle Scholar
  120. Meijer, H.J.G., Berrie, C.P., Iurisci, C., Divecha, N., Musgrave, A. and Munnik, T., 2001b, Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochem. J. 360: 491–498.PubMedCrossRefGoogle Scholar
  121. Meijer, H.J.G., Divecha, N., Van den Ende, H., Musgrave, A. and Munnik, T., 1999, Hyperosmotic stress induces rapid synthesis of phosphatidyl-D-inositol 3,5-bisphosphate in plant cells. Planta 208: 294–298.CrossRefGoogle Scholar
  122. Meijer, H.J.G., and Munnik, T., 2003, Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 54: 265–306.PubMedCrossRefGoogle Scholar
  123. Meijer, H.J.G., ter Riet, B., Van Himbergen, J.A.J., Musgrave, A. and Munnik, T., 2002, KCl activates phospholipase D at two different concentration ranges: distinguishing between hyperosmotic stress and membrane depolarization. Plant J. 31: 51–59.PubMedCrossRefGoogle Scholar
  124. Menniti, F.S., Oliver, K.G., Putney, J.W. and Shears, S.B., 1993, Inositol phosphates and cell signaling — new views of InsP5 and InsP6. Trends Biochem. Sci. 18: 53–56.PubMedCrossRefGoogle Scholar
  125. Messerli, M.A., Creton, R., Jaffe, L.F. and Robinson, K.R., 2000, Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev. Biol. 222: 84–98.PubMedCrossRefGoogle Scholar
  126. Messerli, M.A., Danuser, G. and Robinson, K.R., 1999, Pulsatile influxes of H+, K+ and Ca2+ lag growth pulses of Lilium longiflorum. J. Cell Sci. 112: 1497–1509.PubMedGoogle Scholar
  127. Miège, C. and Maréchal, É., 1999, 1,2-sn-Diacylglycerol in plant cells: Product, substrate and regulator. Plant Physiol. Biochem. 37: 795–808.PubMedCrossRefGoogle Scholar
  128. Mikami, K., Katagiri, T., Iuchi, S., Yamaguchi-Shinozaki, K. and Shinozaki, K., 1998, A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J. 15: 563–568.PubMedCrossRefGoogle Scholar
  129. Mills, L.N., Hunt, L., Leckie, C.P., Aitken, F.L., Wentworth, M., McAinsh, M.R., Gray, J.E. and Hetherington, A.M., 2004, The effects of manipulating phospholipase C on guard cell ABA-signaling. J. Exp. Bot. 55: 199–204.PubMedCrossRefGoogle Scholar
  130. Mitra, P., Zhang, Y., Rameh, L.E., Ivshina, M.P., McCollum, D., Nunnari, J.J., Hendricks, G.M., Kerr, M.L., Field, S.J., Cantley, L.C. and Ross, A.H., 2004, A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast. J. Cell Biol. 166: 205–211.PubMedCrossRefGoogle Scholar
  131. Monks, D.E., Aghoram, K., Courtney, P.D., DeWald, D.B. and Dewey, R.E., 2001, Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell 13: 1205–1219.PubMedCrossRefGoogle Scholar
  132. Moutinho, A., Trewavas, A.J. and Malhó, R., 1998, Relocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation. Plant Cell 10: 1499–1509.PubMedCrossRefGoogle Scholar
  133. Müller-Roeber, B. and Pical, C., 2002, Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositidespecific phospholipase C. Plant Physiol. 130: 22–46.CrossRefGoogle Scholar
  134. Munnik, T., 2001, Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 6: 227–233.PubMedCrossRefGoogle Scholar
  135. Munnik, T., De Vrije, T., Irvine, R.F. and Musgrave, A., 1996, Identification of diacylglycerol pyrophosphate as a novel metabolic product of phosphatidic acid during G-protein activation in plants. J. Biol. Chem. 271: 15708–15715.PubMedCrossRefGoogle Scholar
