Advertisement

Regulation of 1D-myo-Inositol-3-Phosphate Synthase in Yeast

  • Lilia R. Nunez
  • Susan A. Henry
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 39)

Keywords

Saccharomyces Cerevisiae Unfolded Protein Response INO1 Expression Phospholipid Metabolism INO1 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, J.F., vanHeusden, G.P., Temkin, M., and Dowhan, W., 1990, The gene encoding the phosphatidylinositol transfer protein is essential for cell growth. J. Biol. Chem. 265: 4711–4717.PubMedGoogle Scholar
  2. Ambroziak, J., and Henry, S.A., 1994, INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J. Biol. Chem. 269: 15344–15349.PubMedGoogle Scholar
  3. Antonsson, B., Montessuit, S., Friedli, L., Payton, M.A., and Paravicini, G., 1994, Protein kinase C in yeast. Characteristics of the Saccharomyces cerevisiae PKC1 gene product. J Biol. Chem. 269: 16821–16828.PubMedGoogle Scholar
  4. Arndt, K.M., Ricupero-Hovasse, S., and Winston, F., 1995, TBP mutants defective in activated transcription in vivo. EMBO J. 14: 1490–1497.PubMedGoogle Scholar
  5. Ashburner, B.P., and Lopes, J.M., 1995a, Autoregulated expression of the yeast INO2 and INO4 helix-loop-helix activator genes effects cooperative regulation on their target genes. Mol. Cell. Biol. 15: 1709–1715.PubMedGoogle Scholar
  6. Ashburner, B.P., and Lopes, J.M., 1995b, Regulation of yeast phospholipid biosynthesis involves two superimposed mechanisms. Proc. Natl. Acad. Sci. U.S.A. 92: 9722–9726.PubMedCrossRefGoogle Scholar
  7. Bachhawat, N., Ouyang, Q., and Henry, S.A., 1995, Functional characterization of an inositolsensitive upstream activation sequence in yeast: A cis-regulatory element responsible for inositol-choline mediated regulation of phospholipid biosynthesis. J. Biol. Chem. 270: 25087–25095.PubMedCrossRefGoogle Scholar
  8. Bailis, A.M., Poole, M.A., Carman, G.M., and Henry, S.A., 1987, The membrane-associated enzyme phosphatidylserine synthase is regulated at the level of mRNA abundance. Mol. Cell. Biol. 7: 167–176.PubMedGoogle Scholar
  9. Bankaitis, V.A., Malehorn, D.E., Emr, S.D., and Greene, R., 1989, The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol. 108: 1271–1281.PubMedCrossRefGoogle Scholar
  10. Carlson, M., 1999, Glucose repression in yeast. Curr. Opin. Microbiol. 2: 202–207.PubMedCrossRefGoogle Scholar
  11. Carman, G.M., and Henry, S.A., 1989, Phospholipid biosynthesis in yeast. Ann. Rev. Biochem. 58: 635–669.PubMedCrossRefGoogle Scholar
  12. Carman, G.M., and Henry, S.A., 1999, Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res. 38: 361–399.PubMedCrossRefGoogle Scholar
  13. Chang, H.J., 2001, Role of the unfolded protein response pathway in phospholipid biosynthesis and membrane trafficking in Saccharomyces cerevisiae. Department of Biological Sciences, Carnegie Mellon University.Google Scholar
  14. Chang, H.J., Jones, E.W., and Henry, S.A., 2002, Role of the unfolded protein response pathway in regulation of INO1 and in the sec14 bypass mechanism in Saccharomyces cerevisiae. Genetics 162: 27–43.Google Scholar
  15. Chang, L., and Karin, M., 2001, Mammalian MAP kinase signalling cascades. Nature 410: 37–40.PubMedCrossRefGoogle Scholar
  16. Chapman, R.E., and Walter, P., 1997, Translational attenuation mediated by an mRNA intron. Curr. Biol. 7: 850–859.PubMedCrossRefGoogle Scholar
  17. Chen, I.W., and Charalampous, F.C., 1963, A soluble enzyme system from yeast which catalyzes the biosynthesis of inositol from glucose. Biochem. Biophys. Res. Commun. 12: 62–67.PubMedCrossRefGoogle Scholar