  136. Munnik, T., Arisz, S.A., De Vrije, T. and Musgrave, A., 1995, G protein activation stimulates phospholipase D signaling in plants. Plant Cell 7: 2197–2210.PubMedCrossRefGoogle Scholar
  137. Munnik, T., Irvine, R.F. and Musgrave, A., 1994, Rapid turnover of phosphatidylinositol 3-phosphate in the green alga Chlamydomonas eugametos: signs of a phosphatidylinositide 3-kinase signaling pathway in lower plants? Biochem. J. 298: 269–273.PubMedGoogle Scholar
  138. Munnik, T., Irvine, R.F. and Musgrave, A., 1998a, Phospholipid signalling in plants. Biochim. Biophys. Acta 1398: 222–272.Google Scholar
  139. Munnik, T., Van Himbergen, J.A.J., Ter Riet, B., Braun, F.-J., Irvine, F.F., Van den Ende, H. and Musgrave, A., 1998b, Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan. Planta 207: 133–145.CrossRefGoogle Scholar
  140. Munnik, T., Ligterink, W., Meskiene, I., Calderini, O., Beyerly, J., Musgrave, A. and Hirt, H., 1999, Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant J. 20: 381–388.PubMedCrossRefGoogle Scholar
  141. Munnik, T. and Meijer, H.J.G., 2001, Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Lett. 498: 172–178.PubMedCrossRefGoogle Scholar
  142. Munnik, T., Meijer, H.J.G., Ter Riet, B., Hirt, H., Frank, W., Bartels, D. and Musgrave, A., 2000, Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J. 22: 147–154.PubMedCrossRefGoogle Scholar
  143. Munnik, T., Musgrave, A. and De Vrije, T., 1994, Rapid turnover of polyphosphoinositides in carnation flower petals. Planta 193: 89–98.CrossRefGoogle Scholar
  144. Nakanishi, H., de los Santos, P. and Neiman, A.M., 2004, Positive and negative regulation of a SNARE protein by control of intracellular localization. Mol. Biol. Cell 15: 1802–1815.PubMedCrossRefGoogle Scholar
  145. Nilius, B., Prenen, J., Voets, T., Eggermont, J., Bruzik, K.S., Shears, S.B. and Droogmans, G., 1998, Inhibition by inositoltetrakisphosphates of calcium-and volume-activated Cl currents in macrovascular endothelial cells. Pfleugers Arch. Eur. J. Physiol. 435: 637–644.CrossRefGoogle Scholar
  146. Nimchuk, Z., Eulgem, T., Holt, B.E. and Dangl, J.L., 2003, Recognition and response in the plant immune system. Annu. Rev. Genet. 37: 579–609.PubMedCrossRefGoogle Scholar
  147. Nürnberger, T. and Scheel, D., 2001, Signal transmission in the plant immune response. Trends Plant Sci. 6: 372–379.PubMedCrossRefGoogle Scholar
  148. Odom, A.R., Stahlberg, A., Wente, S.R. and York, J.D., 2000, A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287: 2026–2029.PubMedCrossRefGoogle Scholar
  149. Odorizzi, G., Babst, M. and Emr, S.D., 2000, Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem. Sci. 25: 229–235.PubMedCrossRefGoogle Scholar
  150. Oprins, J.C., Van der Burg, C., Meijer, H.P., Munnik, T. and Groot, J.A., 2001, PLD pathway involved in carbachol-induced Cl secretion: possible role of TNF-. Am. J. Physiol. Cell Physiol. 280: C789–C795.PubMedGoogle Scholar
  151. Oprins, J.C., Van der Burg, C., Meijer, H.P., Munnik, T. and Groot, J.A., 2002, Tumor necrosis factor alpha potentiates ion secretion induced by histamine in a human intestinal epithelial cell line and in mouse colon: involvement of the phospholipase D pathway. Gut 50: 314–321.PubMedCrossRefGoogle Scholar
  152. Overmyer, K., Brosché, M. and Kangasjärvi, J., 2003, Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8: 335–342.PubMedCrossRefGoogle Scholar
  153. Park, C-J., Shin, R., Park, J.M., Lee, G-J., You, J-S. and Paek, K-H., 2002, Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol. Biol. 48: 243–254.PubMedCrossRefGoogle Scholar
  154. Park, J., Gu, Y., Lee, Y., Yang, Z. and Lee, Y., 2004, Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol. 134: 129–136.PubMedCrossRefGoogle Scholar
  155. Parsons, R., 2004, Human cancer, PTEN and the PI-3 kinase pathway. Sem. Cell Dev. Biol. 15: 171–176.CrossRefGoogle Scholar
  156. Pearce, R.S., 1999, Molecular analysis of acclimation to cold. Plant Growth Regul. 29: 47–76.CrossRefGoogle Scholar
  157. Perera, N.M., Michell, R.H. and Dove, S.K., 2004, Hypo-osmotic stress activates Plc1p-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol hexakisphosphate accumulation in yeast. J. Biol. Chem. 279: 5216–5226.PubMedCrossRefGoogle Scholar
  158. Pical, C., Westergren, T., Dove, S.K., Larsson, C. and Sommarin, M., 1999, Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J. Biol. Chem. 274: 38232–38240.PubMedCrossRefGoogle Scholar
  159. Plieth, C., Hansen, U-P., Knight, H. and Knight, M.R., 1999, Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J. 18: 491–497.PubMedCrossRefGoogle Scholar
  160. Potocky, M., Elias, M., Profotova, B., Novotna, Z., Valentova, O. and Zarksy, V., 2003, Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217: 122–130.PubMedGoogle Scholar
  161. Prestwich, G.D., Chen, R., Feng, L., Ozaki, S., Ferguson, C.G., Drees, B.E., Neklason, D.A., Mostert, M.J., Porter-Gill, P.A., Kang, V., Shope, J.C., Neilsen, P.O. and DeWald, D.B., 2002, In situ detection of phospholipid and phosphoinositide metabolism. Advan. Enz. Regul. 42: 19–38.CrossRefGoogle Scholar
  162. Renstrom, E., Ivarsson, R. and Shears, S.B., 2002, Inositol 3,4,5,6-tetrakisphosphate inhibits insulin granule acidification and fusogenic potential. J. Biol. Chem. 277: 26717–26720.PubMedCrossRefGoogle Scholar
  163. Rhee, S.G., 2001, Regulation of phospholinositide-specific phospholipase C. Annu. Rev. Biochem. 70: 281–312.PubMedCrossRefGoogle Scholar
  164. Ritchie, S. and Gilroy, S., 1998, Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase D activity. Proc. Natl. Acad. Sci. USA 95: 2697–2702.PubMedCrossRefGoogle Scholar
  165. Ritchie, S. and Gilroy, S., 2000, Abscisic acid stimulation of phospholipase D in the barley aleurone is G-protein-mediated and localized to the plasma membrane. Plant Physiol. 124: 693–702.PubMedCrossRefGoogle Scholar
  166. Rojo, E., Solano, R. and Sánchez-Serrano, J.J., 2003, Interactions between signaling compounds. J. Plant Growth Regul. 22: 82–98.CrossRefGoogle Scholar
  167. Roth, M.G., 2004, Phosphoinositides in constitutive membrane traffic. Physiol. Rev. 84: 699–730.PubMedCrossRefGoogle Scholar
  168. Rudge, S.A., Anderson, D.M. and Emr, S.D., 2004, Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol. Biol. Cell 15: 24–36.PubMedCrossRefGoogle Scholar
  169. Ruelland, E., Cantrel, C., Gawer, M., Kader, J.C. and Zachowski, A., 2002, Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol. 130: 999–1007.PubMedCrossRefGoogle Scholar
  170. Ryu, S.B., 2004, Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci. 9: 229–235.PubMedCrossRefGoogle Scholar
  171. Saiardi, A., Sciambi, C., McCaffery, J., Wendland, B. and Snyder, S.H., 2002, Inositol pyrophosphates regulate endocytic trafficking. Proc. Natl. Acad. Sci. USA 99: 14206–14211.PubMedCrossRefGoogle Scholar