  18. Chen, I.W., and Charalampous, F.C., 1965, Biochemical studies on inositol. 8. Purification and properties of the enzyme system which converts glucose 6-phosphate to inositol. J. Biol. Chem. 240: 3507–3512.PubMedGoogle Scholar
  19. Cleves, A., McGee, T., and Bankaitis, V., 1991a, Phospholipid transfer proteins: A biological debut. Trends Cell. Biol. 1: 30–34.PubMedCrossRefGoogle Scholar
  20. Cleves, A.E., McGee, T., Whitters, E.A., Champion, K.M., Aitken, J.R., Dowhan, W., Goebl, M., and Bankaitis, V.A., 1991b, Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64: 789–800.PubMedCrossRefGoogle Scholar
  21. Cox, J.S., Chapman, R.E., and Walter, P., 1997, The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell 8: 1805–1814.PubMedGoogle Scholar
  22. Cox, J.S., Shamu, C.E., and Walter, P., 1993, Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73: 1197–1206.PubMedCrossRefGoogle Scholar
  23. Cox, J.S., and Walter, P., 1996, A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87: 391–404.PubMedCrossRefGoogle Scholar
  24. Culbertson, M.R., Donahue, T.F., and Henry, S.A., 1976a, Control of inositol biosynthesis in Saccharomyces cerevisiae: Properties of a repressible enzyme system in extracts of wild type (Ino +) cells. J. Bacteriol. 126: 232–242.PubMedGoogle Scholar
  25. Culbertson, M.R., Donahue, T.F., and Henry, S.A., 1976b, Control of inositol biosynthesis in Saccharomyces cerevisiae: Inositol-phosphate synthetase mutants. J. Bacteriol. 126: 243–250.PubMedGoogle Scholar
  26. Culbertson, M.R., and Henry, S.A., 1975, Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics 80: 23–40.PubMedGoogle Scholar
  27. Daum, G., Lees, N.D., Bard, M., and Dickson, R., 1998, Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14: 1471–1510.PubMedCrossRefGoogle Scholar
  28. Davies, S.P., Carling, D., Munday, M.R., and Hardie, D.G., 1992, Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur. J. Biochem. 203: 615–623.PubMedCrossRefGoogle Scholar
  29. Dean-Johnson, M., and Henry, S.A., 1989, Biosynthesis of inositol in yeast: Primary structure of myo-inositol 1-phosphate synthase locus and functional characterization of its structural gene, the INO1 locus. J. Biol. Chem. 264: 1274–1283.PubMedGoogle Scholar
  30. Dietz, M., Heyken, W.T., Hoppen, J., Geburtig, S., and Schuller, H.J., 2003, TFIIB and subunits of the SAGA complex are involved in transcriptional activation of phospholipid biosynthetic genes by the regulatory protein Ino2 in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 48: 1119–1130.PubMedCrossRefGoogle Scholar
  31. Donahue, T.F., and Henry, S.A., 1981a, Inositol mutants of Saccharomyces cerevisiae: Mapping the ino1 locus and characterizing alleles of the ino1, ino2 and ino4 loci. Genetics 98: 491–503.Google Scholar
  32. Donahue, T.F., and Henry, S.A., 1981b, myo-Inositol-1-phosphate synthase: Characteristics of the enzyme and identification of its structural gene in yeast. J. Biol. Chem. 256: 7077–7085.PubMedGoogle Scholar
  33. Elkhaimi, M., Kaadige, M.R., Kamath, D., Jackson, J.C., Biliran, H., Jr. and Lopes, J.M., 2000, Combinatorial regulation of phospholipid biosynthetic gene expression by the UME6, SIN3 and RPD3 genes. Nucleic Acids Res. 28: 3260–3167.CrossRefGoogle Scholar
  34. Errede, B., Cade, R.M., Yashar, B.M., Kamada, Y., Levin, D.E., Irie, K., and Matsumoto, K., 1995, Dynamics and organization of MAP kinase signal pathways. Mol. Reprod. Dev. 42: 477–485.PubMedCrossRefGoogle Scholar
  35. Furter-Graves, E.M., Hall, B.D., and Furter, R., 1994, Role of a small RNA pol II subunit in TATA to transcription start site spacing. Nucleic Acids Res. 22: 4932–4936.PubMedGoogle Scholar
  36. Gardenour, K.R., Levy, J., and Lopes, J.M., 2004, Identification of novel dominant INO2c mutants with an Opi-phenotype. Mol. Microbiol. 52: 1271–1280.PubMedCrossRefGoogle Scholar