  172. Sanchez, J-P. and Chua, N-H., 2001, Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell 13: 1143–1154.PubMedCrossRefGoogle Scholar
  173. Sang, Y., Cui, D. and Wang, X., 2001a, Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol. 126: 1449–1458.PubMedCrossRefGoogle Scholar
  174. Sang, Y., Zheng, S.Q., Li, W.Q., Huang, B.R., Wang, X., 2001b, Regulation of plant water loss by manipulating the expression of phospholipase Dα. Plant J. 28: 135–144.PubMedCrossRefGoogle Scholar
  175. Saunders, C.M., Larman, M.G., Parrington, J., Cox, L.J., Royse, J., Blayney, L.M., Swann, K. and Lai, F.A., 2002, PLCζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Dev. 129: 3533–3544.Google Scholar
  176. Scherer, G.F.E., Paul, R.U., Holk, A. and Marinec, J., 2002, Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A2 in plant cells. Biochem. Biophys. Res. Comm. 293: 766–770.PubMedCrossRefGoogle Scholar
  177. Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M. and Waner, D., 2001, Guard cell signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 627–658.PubMedCrossRefGoogle Scholar
  178. Scrase-Field, S.A.M.G. and Knight M.R., 2003, Calcium: just a chemical switch? Curr. Op. Plant Biol. 6: 500–506.CrossRefGoogle Scholar
  179. Shabala, S., Babourina, O. and Newman, I., 2000, Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J. Exp. Bot. 51: 1243–1253.PubMedCrossRefGoogle Scholar
  180. Shaw, J.D., Hama, H., Sohrabi, F., DeWald, D.B. and Wendland, B., 2003, PtdIns(3,5)P2 is required for delivery of endocytic cargo into the multivesicular body. Traffic 4: 479–490.PubMedCrossRefGoogle Scholar
  181. Shears, S.B., 1996, Inositol pentakis-and hexakisphosphate metabolism adds versatility to the actions of inositol polyphosphates: novel effects on ion channels and protein traffic. In: myo-Inositol phosphates, phosphoinositides, and signal transduction. Subcell. Biochem., Vol. 26, Plenum Press, N.Y., Chapt. 7, pp. 187–226.Google Scholar
  182. Shears, S.B., 2004, How versatile are inositol polyphosphate kinases? Biochem. J. 377: 265–280.PubMedCrossRefGoogle Scholar
  183. Shen, Y.J., Xu, L.Z. and Foster, D.A., 2001, Role for phospholipase D in receptor-mediated endocytosis. Mol. Cell Biol. 21: 595–602.PubMedCrossRefGoogle Scholar
  184. Shigaki, T. and Bhattacharyya, M.A., 2000, Decreased inositol 1,4,5-trisphosphate content in pathogen-challenged soybean cells. Mol. Plant-Microbe Interactions 13: 563–567.Google Scholar
  185. Simonsen, A., Wurmser, A.E., Emr, S.D. and Stenmark, H., 2001, The role of phosphoinositides in membrane transport. Curr. Op. Cell Biol. 13: 485–492.PubMedCrossRefGoogle Scholar
  186. Simpson, L. and Parsons, R., 2001, PTEN: life as a tumor suppressor. Exp. Cell Res. 264: 29–41.PubMedCrossRefGoogle Scholar
  187. Song, F. and Goodman, R.M., 2002, Molecular cloning and characterization of a rice phosphoinositide-specific phospholipase C gene, OsPI-PLC1, that is activated in systemic acquired resistance. Physiol. Mol. Plant Pathol. 61: 31–40.Google Scholar
  188. Staxén, I., Pical, C., Montgomery, L.T., Gray, J.E., Hetherington, A.M. and McAinsh, M.R., 1999, Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc. Natl. Acad. Sci. USA 96: 1779–1784.PubMedCrossRefGoogle Scholar
  189. Stevenson, J.M., Perera, I.Y., Heilmann, I., Persson, S. and Boss, W.F., 2000, Inositol signaling and plant growth. Trends Plant Sci. 5: 252–258.PubMedCrossRefGoogle Scholar
  190. Stevenson-Paulik, J., Odom, A.R. and York, J.D., 2002, Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J. Biol. Chem. 277: 42711–42718.PubMedCrossRefGoogle Scholar
  191. Stolz, L.E., Kuo, W.J., Longchamps, J., Sekhon, M. and York, J.D., 1998, INP51, a yeast inositol polyphosphate 5-phosphatase required for phosphatidylinositol 4,5-bisphosphate homeostasis and whose absence confers a cold-resistant phenotype. J. Biol. Chem. 273: 11852–11861.PubMedCrossRefGoogle Scholar
  192. Suetsugu, S. and Takenawa, T., 2003, Regulation of cortical actin networks in cell migration. Intl. Rev. Cytol. 229: 245–286.CrossRefGoogle Scholar
  193. Sulis, M.L. and Parsons, R., 2003, PTEN: from pathology to biology. Trends Cell Biol. 13: 478–483.PubMedCrossRefGoogle Scholar
  194. Swann, K., Larman, M.G., Saunders, C.M. and Lai, F.A., 2004, The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLC zeta. Reprod. 127: 431–439.CrossRefGoogle Scholar
  195. Takahashi, S., Katagiri, T., Hirayama, T., Yamaguchi-Shinozaki, K. and Shinozaki, K., 2001, Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol. 42: 214–222.PubMedCrossRefGoogle Scholar
  196. Takenawa, T. and Itoh, T., 2001, Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 1533: 190–206.Google Scholar
  197. Taylor, A.T.S., Kim, J. and Low, P.S., 2001, Involvement of mitogen-activated protein kinase activation in the signal transduction pathways of the soya bean oxidative burst. Biochem. J. 355: 795–803.PubMedGoogle Scholar
  198. Teodoro, A.E., Zingarelli, L. and Lado, P., 1998, Early changes in Cl efflux and H+ extrusion induced by osmotic stress in Arabidopsis thaliana cells. Physiol. Plant. 102: 29–37.CrossRefGoogle Scholar
  199. Testerink, C. and Munnik, T., 2004, Plant responses to stress: phosphatidic acid as a second messenger. In: Encyclopedia of Plant and Crop Science, (Goodman, R.M., ed.). Marcel Dekker, Inc., N.Y., pp. 995–998.Google Scholar
  200. Testerink, C. and Munnik, T., 2005, Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci. 10: 368–375.PubMedCrossRefGoogle Scholar
  201. Testerink, C., Dekker, H.L., Lim, Z.Y., Johns, M.K., Holmes, A.B., Koster, C.G., Ktistakis, N.T. and Munnik, T., 2004, Isolation and identification of phosphatidic acid targets from plants. Plant J. 39: 527–536.PubMedCrossRefGoogle Scholar
  202. Thomma, B.P.H.J., Penninckx, I.A.M.A., Broekaert, W.F. and Cammue, B.P.A., 2001a, The complexity of disease signaling in Arabidopsis. Curr. Op. Immunol. 13: 63–68.CrossRefGoogle Scholar
  203. Thomma, B.P.H.J., Tierens, K.F.M., Penninckx, I.A.M.A., Mauch-Mani, B., Broekaert, W.F. and Cammue, B.P.A., 2001b, Different micro-organisms differentially induce Arabidopsis disease response pathways. Plant Physiol. Biochem. 39: 673–680.CrossRefGoogle Scholar
  204. Toyoda, K., Shiraishi, T., Yamada, T., Ichinose, Y. and Oku, H., 1993, Rapid changes in polyphosphoinositide metabolism in pea in response to fungal signals. Plant Cell Physiol. 34: 729–735.Google Scholar
  205. Vajanaphanich, M., Kachintorn, U., Barrett, K.E., Cohn, J.A., Dharmasathaphorn, K. and Traynor-Kaplan, A., 1993, Phosphatidic acid modulates Cl secretion in T84 cells: varying effects depending on mode of stimulation. Am. J. Physiol. Cell Physiol. 264: C1210–C1218.Google Scholar