  37. Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G., 2002, Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147.PubMedCrossRefGoogle Scholar
  38. Graves, J.A., and Henry, S.A., 2000, Regulation of the yeast INO1 gene: The products of the INO2, INO4, and OPI1 regulatory genes are not required for repression in response to inositol. Genetics 154: 1485–1495.PubMedGoogle Scholar
  39. Greenberg, M., Goldwasser, P., and Henry, S., 1982a, Characterization of a yeast regulatory mutant constitutive for inositol-1-phosphate synthase. Mol. Gen. Genet. 186: 157–163.PubMedCrossRefGoogle Scholar
  40. Greenberg, M.L., Klig, L.S., Letts, V.A., Loewy, B.S., and Henry, S.A., 1983, Yeast mutant defective in phosphatidylcholine synthesis. J. Bacteriol. 153: 791–799.PubMedGoogle Scholar
  41. Greenberg, M.L., and Lopes, J.M., 1996, Genetic regulation of phospholipid biosynthesis in yeast. Microbiol. Rev. 60: 1–20.PubMedGoogle Scholar
  42. Greenberg, M.L., Reiner, B., and Henry, S.A., 1982b, Regulatory mutations of inositol biosynthesis in yeast: Isolation of inositol-excreting mutants. Genetics 100: 19–33.PubMedGoogle Scholar
  43. Griac, P., 1997, Regulation of yeast phospholipid biosynthetic genes in phosphatidylserine decarboxylase mutants. J. Bacteriol. 179: 5843–5848.PubMedGoogle Scholar
  44. Griac, P., and Henry, S.A., 1996, Phosphatidylcholine biosynthesis in Saccharomyces cerevisiae: Effects on regulation of phospholipid synthesis and respiratory competence. In: Op den Kamp, J.A.F. (ed.), NATO ASI Series: Molecular Dynamics of Biological Membranes. Springer, Verlag, pp. 339–346.Google Scholar
  45. Griac, P., Swede, M.J., and Henry, S.A., 1996, The role of phosphatidylcholine biosynthesis in the regulation of the INO1 gene of yeast. J. Biol. Chem. 271: 25692–25698.PubMedCrossRefGoogle Scholar
  46. Gustin, M.C., Albertyn, J., Alexander, M., and Davenport, K., 1998, MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62: 1264–1300.PubMedGoogle Scholar
  47. Heinisch, J.J., Lorberg, A., Schmitz, H.P., and Jacoby, J.J., 1999, The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol. Microbiol. 32: 671–680.PubMedCrossRefGoogle Scholar
  48. Henry, S.A., and Patton-Vogt, J.L., 1998, Genetic regulation of phospholipid metabolism: Yeast as a model eukaryote. In: Moldave, K. (ed.), Progress in Nucleic Acid Research and Molecular Biology. Academic Press Inc., San Diego, CA, USA, pp. 133–179.Google Scholar
  49. Hirsch, J.P., 1987, cis- and trans-acting regulation of the INO1 gene of Saccharomyces cerevisiae. Ph.D. thesis, Albert Einstein College of Medicine.Google Scholar
  50. Hirsch, J.P., and Henry, S.A., 1986, Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. Mol. Cell. Biol. 6: 3320–3328.PubMedGoogle Scholar
  51. Hirschhorn, J.N., Brown, S.A., Clark, C.D., and Winston, F., 1992, Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6: 2288–2298.PubMedGoogle Scholar
  52. Homann, M.J., Bailis, A.M., Henry, S.A., and Carman, G.M., 1987b, Coordinate regulation of phospholipid biosynthesis by serine in Saccharomyces cerevisiae. J. Bacteriol. 169: 3276–3280.PubMedGoogle Scholar
  53. Hudak, K.A., Lopes, J.M., and Henry, S.A., 1994, A pleiotropic phospholipid biosynthetic regulatory mutation in Saccharomyces cerevisiae is allelic to sin3 (sdi1, ume4, rpd1). Genetics 136: 475–483.PubMedGoogle Scholar
  54. Irie, K., Takase, M., Lee, K.S., Levin, D.E., Araki, H., Matsumoto, K., and Oshima, Y., 1993, MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinasekinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell. Biol. 13: 3076–3083.PubMedGoogle Scholar