  206. Vajanaphanich, M., Schultz, C., Rudolf, M.T., Wasserman, M., Enyedi, P., Craxton, A., Shears, S.B., Tsien, R.Y., Barrett, K.E. and Traynor-Kaplan, A., 1994, Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4. Nature 371: 711–714.PubMedCrossRefGoogle Scholar
  207. Van der Luit, A.H., Piatti, T., Van Doorn, A., Musgrave, A., Felix, G., Boller, T. and Munnik, T., 2000, Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol. 123: 1507–1515.PubMedCrossRefGoogle Scholar
  208. Van der Wijk, T., Tomassen, S.F.B., de Jong, H.R. and Tilly B.C., 2000, Signaling mechanisms involved in volume regulation of intestinal epithelial cells. Cell Physiol. Biochem. 10: 289–296.PubMedCrossRefGoogle Scholar
  209. Van Dijken, P., Bergsma, J.C. and Van Haastert, P.J.M., 1997, Phospholipase C-independent inositol 1,4,5-trisphosphate formation in Dictyostelium cells. Activation of a plasma-membrane-bound phosphatase by receptor-stimulated Ca2+ influx. Eur. J. Biochem. 244: 113–119.PubMedCrossRefGoogle Scholar
  210. Van Dijken, P., de Haas, J.R., Craxton, A., Erneux, C., Shears, S.B. and Van Haastert, P.J.M., 1995, A novel phospholipase C-independent pathway of inositol 1,4,5-trisphosphate formation in Dictyostelium and rat liver. J. Biol. Chem. 270: 29724–29731.PubMedCrossRefGoogle Scholar
  211. Van Haastert, P.J.M. and Van Dijken, P., 1997, Biochemistry and genetics of inositol phosphate metabolism in Dictyostelium. FEBS Lett. 410: 39–43.PubMedCrossRefGoogle Scholar
  212. Van Leeuwen, W., Ökrész, L., Bögre, L.. and Munnik, T., 2004, Learning the lipid language of plant signalling. Trends Plant Sci. 8: 378–384.CrossRefGoogle Scholar
  213. Viswanathan, C. and Zhu, J.K., 2002, Molecular genetic analysis of cold-regulated gene transcription. Phil. Trans. Roy. Soc. Lond. B 357: 877–886.CrossRefGoogle Scholar
  214. Wang, C.X., Zien, C.A., Afitlhile, M., Welti, R., Hildebrand, D.F. and Wang, X., 2000, Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12: 2237–2246.PubMedCrossRefGoogle Scholar
  215. Wang, X., 2000, Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog. Lipid Res. 39: 109–149.PubMedCrossRefGoogle Scholar
  216. Wang, X., 2001, Plant phospholipases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 211–231.PubMedCrossRefGoogle Scholar
  217. Wang, X., 2004, Lipid signaling. Curr. Op. Plant Biol. 7: 329–336.CrossRefGoogle Scholar
  218. Wang, X., Wang, C.X., Sang, Y., Qin, C.B. and Welti, R., 2002, Networking of phospholipases in plant signal transduction. Physiol. Plant. 115: 331–335.PubMedCrossRefGoogle Scholar
  219. Ward, J.M., Pei, Z.-M. and Schroeder, J.I., 1995, Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7: 833–844.PubMedCrossRefGoogle Scholar
  220. Watt, S.A., Kimber, W.A., Fleming, I.N., Leslie, N.R., Downes, C.P. and Lucocq, J.M., 2004, Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microspray. Biochem. J. 377: 653–663.PubMedGoogle Scholar
  221. Watt, S.A., Kular, G., Fleming, I.N., Downes, C.P. and Lucocq, J.M., 2002, Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase Cδ1. Biochem. J. 363: 657–666.PubMedCrossRefGoogle Scholar
  222. Wehner, F., Olsen, H., Tinel, H., Kinne-Saffran, E. and Kinne, R.K.H., 2003, Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev. Physiol. Biochem. Pharmacol. 148: 1–80.PubMedGoogle Scholar
  223. Welti, R., Li, W.Q., Li, M.Y., Sang, Y.M., Biesiada, H., Zhou, H.E., Rajashekar, C.B., Williams, T.D. and Wang, X., 2002, Profiling membrane lipids in plant stress responses — role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 277: 31994–32002.PubMedCrossRefGoogle Scholar
  224. Welters, P., Takegawa, K., Emr, S.D. and Chrispeels, M.J., 1994, AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid-binding domain. Proc. Natl. Acad. Sci. USA 91: 11398–11402.PubMedCrossRefGoogle Scholar
  225. Wendehenne, D., Pugin, A., Klessig, D.F. and Durner, J., 2001, Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 6: 177–183.PubMedCrossRefGoogle Scholar
  226. Westergren, T., Dove, S.K., Sommarin, M. and Pical, C., 2001, AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P2 and PtdIns(4,5)P2 in vitro and is inhibited by phosphorylation. Biochem. J. 359: 583–589.PubMedCrossRefGoogle Scholar
  227. Whitley, P., Reaves, B.J., Hashimoto, M., Riley, A.M., Potter, B.V.L. and Holman, G.D., 2003, Identification of mammalian Vps24p as an effector of phosphatidylinositol 3,5-bisphosphatedependent endosome compartmentalization. J. Biol. Chem. 278: 38786–38795.PubMedCrossRefGoogle Scholar
  228. Williams, M.E., Torabinejad, J., Cohick, E., Parker, K., Drake, E.J., Thompson, J.E., Hortter, M. and DeWald, D.B., 2005, Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stressresponse pathway. Plant Physiol. 138: 686–700.PubMedCrossRefGoogle Scholar
  229. Wondergem, N., Gong, W., Monen, S.H., Dooley, S.N., Gonce, J.L., Conner, T.D., Houser, M., Ecay, T.W. and Ferslew, K.E., 2001, Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. J. Physiol. Lond. 532: 661–672.PubMedCrossRefGoogle Scholar
  230. Wood, N.T., Allan, A.C., Haley, H., Viry-Moussaïd, M. and Trewavas, A.J., 2000, The characterization of differential calcium signalling in tobacco guard cells. Plant J. 24: 335–344.PubMedCrossRefGoogle Scholar
  231. Wurmser, A.E., Gary, J.D. and Emr, S.D., 1999, Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J. Biol. Chem. 274: 9129–9132.PubMedCrossRefGoogle Scholar
  232. Xia, H-J., Brearley, C., Elge, S., Kaplan, B., Fromm, H. and Mueller-Roeber, B., 2003, Arabidopsis inositol polyphosphate 6-/3-kinase is a nuclear protein that complements a yeast mutant lacking a functional ArgR-Mcm1 transcription complex. Plant Cell 15: 449–463.PubMedCrossRefGoogle Scholar
  233. Xie, W.W., Solomons, K.R.H., Freeman, S., Kaetzel, M.A., Bruzik, K.S., Nelson, D.J. and Shears, S.B., 1998, Regulation of Ca2+-dependent Cl conductance in a human colonic epithelial cell line (T84): Cross-talk between Ins(3,4,5,6)P4 and protein phosphatases. J. Physiol. Lond. 510: 661–673.PubMedCrossRefGoogle Scholar
  234. Xing, T., Higgins, V.J. and Blumwald, E., 1997, Identification of G proteins mediating fungal elicitor-induced dephosphorylation of host plasma membrane H+-ATPase. J. Exp. Bot. 48: 229–237.Google Scholar
  235. Xiong, L., Lee, B.H., Ishitani, M., Lee, H., Zhang, C.Q. and Zhu, J.K., 2001, The FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev. 15: 1971–1984.PubMedCrossRefGoogle Scholar
  236. Xiong, L., Schumaker, K.S. and Zhu, J-K., 2002, Cell signaling during cold, drought, and salt stress. Plant Cell 14: S165–S183.PubMedCrossRefGoogle Scholar