  55. Ives, E.B., Nichols, J., Wente, S.R., and York, J.D., 2000, Biochemical and functional characterization of inositol 1,3,4,5,6-pentakisphosphate 2-kinases. J. Biol. Chem. 275: 36575–36583.PubMedCrossRefGoogle Scholar
  56. Jackson, J.C., and Lopes, J.M., 1996, The yeast UME6 gene is required for both negative and positive transcriptional regulation of phospholipid biosynthetic gene expression. Nucleic Acids Res. 24: 1322–1329.PubMedCrossRefGoogle Scholar
  57. Jesch, S.A., Zhao, X., Wells, M.T., and Henry, S.A., 2005, Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast. J. Biol. Chem. 280: 9106–9118.PubMedCrossRefGoogle Scholar
  58. Kaadige, M.R., and Lopes, J.M., 2003, Opi1p, Ume6p and Sin3p control expression from the promoter of the INO2 regulatory gene via a novel regulatory cascade. Mol. Microbiol. 48: 823–832.PubMedCrossRefGoogle Scholar
  59. Kagiwada, S., Hosaka, K., Murata, M., Nikawa, J., and Takatsuki, A., 1998, The Saccharomyces cerevisiae SCS2 gene product, a homolog of a synaptobrevin-associated protein, is an integral membrane protein of the endoplasmic reticulum and is required for inositol metabolism. J. Bacteriol. 180: 1700–1708.PubMedGoogle Scholar
  60. Kawahara, T., Yanagi, H., Yura, T., and Mori, K., 1997, Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol. Biol. Cell 8: 1845–1862.PubMedGoogle Scholar
  61. Kiyono, K., Miura, K., Kushima, Y., Hikiji, T., Fukushima, M., Shibuya, I., and Ohta, A., 1987, Primary structure and product characterization of the Saccharomyces cerevisiae CHO1 gene that encodes phosphatidylserine synthase. J. Biochem. 102: 1089–1100.PubMedGoogle Scholar
  62. Klig, L.S., and Henry, S.S., 1984, Isolation of the yeast INO1 gene: Located on an autonomously replicating plasmid, the gene is fully regulated. Proc. Natl. Acad. Sci. U.S.A. 81: 3816–3820.PubMedCrossRefGoogle Scholar
  63. Klig, L.S., Homann, M.J., Carman, G.M., and Henry, S.A., 1985, Coordinate regulation of phospholipid biosynthesis in Saccharomyces cerevisiae: Pleiotropically constitutive opi1 mutant. J. Bacteriol. 162: 1135–1141.PubMedGoogle Scholar
  64. Klig, L.S., Homann, M.J., Kohlwein, S.D., Kelley, M.J., Henry, S.A., and Carman, G.M., 1988a, Saccharomyces cerevisiae mutant with a partial defect in the synthesis of CDP-diacylglycerol and altered regulation of phospholipid biosynthesis. J. Bacteriol. 170: 1878–1886.PubMedGoogle Scholar
  65. Klig, L.S., Hoshizaki, D.K., and Henry, S.A., 1988b, Isolation of the yeast INO4 gene, a positive regulator of phospholipid biosynthesis. Curr. Genet. 13: 7.PubMedCrossRefGoogle Scholar
  66. Kodaki, T., Hosaka, K., Nikawa, J.-I., and Yamashita, S., 1991a, Identification of the upstream activation sequences responsible for the expression and regulation of the PEM1 and PEM2 genes encoding the enzymes of the phosphatidylethanolamine methylation pathway in Saccharomyces cerevisiae. J. Biochem. 109: 276–287.PubMedGoogle Scholar
  67. Kodaki, T., Nikawa, J., Hosaka, K., and Yamashita, S., 1991b, Functional analysis of the regulatory region of the yeast phosphatidylserine synthase gene, PSS. J. Biochem. 173: 7992–7995.Google Scholar
  68. Kodaki, T., and Yamashita, S., 1987, Yeast phosphatidylethanolamine methylation pathway. J. Biol. Chem. 262: 15428–15435.PubMedGoogle Scholar
  69. Kodaki, T., and Yamashita, S., 1989, Characterization of the methyltransferases in the yeast phosphatidylethanolamine methylation pathway by selective gene disruption. Eur. J. Biochem. 185: 243–251.PubMedCrossRefGoogle Scholar
  70. Kohno, K., Normington, K., Sambrook, J., Gething, M.-J., and Mori, K., 1993, The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol. Cell. Biol. 13: 877–890.PubMedGoogle Scholar
  71. Lamping, E., Paltauf, F., Henry, S.A., and Kohlwein, S.D., 1995, Isolation and characterization of a mutant of Saccharomyces cerevisiae with pleiotropic deficiencies in transcriptional activation and repression. Genetics 137: 55–65.Google Scholar
  72. Lee, K.S., Irie, K., Gotoh, Y., Watanabe, Y., Araki, H., Nishida, E., Matsumoto, K., and Levin, D.E., 1993, A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol. Cell. Biol. 13: 3067–3075.PubMedGoogle Scholar
  73. Lee, K.S., and Levin, D.E., 1992, Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol. Cell. Biol. 12: 172–182.PubMedGoogle Scholar
  74. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., and Young, R.A., 2002, Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799–804.PubMedCrossRefGoogle Scholar
  75. Letts, V.A., and Henry, S.A., 1985, Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (cho1) mutants of Saccharomyces cerevisiae. J. Bacteriol. 163: 560–567.PubMedGoogle Scholar
  76. Levin, D., Fields, F.O., Kunisawa, R., Bishop, J.M., and Thorner, J., 1990, A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62: 312–224.CrossRefGoogle Scholar
  77. Levin, D.E., Bowers, B., Chen, C.Y., Kamada, Y., and Watanabe, M., 1994, Dissecting the protein kinase C/MAP kinase signalling pathway of Saccharomyces cerevisiae. Cell. Mol. Biol. Res. 40: 229–239.PubMedGoogle Scholar
  78. Levin, D.E., and Errede, B., 1995, The proliferation of MAP kinase signaling pathways in yeast. Curr. Opin. Cell. Biol. 7: 197–202.PubMedCrossRefGoogle Scholar
  79. Lo, W.-S., Duggan, L., Tolga Emre, N.C., Belotserkovskya, R., Lane, W.S., Shiekhattar, R., and Berger, S.L., 2001, Snf1 — a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293: 1142–1146.PubMedCrossRefGoogle Scholar
  80. Loewen, C.J., Roy, A., and Levine, T.P., 2003, A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22: 2025–2035.PubMedCrossRefGoogle Scholar
  81. Loewen, C.J.R., Gaspar, M.L., Jesch, S.A., Delon, C., Ktistakis, N.T., Henry, S.A., and Levine, T.P., 2004, Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304: 1644–1647.PubMedCrossRefGoogle Scholar
  82. Loewy, B.S., and Henry, S.A., 1984, The INO2 and INO4 loci of Saccharomyces cerevisiae are pleiotropic regulatory genes. Mol. Cell. Biol. 4: 2479–2485.PubMedGoogle Scholar
  83. Lopes, J.M., and Henry, S.A., 1991, Interaction of trans and cis regulatory elements in the INO1 promoter of Saccharomyces cerevisiae. Nucleic Acids Res. 19: 3987–3994.PubMedGoogle Scholar
  84. Lopes, J.M., Hirsch, J.P., Chorgo, P.A., Schulze, K.L., and Henry, S.A., 1991, Analysis of sequences in the INO1 promoter that are involved in its regulation by phospholipid precursors. Nucleic Acids Res. 19: 1687–1693.PubMedGoogle Scholar
  85. Lopes, J.M., Schulze, K.L., Yates, J.W., Hirsch, J.P., and Henry, S.A., 1993, The INO1 promoter of Saccharomyces cerevisiae includes an upstream repressor sequence (URS1) common to a diverse set of yeast genes. J. Bacteriol. 175: 4235–4238.PubMedGoogle Scholar
  86. Maeda, T., and Eisenberg, F., Jr., 1980, Purification, structure, and catalytic properties of L-myo-inositol-1-phosphate synthase from rat testis. J. Biol. Chem. 255: 8458–8464.PubMedGoogle Scholar
  87. Majumder, A., Duttagupta, S., Goldwasser, P., Donahue, T., and Henry, S., 1981, The mechanism of interallelic complementation at the INO1 locus in yeast: Immunological analysis of mutants. Mol. Gen. Genet. 184: 347–354.PubMedCrossRefGoogle Scholar
  88. Majumder, A.L., Chatterjee, A., Dastidar, K.G., and Majee, M., 2003, Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.PubMedCrossRefGoogle Scholar
  89. Majumder, A.L., Johnson, M.D., and Henry, S.A., 1997, 1L-myo-inositol 1-phosphate synthase. Biochim. Biophys. Acta 1348: 245–256.PubMedGoogle Scholar
  90. McGee, T.P., Skinner, H.B., Whitters, E.A., Henry, S.A., and Bankaitis, V.A., 1994, A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J. Cell Biol. 124: 273–287.PubMedCrossRefGoogle Scholar
  91. McGraw, P., and Henry, S.A., 1989, Mutations in the Saccharomyces cerevisiae opi3 gene: Effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis. Genetics 122: 317–330.PubMedGoogle Scholar
  92. Mori, K., Ma, W., Gething, M.-J., and Sambrook, J., 1993, A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74: 743–756.PubMedCrossRefGoogle Scholar
  93. Mori, K., Ogawa, N., Kawahara, T., Yanagi, H., and Yura, T., 2000, mRNA splicing-mediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. Proc. Natl. Acad. Sci. 97: 4660–4665.PubMedCrossRefGoogle Scholar
  94. Mori, K., Sant, A., Kohno, K., Normington, K., Gething, M.-J., and Sambrook, J.F., 1992, A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J. 11: 2583–2593.PubMedGoogle Scholar
  95. Nikawa, J.-I., and Yamashita, S., 1992, IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol prototrophy in Saccharomyces cerevisiae. Mol. Microbiol. 6: 1441–1446.PubMedGoogle Scholar
  96. Nikoloff, D.M., and Henry, S.A., 1994, Functional characterization of the INO2 gene of Saccharomyces cerevisiae. J. Biol. Chem. 269: 7402–7411.PubMedGoogle Scholar
  97. Nikoloff, D.M., McGraw, P., and Henry, S.A., 1992, The INO2 gene of Saccharomyces cerevisiae encodes a helix-loop-helix protein that is required for activation of phospholipid synthesis. Nucleic Acids Res. 20: 3253.PubMedGoogle Scholar
  98. Nishizuka, Y., 1984a, The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308: 693–698.PubMedCrossRefGoogle Scholar
  99. Nishizuka, Y., 1984b, Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1370.PubMedGoogle Scholar
  100. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C. Science 233: 305–312.PubMedGoogle Scholar
  101. Nonet, M., and Young, R., 1989, Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123: 715–724.PubMedGoogle Scholar
  102. Odom, A.R., Stahlberg, A., Wente, S.R., and York, J.D., 2000, A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287: 2026–2029.PubMedCrossRefGoogle Scholar
  103. Ouyang, Q., Ruiz-Noriega, M., and Henry, S.A., 1999, The REG1 gene product is required for repression of INO1 and other inositol-sensitive upstream activating sequence-containing genes of yeast. Genetics 152: 89–100.PubMedGoogle Scholar
  104. Paltauf, F., Kohlwein, S., and Henry, S.A., 1992, Regulation and compartmentalization of lipid synthesis in yeast. In: Pringle, J. (ed.), The Molecular and Cellular Biology of the Yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Plainview, NY, USA, pp. 415–500.Google Scholar
  105. Pappas, D.L., Jr., and Hampsey, M., 2000, Functional interaction between Ssu72 and the Rpb2 subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell. Biol. 20: 8343–8351.PubMedCrossRefGoogle Scholar
  106. Patil, C., and Walter, P., 2001, Intracellular signaling from the endoplasmic reticulum to the nucleus: The unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13: 349–356.PubMedCrossRefGoogle Scholar
  107. Patton-Vogt, J.L., Griac, P., Sreenivas, A., Bruno, V., Dowd, S., Swede, M.J., and Henry, S.A., 1997, Role of the yeast phosphatidylinositol/phosphatidylcholine transfer protein (Sec14p) in phosphatidylcholine turnover and INO1 regulation. J. Biol. Chem. 272: 20873–20883.PubMedCrossRefGoogle Scholar
  108. Peterson, C.L., and Herskowitz, I., 1992, Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68: 573–583.PubMedCrossRefGoogle Scholar
  109. Peterson, C.L., Kruger, W., and Herskowitz, I., 1991, A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64: 1135–1143.PubMedCrossRefGoogle Scholar
  110. Pittner, F., Tovorova, J.J., Karnitskaya, E.Y., Khoklov, A.S., and Hoffmann-Ostenhof, O., 1979, Myo-inositol 1-phosphate synthase from Streptomyces griseus (studies on the biosynthesis of cyclitols, XXXVIII). Mol. Cell. Biochem. 25: 43.PubMedCrossRefGoogle Scholar
  111. Ruiz-Noriega, M., 2000, Signal transduction and phospholipid biosynthesis in yeast: The role of the glucose response pathway. Department of Biological Sciences, Carnegie Mellon University, p. 157.Google Scholar
  112. Saiardi, A., Caffrey, J.J., Snyder, S.H., and Shears, S.B., 2000, Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett. 468: 28–32.PubMedCrossRefGoogle Scholar
  113. Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., and Snyder, S.H., 1999, Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9: 1323–1326.PubMedCrossRefGoogle Scholar
  114. Saiardi, A., Nagata, E., Luo, H.R., Snowman, A.M., and Snyder, S.H., 2001, Identification and characterization of a novel inositol hexakisphosphate kinase. J. Biol. Chem. 276: 39179–39185.PubMedCrossRefGoogle Scholar
  115. Santiago, T.C., and Mamoun, C.B., 2003, Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p. J. Biol. Chem. 278: 38723–38730.PubMedCrossRefGoogle Scholar
  116. Scafe, C., Chao, D., Lopes, J., Hirsch, J.P., Henry, S., and Young, R.A., 1990a, RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 347: 491–494.PubMedCrossRefGoogle Scholar
  117. Scafe, C., Martin, C., Nonet, M., Podos, S., Okamura, S., and Young, R.A., 1990b, Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits. Mol. Cell. Biol. 10: 1270–1275.PubMedGoogle Scholar
  118. Scafe, C., Nonet, M., and Young, R.A., 1990c, RNA polymerase II mutants defective in transcription of a subset of genes. Mol. Cell. Biol. 10: 1010–1016.PubMedGoogle Scholar
  119. Schüller, H.-J., Richter, K., Hoffmann, B., Ebbert, R., and Schweizer, E., 1995, DNA binding site of the yeast heteromeric Ino2p/Ino4p basic helix-loop-helix transcription factor: Structural requirements as defined by saturation mutagenesis. FEBS Lett. 370: 149–152.PubMedCrossRefGoogle Scholar
  120. Schüller, H.J., Schorr, R., Hoffman, B., and Schweizer, E., 1992, Regulatory gene INO4 of yeast phospholipid biosynthesis is positively autoregulated and functions as a transactivator of fatty acid synthase genes FAS1 and FAS2 from Saccharomyces cerevisiae. Nucleic Acids Res. 20: 5955–5961.PubMedGoogle Scholar
  121. Schwank, S., Ebbert, R., Rautenstrauss, K., Schweizer, E., and Schuller, H.-J., 1995, Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res. 23: 230–237.PubMedGoogle Scholar
  122. Shen, H., and Dowhan, W., 1996, Reducation of CDP-diacylglycerol synthase activity results in the excretion of inositol by Saccharomyces cerevisiae. J. Biol. Chem. 271: 29043–29048.PubMedCrossRefGoogle Scholar
  123. Shen, H., and Dowhan, W., 1997, Regulation of phospholipid biosynthetic enzymes by the level of CDP-diacylglycerol synthase activity. J. Biol. Chem. 272: 11215–11220.PubMedCrossRefGoogle Scholar
  124. Shen, X., Xiao, H., Ranallo, R., Wu, W.H., and Wu, C., 2003, Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299: 112–114.PubMedCrossRefGoogle Scholar
  125. Shirra, M.K., and Arndt, K.M., 1999, Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae. Genetics 152: 73–87.PubMedGoogle Scholar
  126. Shirra, M.K., Patton-Vogt, J., Ulrich, A., Liuta-Tehlivets, O., Kohlwein, S.D., Henry, S.A., and Arndt, K.M., 2001, Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol. Cell. Biol. 21: 5710–5722.PubMedCrossRefGoogle Scholar
  127. Sidrauski, C., Cox, J.S., and Walter, P., 1996, tRNA Ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87: 405–413.PubMedCrossRefGoogle Scholar
  128. Slekar, K.H., and Henry, S.A., 1995, SIN3 works through two different promoter elements to regulate INO1 gene expression in yeast. Nucleic Acids Res. 23: 1964–1969.PubMedGoogle Scholar
  129. Sreenivas, A., and Carman, G.M., 2003, Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase A. J. Biol. Chem. 278: 20673–20680.PubMedCrossRefGoogle Scholar
  130. Sreenivas, A., Patton-Vogt, J.L., Bruno, V., Griac, P., and Henry, S.A., 1998, A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J. Biol. Chem. 273: 16635–16638.PubMedCrossRefGoogle Scholar
  131. Sreenivas, A., Villa-Garcia, M.J., Henry, S.A., and Carman, G.M., 2001, Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase C. J. Biol. Chem. 276: 29915–29923.PubMedCrossRefGoogle Scholar
  132. Steger, D.J., Haswell, E.S., Miller, A.L., Wente, S.R., and O’Shea, E.K., 2003, Regulation of chromatin remodeling by inositol polyphosphates. Science 299: 114–116.PubMedCrossRefGoogle Scholar
  133. Summers, E.F., Letts, V.A., McGraw, P., and Henry, S.A., 1988, Saccharomyces cerevisiae cho2 mutants are deficient in phospholipid methylation and cross-pathway regulation of inositol synthesis. Genetics 120: 909–922.PubMedGoogle Scholar
  134. Swede, M.J., 1994, Isolation and characterization of novel regulatory mutants of phospholipid biosynthesis in Saccharomyces cerevisiae. Department of Biological Sciences, Carnegie Mellon University.Google Scholar
  135. Swede, M.J., Hudak, K.A., Lopes, J.M., and Henry, S.A., 1992, Strategies for generating phospholipid synthesis mutants in yeast. In Dennis, E.A. (ed.), Methods in Enzymology: Phospholipid Biosynthesis. Academic Press, Inc., San Diego, CA, USA, pp. 21–34.Google Scholar
  136. Treisman, R., 1996, Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8: 205–215.PubMedCrossRefGoogle Scholar
  137. Wagner, C., Blank, M., Strohman, B., and Schuller, H.J., 1999, Overproduction of the Opi1 repressor inhibits transcriptional activation of structural genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Yeast 15: 843–854.PubMedCrossRefGoogle Scholar
  138. Wagner, C., Dietz, M., Wittmann, J., Albrecht, A., and Schuller, H.-J., 2001, The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2. Mol. Microbiol. 41: 155–166.PubMedCrossRefGoogle Scholar
  139. Watanabe, M., Chen, C.Y., and Levin, D.E., 1994, Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate specificity similar to that of mammalian PKC. J. Biol. Chem. 269: 16829–16836.PubMedGoogle Scholar
  140. White, M.J., Hirsch, J.P., and Henry, S.A., 1991, The OPI1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J. Biol. Chem. 266: 863–872.PubMedGoogle Scholar
  141. Woods, A., Munday, M.R., Scott, J., Yang, X., Carlson, M., and Carling, D., 1994, Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 269: 19509–19515.PubMedGoogle Scholar
  142. Xie, Z., Fang, M., Rivas, M.P., Faulkner, A.J., Sternweis, P.C., Engebrecht, J., and Bankaitis, V.A., 1998, Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects. Proc. Natl. Acad. Sci U.S.A. 95: 12346–12351.PubMedCrossRefGoogle Scholar
  143. York, J.D., Odom, A.R., Murphy, R., Ives, E.A., and Wente, S.R., 1999, A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient mRNA export. Science 285: 96–100.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Lilia R. Nunez
    • 1
  • Susan A. Henry
    • 1
  1. 1.Department of Molecular Biology and GeneticsCornell UniversityIthacaUSA

Personalised recommendations