  237. Yamamoto, A., DeWald, D.B., Boronenkov, I.V., Anderson, R.A., Emr, S.D. and Koshland, D., 1995, Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol. Biol. Cell 6: 525–539.PubMedGoogle Scholar
  238. Yang, X.N., Rudolf, M., Carew, R.A., Yoshida, M., Nerreter, V., Riley, A.M., Chung, S.K., Bruzik, K.S., Potter, B.V.L., Schultz, C. and Shears, S.B., 1999, Inositol 1,3,4-trisphosphate acts in vivo as a specific regulator of cellular signaling by insositol 3,4,5,6-tetrakisphosphate. J. Biol. Chem. 274: 18973–18980.PubMedCrossRefGoogle Scholar
  239. Yin, H.L. and Janmey, P.A., 2003, Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65: 761–789.PubMedCrossRefGoogle Scholar
  240. York, J.D., Guo, S., Odom, A.R., Spiegelberg, B.D. and Stolz, L.E., 2001, An expanded view of inositol signaling. Advan. Enz. Regul. 41: 57–71.CrossRefGoogle Scholar
  241. York, J.D., Odom, A.R., Murphy, R., Ives, E.B. and Wente, S.R., 1999, A phospholipase Cdependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285: 96–100.PubMedCrossRefGoogle Scholar
  242. Zabela, M.D., Fernandez-Delmond, I., Niittyla, T., Sanchez, P. and Grant, M., 2002, Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol. Plant-Microbe Interactions 15: 808–816.Google Scholar
  243. Zhang, W.H., Qin, C.B., Zhao, J. and Wang, X., 2004, Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA 101: 9508–9513.PubMedCrossRefGoogle Scholar
  244. Zhang, W.H., Wang, C.X., Qin, C.B., Wood, T., Olafsdottir, G., Welti, R. and Wang, X.M., 2003, The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15: 2285–2295.PubMedCrossRefGoogle Scholar
  245. Zhao, J. and Wang, X., 2004, Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J. Biol. Chem. 279: 1794–1800.PubMedCrossRefGoogle Scholar
  246. Zhong, R. and Ye, Z-H., 2004, Molecular and biochemical characterization of three WD-repeatdomain containing inositol polyphosphate 5-phosphatases in Arabidopsis thaliana. Plant Cell Physiol. 45: 1720–1728.PubMedCrossRefGoogle Scholar
  247. Zhong, R., Burk, D.H., Morrison, W.H. and Ye, Z-H., 2004, FRAGILE FIBER3, an Arabidopsis gene encoding a Type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell 16: 3242–3259.PubMedCrossRefGoogle Scholar
  248. Zhong, R., Burk, D.H., Nairn, C.J., Wood-Jones, A., Morrison, W.H. and Ye, Z-H., 2005, Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell 17: 1449–1466.PubMedCrossRefGoogle Scholar
  249. Zimmermann, S., Nürnberger, T., Frachisse, J.M., Wirtz, W., Guern, J., Hedrich, R. and Scheel, D., 1997, Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proc. Natl. Acad. Sci. USA 94: 2751–2755.PubMedCrossRefGoogle Scholar
  250. Zonia, L., Cordeiro, S. and Feijo, J.A., 2001, Ion dynamics and hydrodynamics in the regulation of pollen tube growth. Sex. Plant Reprod. 14: 111–116.CrossRefGoogle Scholar
  251. Zonia, L., Cordeiro, S., Tupy, J. and Feijo, J.A., 2002, Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetrakisphosphate. Plant Cell 14: 2233–2249.PubMedCrossRefGoogle Scholar
  252. Zonia, L. and Munnik, T., 2004, Osmotically-induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol. 134: 813–823.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Laura Zonia
    • 1
  • Teun Munnik
    • 1
  1. 1.Section of Plant Physiology, Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations